PHY302L Useful Formulae

Electricity

Couloumb's Law
$$\vec{\mathbf{F}}_{12} = k \frac{g_1 g_2}{r^2} \hat{\mathbf{r}}_{12}$$

Electric Field of a point charge q:

$$\vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}}{q_2} = k \frac{q}{r^2} \hat{\mathbf{r}}$$

Electric field inside a conductor in electrostatic equilibrium:

$$\vec{\mathbf{E}} = 0$$

Electric potential near a point charge:

$$V = k \frac{q}{r}$$

Definition of capacitance: C=Q/V

Parallel plate capacitance: $C = \epsilon_0 \frac{A}{d}$

Energy stored in a capacitor:
$$U = \frac{QV}{2} = \frac{CV^2}{2} = \frac{Q^2}{2C}$$

Resistance of a wire of length L and cross section A:

$$R = \rho \frac{L}{A}$$

Temperature dependence of Resistivity :

$$\rho - \rho_0 = \rho_0 \alpha (T - T_0)$$

Electric power dissipation:

$$P = IV = I^2R = V^2/R$$

Transient behavior in an RC circuit, charging:

$$Q(t) = Q_0 \left(1 - \exp^{-t/RC} \right)$$

Transient behavior in an RC circuit, discharging:

$$Q(t) = Q_0 \exp^{-t/RC}$$

Magnetism

Magnetic Force on a moving charged particle

$$\mathbf{F}_B = qvB\sin\theta$$

Magnetic Force on a current carrying wire

$$\mathbf{F}_B = iLB\sin\theta$$

Magnetic dipole moment $\mu = NiA$

Torque on a magnetic dipole: $\tau = \mu B \sin \theta$

Uniform circular motion of a charged particle in a magnetic field, radius

$$r = \frac{mv}{qB}$$

Uniform circular motion of a charged particle in a magnetic field, frequency

$$\omega = 2\pi\nu = \frac{qB}{m}$$

Magnetic field of a long straight wire:

$$B = \frac{\mu_0 i}{2\pi R}$$

Flux of the magnetic field: $\Phi_B = BA \cos \theta$

Faraday's law of induction:

$$E = -N \frac{\Delta \Phi_B}{\Delta t}$$

Transformer equation: $\frac{V_s}{V_p} = \frac{N_s}{N_P}$

Wave equation relating speed, frequency and wavelength: $v = \lambda \nu$

Energy density in electromagnetic waves (peak):

$$u = \epsilon_0 E^2 = \epsilon_0 c E B = B^2 / \mu_0$$

Energy density in electromagnetic waves

(average):
$$u = \frac{\epsilon_0 E^2}{2} = \frac{\epsilon_0 c E B}{2} = \frac{B^2}{2\mu_0}$$

Power transported in electromagnetic waves

(average):
$$\bar{S} = \frac{\epsilon_0 c E_0^2}{2} = \frac{E_0 B_0}{2\mu_0} = \frac{c B_0^2}{2\mu_0}$$

Power dissipated in an electrical circuit: $P = I^2 R = \frac{V^2}{R} = V I$

$$P = I^2 R = \frac{V^2}{R} = V I$$

Optics

Index of refraction

$$n = \frac{c}{v}$$

Snell's law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

Critical angle for total internal reflection $\sin \theta_c = \frac{n_2}{n_1}$

> Spherical mirror in air $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} = \frac{2}{r}$

Thin lens equation $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$

Constructive interference in Young's double slit

$$d\sin\theta = m\lambda$$

Einstein-Planck photon energy $E = h\nu$

> de Broglie wavelength $\lambda = h/p$

Heisenberg uncertainty principle $\Delta p \Delta x \ge \hbar$ $\Delta E \Delta t > \hbar$

Constants and Conversion factors:

Magnetic permeability, $\mu_0 = 1.26 \text{x} 10^{-6}$ $T \cdot m/A$

Couloumb's law constant: $k_e = \frac{1}{4\pi\epsilon_0} = 8.89 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$

$$1 \text{ eV} = 1.602 \text{ x } 10^{-19} \text{ J}$$

Proton mass, $m_p = 1.67 \text{ x } 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Electron charge, $e = 1.60 \times 10^{-19} \text{ C}$

Speed of light in vacuum, $c = 3.0 \times 10^8 \text{ m/s}$