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We develop a formalism for treating coherent wave-packet dynamics of charge and spin carriers
in degenerate and nearly degenerate bands. We consider the two-band case carefully in view of
spintronics applications, where transitions between spin-split bands often occur even for relatively
weak electromagnetic fields. We demonstrate that much of the semiclassical formalism developed
for the single-band case can be generalized to multiple bands, and examine the nontrivial non-
Abelian corrections arising from the additional degree of freedom. Along with the center of mass
motion in crystal momentum and real space, one must also include a pseudo-spin to characterize
the dynamics between the bands. We derive the wave packet energy up to the first order gradient
correction and obtain the equations of motion for the real- and k-space center of the wave-packet,
as well as for the pseudo-spin. These equations include the non-Abelian Berry curvature terms and
a non-Abelian correction to the group velocity. As an example, we apply our formalism to describe
coherent wave-packet evolution under the action of an electric field, demonstrating that it leads
to electrical separation of up and down spins. A sizable separation will be observed, with a large
degree of tunability, making this mechanism a practical method of generating a spin polarization.
We then turn our attention to a magnetic field, where we recover Larmor precession, which cannot
be obtained from a single-band point of view. In this case, the gradient energy correction can be
regarded as due to a magnetic moment from the self-rotation of the wave-packet, and we calculate
its value for the light holes in the spherical four-band Luttinger model.

PACS numbers: 72.10.Bg, 72.20.My, 72.25.Dc, 73.23.-b

I. INTRODUCTION

and magnetoresistancell. An essential application of the

It often happens, in transport phenomena, that one has
to consider carrier dynamics in bands which are coupled
together. This coupling arises either through strong in-
terband scattering or as a result of the bands being degen-
erate, or both. The nearly degenerate case is particularly
relevant in transport theory as transitions often occur
between bands even at relatively weak electromagnetic
fields. Such situations include two-dimensional systems
described by the Rashba Hamiltonian! with strong scat-
tering, the doubly degenerate heavy and light hole bands
in the Luttinger model?, which is frequently used to
model the valence bands of bulk zincblende semiconduc-
tors, and the conduction bands of wurtzite structuress.
The case of nearly degenerate bands has not, to date, re-
ceived the attention it deserves?, despite the important
role played by such bands in semiconductor spintronics
systems®8, whether in dealing with spin currents’, spin
generation® and relaxation?, or spin injection across a
semiconductor interfacel?.

Spintronics systems lend themselves to a semiclassi-
cal treatment, as the external electromagnetic fields vary
on scales that are considerably larger than atomic size.
The semiclassical formalism has had much success in de-
scribing carrier dynamics and transport phenomena in
condensed matter physics. In the non-degenerate case,
the carrier dynamics can be obtained semiclassically then
combined with the Boltzmann equation to produce ac-
curate descriptions of the transport properties of many
materials. This approximation is used in the descriptions
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semiclassical model, which is specifically relevant to our
discussion, is in treating external fields that are not rep-
resented by bounded operators, so that a perturbative
expansion will not converge!2. The most common exam-
ple is provided by uniform electric and magnetic fields,
where the potential is linear in position.

We therefore develop, in this paper, a semiclassical
description of transport in degenerate and nearly de-
generate bands. One of our main purposes is to ex-
tend the semiclassical approach, as developed by Sun-
daram and Niwt3, to the case of coupled Bloch bands,
in order to take into account the spin degree of free-
dom. We illustrate the underlying physics by treating
two bands, without loss of generality. Two-band mod-
els are frequently an adequate description of the conduc-
tion bands of many semiconductorst4. In experiments
on spin transport in semiconductors the carriers have
traditionally been electrons!®, as the strong spin-orbit
coupling in the valence band causes holes to lose spin
information much faster®. However, in recent years re-
search has also focused on spin currents in the valence
bands of semiconductors?, with a degeneracy which is
usually greater than two, and the formalism we outline
is straightforwardly extended to multiple bands.

