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Fidelity of a Bose-Einstein Condensate
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We investigate fidelity, the Loschmidt echo, for a Bose-Einstein Condensate. It is found that the
fidelity decays with time in various ways (exponential, Gaussian, and power-law), depending on the
choice of initial coherent state as well as the parameters that determine properties of the underlying
classical dynamics. Moreover, high fidelity is found for initial states lying in the regular region of a
mixed-type phase space. A possible experimental scheme is suggested.
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The investigation of coherent manipulation of quan-
tum state of matter and light has provided insights in
many quantum phenomena and in quantum information
processes [1]. The realization of Bose-Einstein conden-
sation (BEC) in dilute gases has provided a new tool
for such investigations [2]. Recently, it is found that
the stability of quantum state has played a key role in
many procedures for coherent manipulating and applying
BEC[3, 4, 5, 6, 7]. In fact, how to sustain the coherence
among the cooled atoms is very essential for the possible
application of BEC to quantum information and quan-
tum computation.

However, an important issue is still missing in the
study of BEC, namely, the sensitivity of the quantum
evolution of a BEC with respect to the small pertur-
bation that may naturally arise from either the manip-
ulation parameters or the interaction with environment.
This type of stability of quantum motion is characterized
by the so-called fidelity, or the Loschmidt echo, which is
defined as the overlap of two states obtained by evolving
the same initial state under two slightly different (per-
turbed and unperturbed) Hamiltonians. This quantity is
of special interest in the fields of quantum information[8]
and quantum chaos[9, 10, 11, 12, 13].

In this Letter, we propose a system of two-component
BEC trapped in a harmonic potential [14], subject to
a periodic coupling (successive kicks) between the two
components. Our aim is two-fold: (1) To investigate the
instability of the BEC system with a small perturbation
on its system parameters; (2) To propose a possible ex-
periment to directly detect the fidelity decay.

The system we propose is a two-component spinor
BEC confined in a harmonic trap with two internal states
coupled by a near resonant pulsed radiation field[14].
Within the standard rotating-wave approximation, the
Hamiltonian can be cast into the form [15],

Ĥ = µ(â†1â1−â
†
2â2)+g(â

†
1â1−â

†
2â2)

2+KδT (t)(â†1â2+â
†
2â1)
(1)

where K is the coupling strength between the two in-

ternal states, g is the interaction strength, and µ is the
difference between the chemical potentials of two com-
ponents. â1, â

†
1, â2 and â†2 are boson annihilation and

creation operators for the two components, respectively.
δT (t) =

∑

n δ(t − nT ) means that the radiation field is
only turned on at certain discrete moments, i.e., integral
multiples of the period T . Writing the above Hamilto-
nian in terms of the angular momentum operators [16],

L̂x =
â†
1
â2+â†

2
â1

2 , L̂y =
â†
1
â2−â†

2
â1

2i , L̂z =
â†
1
â1−â†

2
â2

2 , we

have Ĥ = µL̂z + gL̂2
z +KδT (t)L̂x. The Floquet operator

depicting the quantum evolution in one period takes the
following form,

Û = exp[−i(µL̂z + gL̂2
z)T ] exp(−iKL̂x). (2)

The Hilbert space is spanned by the eigenstates of L̂z,
|l〉, with l = −L,−L+1, . . . , L, where L = N/2 and N is
the total number of atoms. In the above expression and
henceforth, the Planck constant is set to unit.

The above system has a classical counterpart in the
limit N → ∞, describing a spin on a Bloch sphere with
Si = 1

L < L̂i >, (i = x, y, z). The classical Hamilto-
nian takes the form, H = µSz + gcS

2
z +KδT (t)Sx, where

gc = gL. The equations Ṡi = [Si,H ]cl, (i = x, y, z)
determine the motion of the centers of coherent quan-
tum wavepackets and the quantum fluctuation is ignored,
(i.e., equivalent to the mean-field Gross-Pitaeviskii equa-
tion without considering a total phase[7]). They can be
solved analytically: the free evolution between two con-
secutive kicks corresponds to a rotation around Sz axis
with the angle (µ+2gcSz)T , and the periodic kicks added
at times nT give rotation around the Sx axis with the an-
gle K.