To formulate a description of coherent transport in
coupled bands we may no longer work with each band in-
dividually but must instead treat the coupled-band man-
ifold as a whole. The condition for our theory to be valid,
which in the one-band case states that there must be no
transitions out of that band!!, translates into the require-
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der consideration. We will consider a wave packet made
up of two bands, which is a suitable description of coher-
ent transport, when the density matrix has off-diagonal
terms and the relative phase of the two wave functions
plays a crucial role. This approach allows us to retain
the notion of the real-space center of the wave-packet,
r., which remains well defined. Moreover, in extending
the formalism to two bands we are able, in the presence
of a magnetic field, to recover Larmor precession, which
is not possible from a one band picture. The additional
degree of freedom of the two-band system can be taken
into account by defining a wave function with the Bloch
periodicity in such a way as to incorporate both bands,
which allows us to derive the dynamics from a single-
band point of view. The coefficients of the bands can
then be grouped into a vector which we shall call the
pseudo-spin, the structure and dynamics of which makes
clear the gauge structure of the problem. An interest-
ing fact which will emerge from our analysis is that the
effect of the external perturbations can be incorporated
entirely into the Berry curvatures'?, which in turn are
generated by a set of connections in real and reciprocal
space as well as in time. The Berry curvatures acquire
additional terms needed to ensure gauge covariance, and
in the framework we present they take the form of field
strength tensors associated with the connections.

The organization of this paper is as follows. In Section
II we develop the semiclassical formalism for coherent
transport in the presence of electromagnetic fields, de-
riving the Lagrangian, based on a time-dependent varia-
tional principle, and the equations of motion. In Section
IIT we use our formalism to show how coherent wave-
packet evolution under the action of an electric field leads
to the separation of up and down spins. This idea is
similar in principle to the spin transistor proposed by
Datta and Das*¢. We demonstrate that a large degree
of tunability can be achieved by varying the gate field
and number density. Finally, in section IV we examine
the case of a magnetic field. We show that the gradient
correction to the energy can be interpreted as an intrin-
sic magnetic moment of the wave-packet!31718 and we
calculate this magnetic moment correction for the light
holes in the spherical four-band model of the Luttinger
Hamiltonian.

II. DEVELOPMENT OF THE FORMALISM

The semiclassical model describes the dynamics of
wave-packets. The wave-packet we consider is well lo-
calized in reciprocal space, and it is assumed it sees only
a small part of the lattice at any one time. It is chosen in
such a way that its spread in wave vector is much smaller
than the size of the Brillouin zone, so that its motion at
any moment is dependent only on the local properties of
the band structure. In order for this to happen, the un-
certainty principle dictates that the spread in real space
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We consider systems whose Hamiltonians are func-
tions of slowly varying parameters, such as the poten-
tials of weak external electromagnetic fields, which vary
on larger length scales than that of the wave-packet, and
are treated classically. The periodic potential of the ions
on the other hand, changing over dimensions small com-
pared to the wave-packet spread, must be treated quan-
tum mechanicallyl. When these conditions are fulfilled,
the Hamiltonian can be expanded®3 about the center of
the wave-packet, which we denote by r.:

H=H.+AH= (1)
N OH.
=H.+ 5[(1‘ —r.)- o, + c.c.]

The term H, represents the Hamiltonian H evaluated
at r., while the gradient term gives rise to a correction
to the energy, which will play an important role in our
discussion below. Since the wave-packet senses only a
small part of the lattice and the Hamiltonian varies on
a larger scale than the wave-packet, we can truncate the
expansion to first order.

We take the Hamiltonian to have the following general
form:

ﬁ:ﬁ0+ﬁso+HZ7 (2)

where the term Hy contains the kinetic energy and the
lattice periodic potential, while H,, represents the spin-
orbit coupling and Hyz is the Zeeman term, representing
the interaction between the spin and a magnetic or ex-
change field. The energy spectrum of the Hamiltonian
consists, as usual, of a series of bands, of which sev-
eral are close together in energy and are separated from
the others by larger gaps. It is these bands that consti-
tute the focus of our attention. When the external fields
are smoothly varying the states move within this subset,
which henceforth, for simplicity and without loss of gen-
erality, we take to be two-dimensional. In order to have
a well defined velocity it is necessary for the energy to be
well defined, therefore the model does not allow transi-
tions outside the subspace. We regard the fields in this
problem as small enough that Zener tunneling to the re-
mote bands is negligible, but they may induce transitions
within the subset.

The subset is spanned by two basis functions, which are
eigenstates of H,, the local Hamiltonian, evaluated at r,
which has the periodicity of the unperturbed crystal:

H|Vi) = ef|V3). 3)

For a given r, therefore, these eigenstates have the Bloch
form, with the functions |u;) representing the lattice pe-
riodic parts of the wave functions:

|\Ijl(rcvqa t)> = el:q.l:‘|u1(rcvqa t)> (4)
|\IJ2 (I‘C, q, t)> = elq-r|u2 (r67 q, t)> (5)

The wave functions |u;(r., q,t)) are spinors with the full
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bands are spin split, it cannot be assumed that their lo-
cal spin quantization axes are antiparallel, as the interac-
tions with neighboring bands may affect the direction of
quantization. Therefore, in principle, a finite overlap ex-
ists between the spinors corresponding to the two bands
and it is not revealing to make a further decomposition
of the eigenfunctions into an orbital and a spin part. Ad-
ditionally, the Hamiltonian contains terms describing the
spin-orbit interaction, which may depend on wave vector
and position.

Employing the crystal momentum representation, the
wave-packet is therefore expanded in the basis of Bloch
eigenstates:

w) = [ dafala, Dn (O + @I ©

As the wave-packet depends only on the local proper-
ties of the band structure, the basis functions |¥4), [¥2)
are functions of the position of the wave packet cen-
ter, r., wave vector and time, although implicit in the
ket notation is dependence on position. The function
a(q,t) = |a(q,t)|e”T(@H/2 which incorporates the over-
all phase term, is a narrow distribution function describ-
ing the extent of the wave-packet in reciprocal space and
is sharply peaked at the center of the wave packet, de-
noted by q., as discussed by Sundaram and Niut2. The
functions 7; and 72 describe the composition of the wave-
packet in terms of the two bands. They are functions of
time only, not of wave vector, since defining the 7; as
functions of wave vector is tantamount to redefining the
Bloch wave functions, in other words a rotation in the
coupled-band manifold. In addition, since the distribu-
tion function a(q,t) is narrow, it effectively singles out
one wave-vector, so the wave-vector dependence of the n;
can be ignored. The wave-packet satisfies the normaliza-
tion conditions:

[ a1 U
m|? + n3] = 1.

The wave-packet can be rewritten by grouping together
the coefficients in an overall wave function |u), which
retains the Bloch periodicity:

wh = [ dalale /e ®)

Note that |u) is not an eigenstate of the Hamiltonian, but
an expansion in eigenstates, a crucial difference from the
one-band situation. In addition, the time dependence of
|u) comes both from the time dependence of the Bloch
states and that of the coefficients.

We require the real-space center of the wave-packet to
be given by:

ar'.
— + R, (9)

r. = (w|t|w) =

The subscript ¢ signifies that the quantity is evaluated
at the center of the wave-packet in reciprocal space, that
is 9 = q.. The vector R, representing a connection in
reciprocal space, is defined as follows:

R = <u|z%|u> (10)

The energy of the wave-packet is given by the expec-
tation value

(wlHw) = (w|Hc|w) + (w|AHw) =+ A (11)

Both ¢ and A are expressible entirely in terms of the
Bloch wave function |u):

i OH. 0u OH.
A= §(<u| o, -|8—q>—c.c.)— u
This energy correction takes on an additional significance
when a magnetic field is present, as will be seen in the
last section.
The Lagrangian £ is obtained semiclassically by means
of a variational principle:

L= <w|(ih% i) (13)

Its use is justified by the fact that the Euler-Lagrange
equation of motion for |w) derived from it is the time-
dependent Schrodinger equation. Following the method
used by Sundaram and Niut3, the following expression is
found for the Lagrangian:

o N
L= <’U,|Zh8_/:> + hi - (qc + Qc) + hqc ‘R - <w|H|w> =
=hT + hq. - r. — e — X14)

The time and real space connections, 7" and Q, are de-
fined in analogy with R by

T = (uli ) (15)

Q = (uli-Ju)

In the above, % represents the total time derivative, in-
cluding both the explicit time dependence and the im-
plicit, which is due to the dependence on r. and q.. In
this picture we regard |u) itself as a dynamical variable
(due to the presence of 71, 72), which allows us to keep
the same Lagrangian as in the one-band case. Since |u) is
a dynamical variable, it will give rise to additional equa-
tions of motion:

I . -
hie = == (ulHlu) + (Qurte + Qeqde) = D (16)
. 0 3 : :
hr. = dq (ulH|u) — (Qqrie + Qqqdc) + g
. ou - . 0 . 9
zh<U1|5> = (u1|(H — hi - o, hqc - 8—%)|U>

) Ju - ) 0 . 0
th{us| =) = {(us|(H — hte - =— — hqe - =—)|u)



The curvature tensor Q27 is defined by:

ou  Ou
af _ Il Wbl WY Sl Bl
% =il lg) = Glgeh) (D)
and the vector Q;q by:
o .,,0u Ou Ou Ou
Vg = Z(<a w> - <W aﬂ (18)

The others can be deduced analogously. These quantities
have exactly the same form as the curvatures defined in
the paper by Sundaram and Niu2.

We specialize in the case of an external electromagnetic
field. The effect of such an external field is discussed
thoroughly by Sundaram and Niut3. The wave vector q
must be replaced by k = q+ £ A(r,t), which is the gauge
invariant crystal momentum (for electrons with charge
—e), and therefore the Hamiltonian will have the form
H(k)+eV(r,t). Provided the magnetic or exchange field
is constant and uniform, so that the Zeeman term has no
time or space dependence, the basis states {|u;)} will de-
pend only on k. The reason for this is that all the spatial
and time dependence of the wave functions will only come
from the spatial and time dependence of the vector po-
tential A(r,t). We will therefore restrict our attention to
constant uniform magnetic fields, while the electric fields
may be space- and time-dependent. As the electromag-
netic fields vary on a spatial scale which is large com-
pared to that of the wave-packet, the local Hamiltonian
will have the form H[q+ £ A(r.,t)]+eV (re,t). The band
eigenstates {|U,x)} take the form |¢,x) = €9 |unk) =
=)y, ). The time dependence of |u) comes both
from the Bloch wave functions {|u;)}, which depend only
on k, and from the coefficients, which depend only on
time. Therefore, the Lagrangian in the presence of elec-
tromagnetic fields can be written as:

d
L= (u|zha|u> + [fike — eA(re, t)] - T — (19)
—e—A—eV(ret),

and the equations of motion now take the following form:

hkc = _e(E + I.‘c X B) (20)
0

B, =
e ™ Bk,

(uH|u) — hke x Q4 Qe
) du -
ih{ur| o) = (1| Hw)
) du -
ihfus] 5) = (us )

where 2 = i<%| X |%>. Note that the position-vector
equation of motion is very similar to the one band
case!2, excepting the presence of the vector Q, which
is nonzero due to the time dependence of |u) through the
coefficients. The equation of motion for |u), if a magnetic
field is present, leads to the formula for Larmor preces-
sion. The equations may be solved to any desired order
in the external fields and are not limited to the linear

response regime (the fields are weak enough that they do
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III. THE PSEUDO-SPIN

The treatment we have presented so far is an exact
analogy with the single-band dynamics. The equations
of motion (20) are complete. However, the form of the
equations hides the fact that the last two of them are
in fact equations of motion for the coefficients 7;. The
equations of motion can be made more explicit in terms of
these coefficients, and the non-Abelian quantities emerg-
ing in the process illustrate the gauge structure of the
Hilbert space.

The coefficients 71, 72 give the composition of the
wave-packet in terms of the two bands, and it is natural

to think of them as a vector, (Zl), which will be referred
2

to as the pseudo-spin. The connections R, Q and T can
be expanded in terms of 7:

ou;
a _ Tpa o s J\.
R*=n"R% , R{; = (ul|z—8qa>, (21)
Q = i@y . QF = (uli24)
) i (3 8Ta 9
.+ dn du;
T=n'T =L Ty = (uili—=2).
T +in' = (uili dt>

The Lagrangian in this picture takes the form:
D
L= mnfﬁ’z + hiqe - Fo — 11 H. (22)

where H;; = (u;|H|u;) and the covariant derivative with
respect to time, defined as % = % — 47, has been intro-
duced. Specializing in electromagnetic fields, we end up
with the following Lagrangian:

D

/Lhﬁ)n + [hkc - GA(I‘C, t)] T — UTHU (23)
The equations of motion derived from this electromag-
netic Lagrangian are as follows:

Ik, = —e(E + 1. x B) (24)

L=n'(

. D :
hi, = "T[m’ H]n — k. x n' Fn
Dn
20N _
7 Dy Hn

The covariant derivative with respect to the wave vector,

which has the form % = % — 1R%, has been intro-

duced. The non-Abelian Berry curvature matrix, f?j,
is expressed in terms of the field strength tensor corre-
sponding to the covariant wave vector derivatives:

R 1 03
“/ij__ge Fij (25)

where

= e D—kﬁ]ij = (26)




This form, which includes the non-Abelian correction
from the commutator of the connection matrices, makes
evident its gauge covariance with respect to unitary
transformations of the pseudo-spin. The curvature ten-
sor is antisymmetric under interchange of o and (3, while
the indices ¢ and j satisfy fgﬁ = (}'Jaﬁ)*

It is seen from the equations of motion that working in
the coupled-band manifold entails the presence of non-
Abelian quantities such as the modified Berry curvature
and gauge covariant group velocity # A, H], which are
corrections to the one band equations of motion needed to
ensure gauge covariance. The matrix H is not necessarily
diagonal, as it includes the energy gradient correction A.

IV. CONSTANT ELECTRIC FIELD

We will examine first the case of a constant uniform
electric field acting on two degenerate bands. We choose
a gauge such that the scalar electric potential need not
be included in the Hamiltonian, and the electric field
is represented purely by the vector potential A. With
experiment in mind, we take E = (0,0, F), modelling a
gate field, and study its effect on transport in the xy-
plane.

We choose as an example the light hole bands of the
spherical four-band model. The wave functions are eigen-
states of k - J, where J is the total angular momentum
operator. In this system, the equation of motion for n
takes the form

d
ih2l = (H — eER*)n, (27)
dt
where the connection matrix R* = —%U‘U has off-

diagonal elements only, with k| = (kg, k) and 0¥ a Pauli
spin matrix. The equations of motion for the position and
wave vector are:

Ik = eE (28)
361
hi, = — — eE x 1 Fn,
r Ok e nJsn
in which kg is the initial value of k, ¢, = 22—1512 is the
light hole energy, m; is the light hole effective mass, and
the curvature F = %k—léaz. The wave vector equation of

motion is readily integrated to give k = k¢ + e—g‘t Since

the Berry curvature is parallel to k, there are two limiting
cases to consider: the case ko//E is trivial because the
curvature correction vanishes and the bands decouple, so
we will focus on the more interesting case ko 1 E.

The equations of motion can be solved exactly. The
pseudo-spin is given by:

77%0) cosa + néo) sin «v

n=( (0)

o) . ) (29)
7y cosa—1; sino

T+4cos Og )

with the angle a(7) = arctan(=;7-

— (% —b6o), where

ebEt

weo have intradiiced the Aimencinnlece +11me - — and

0 is the polar angle of kg, and where m{o) are the values
of the pseudospin at 7 = 0.

In this system, the contraction n'é'n (with i = 1,2,3) is
the expectation value of the pseudo-spin. Its components

evolve in time as:
(61) = (6") =0 cos 2a — (6°),—g sin 2cx (30)
(6%) = (6%)r=0

(6%) = (6%) =0 cos 2a + (61— sin 2ax

The electric field therefore only rotates the 1 and 3 com-
ponents of the pseudo-spin into combinations of each
other, while the 2 component remains unaffected. To
understand the significance of these results we will ex-
amine a concrete example, taking initially a positive he-
licity eigenstate so that 7750) =1, 7750) = 0, and fixing the
initial wave vector along the z-axis such that kg = koX,
which means that 6y = 5. As t — oo, a reaches the lim-
iting value of 3 and the components of the pseudo-spin
become:

(31)

Thus the 1 and 3 components of the pseudo-spin are re-
versed while the 2 component is conserved.

The r. equation of motion can be integrated to give
the trajectory of the carriers:

0 0
L PO P k[l S 8
2 2ko(1 4 72)3/2 '

eEmy;
(32)
We have omitted a term proportional to 77§0)n50) since
in our setup either one of them will be zero (we assume
the carriers have been polarized, either optically or by
a ferromagnet, so that their initial pseudo-spin is either
up or down). From the above and Fig. 1 it can be seen
that the maximum separation in the y-direction occurs
at 7 = 1. Taking kg = 10®m~! and £ = 1000Vm ™!
as typical values of the Fermi wave vector and the elec-
tric field, this yields a separation of 14nm after a waiting
time of 60ps. This effect is certainly measurable provided
one uses a clean sample with a long scattering time, and
is broadly tunable by adjusting the Fermi wave vector
(and thus the number density) and the electric field. In
addition, although the present example treats only con-
vective transport, this formalism explains the principle
behind effects such as the spin Hall effect, since it can be
seen directly that the carriers with different helicities are
separated in the xy-plane by the electric field normal to
the plane.

V. CONSTANT MAGNETIC FIELD

When a constant uniform magnetic field is present, the
gradient correction to the energy takes the form:

A —_MM. R (29)



FIG. 1: Separation ! in the y-direction between light holes of
opposite helicities as a function of 7, the dimensionless time.
The maximum separation occurs for 7 = 1.

M, which is identified with the intrinsic magnetic mo-

ment of the wave packet:3:1718 is given by the expres-
sion:
. 0
M = FeRe(u|v x (Zﬁ —R)|u) = (34)

R)[u)n;),

where the sign is negative for electrons and positive for
holes. The form of A shows that it can be regarded as
a correction to the Zeeman term. Written explicitly in
component form, the magnetic moment is:

1o s (52
= FeRe(n; (u;|v x (ZE —

e . R 0
M = g il (b, i — ROy (35)
€7 represents the antisymmetric tensor. We can ex-
pand the expression for M® in terms of the pseudo-spin,
whereupon it becomes:

in all

WZZm +Ryvg)n; —  (36)
OtBV an z;77] Z nZRZlnl)]
Kl

The abbreviation viﬁ . stands for the matrix elements

of the velocity operator between Bloch eigenfunctions,
(u;|9P|u;), in indicates that the index runs only over the
bands in the degenerate subspace and all over all bands.
Thus the magnetic moment consists of a term which is
first order in the pseudo-spin and summed over all bands
as well as a term which is second order in the pseudo-spin
and summed only over the degenerate subspace.

We take as an example once again the light-hole mani-
fold of the four-band Luttinger model in the spherical ap-
proximation in the presence of a constant uniform mag-
netic field. The Hamiltonian in this case is:

M = Fe[=

A=l 00, 2 2k — 2k 502 - 998 . B, (37)

where ¢ is the Lande g-factor. The Zeeman interaction
between the spin and the magnetic field does not con-
tribute to the velocity operator and therefore it does not
contribute to the magnetic moment.

The velocity operator takes the form:

5 hk Rk
¢ =0+ 5e)g — (k-3 3 =V 9 (39)

Since Vv is proportional to the identity matrix, the con-
tribution it makes to the magnetic moment is zero, due
to the fact that (u|i-% —R|u) = 0. In addition, as shown
in the Appendix, V7 can be separated into two contribu-
tions: one that spans the LH and HH subspaces and one
inter-subspace contribution. The former, when restricted
to the LH subspace, is again proportional to the identity
matrix and thus the second term in (37) is actually sec-
ond order in 7 and cancels the intra-subspace part of the
first term in (37). Therefore, for the light holes M can
be expressed as:

in out

[e3% € (07 *
M = e 3 S iRy + Ry (il (39)

i, 1

where out signifies that [ runs over all bands outside the
degenerate subspace, that is [ # 4,j. In our approxima-
tion, we take [ to run over the heavy-hole manifold. Us-
ing the expressions for v? ; and R given in the appendix,
the light-hole intrinsic magnetic moment in the spherical
four-band model is given by the following expression:

M= —

3ehyok
a nlo*n. (40)
m

Thus, depending on the weight of each band in the wave-
packet the intrinsic magnetic moment can be positive or
negative and if the bands are equally represented it will
be zero.

Note added - After completion of this work, we became
aware of a related effort by R. Shindou and K. Imurat?.

This work was supported by the DOE under grant
number DE-FG03-02ER45958.

VI. APPENDIX

The reciprocal-space connection matrix R is given by
the following expression:

00 d¢
Y e z T
R= 8kJ + 7k (J# cosf — J® sinB). (41)
Restricting to the light-hole manifold, we have that the
angular momentum matrices J%, JY and J* become:

JT = o® (42)
JY = oY
1
JZ = jO'z,



so the connection is:

=_—o¥+ 8—(—O'Z cosf — o sind). (43)

As explained in the text, the velocity operator consists

of two parts, the first of which is is parallel to k and
proportional to the identity matrix. The second part,

01
v V3hy2k 10
UTrlinter = _77’)’1 [COSHCOS(b 00
00
01
3hyok
{}Z]l] inter — _7\/_”72 [COS@ Sin(b (1) 8
00
0% | _ \/gh’hks
IIlinter — m

7

Vrr, in the k - J basis has a contribution that is non-
zero in either the light- or the heavy-hole subspace, and
an inter-subspace contribution. The former is given by
—%Jfk, which restricted to the light-hole manifold is
proportional to the identity matrix. The components of
the latter contribution are shown on the following page.

0 0100
0 (=100 0
_p | tising | g g p |
0 001 0
0 0-10 0
0 . 10 0 0
_1 +icoso 00 0 1] (44)
0 00 —10
0 -100
10 00
0 0 01 (45)
0 0 10
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