Dynamic motion of the classical system is classified
by the magnification of its initial deviation. An ex-
ponential increase in time of the deviation means dy-
namical instability or chaotic motion[3], causing rapid
proliferation of thermal particles[7]. Quantitatively,
one can calculate the (maximum) Lyapunov exponent,

λ = limt→∞
1
t ln |δx(t)|

|δx(0)| , with |δx(t)| denoting distance in
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Figure 1: Stroboscopic plots of the orbits for gc = 1, K = 2
where x-axis θ is the azimuthal angle. It shows one big island
and four small islands. Inside the islands motions are stable,
outside the islands motions are mainly unstable or chaotic.
Here and in the following figures, µ = T = 1.

phase space. The exponent is positive for unstable mo-
tion, and tends to zero if the orbit is stable. Usually,
phase space is a mixture of chaotic orbits and quasi-
periodic (stable) orbits, as is shown in Fig.1, where it
is clearly seen one big island and four small islands; in-
side the islands motions are periodic or quasi-periodic,
outside the islands motions are mainly chaotic.

The total relative area occupied by chaotic orbits, (as
clearly seen in Fig.1), depends on system parameters
(gc,K), and can be used to characterize the degree of
mixture. It has been obtained by calculating the Lya-
punov exponent of orbits with initial points randomly
scattered in the whole phase space. The result is shown
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Figure 2: Contour plot of the fraction of chaotic orbits in
phase space, with respect to system parameters.

in Fig.2. We see that the integrable cases mainly concen-
trate on the vertical line where the interaction strength
vanishes, and on the horizontal lines where the coupling
strength is a multiple of π. This fact indicates that both
nonlinearity term and the kick strength are essential in
inducing chaos. The deep red areas in Fig.2 give the pa-
rameter regime for the system where the phase space is
full of unstable (chaotic) orbits.

Now we turn to the quantum system and trace the
fidelity (Loschmidt echo) M(t), defined as

M(t = nT ) = 〈Φ0|
(

Û †
ǫ

)n

◦
(

Û
)n

|Φ0〉, (3)

where the initial state |Φ0〉 is chosen as a coherent state,
|Φ0〉 = eα∗L+−αL− | − L〉, with α = π−θ

2 e−iϕ. A small
perturbation on the Hamiltonian is added by changing
K → K + ε, with Û → Ûǫ. In this system, the effective
Planck constant ~eff = 1/L.

We discuss fidelity decay in three typical situations, in
which the corresponding classical system is fully chaotic,
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Figure 3: Fidelity decay in a fully chaotic case of K = 2, gc =
4. Upper panel: An example of Gaussian decay at small per-
turbation, with L = 100, ǫ = 2 × 10−4, obtained from one
initial coherent state. The dashed curve is the Gaussian func-
tion of form exp

(

−1.3 × 10−6t2
)

. Lower panel: Circles: fi-
delity decay with an intermediate perturbation (above ǫp),
where the average has been made over 20 initial coherent
states chosen randomly. The dashed line is the exponential
decay with Γ = 0.12. Triangles: Strong perturbation regime
where the fidelity decays as e−Λt for a short time (t < 10) and
then saturates, with L = 500, ǫ = 1 × 10−2, and average over
1000 initial coherent states. Here Λ = 0.8 is independent of
perturbation strength[13].
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Figure 4: Fidelity decay in a classically nearly integrable case,
with K = 2, gc = 0.2, L = 100, and ǫ = 0.003. Upper panel:
Fidelity of four randomly chosen initial coherent states, with
the smooth solid curve being the Gaussian fit to one of them.
Lower panel: Averaged fidelity, with average performed over
50 initial coherent states.

near-integrable, and mixed, respectively. The corre-
sponding parameters are picked up from Fig.2.

For the parameters K = 2, gc = 4, from Fig.2 we know
that the phase space is fully chaotic. Because of the er-
godicity of the chaotic orbits, fidelity decay is expected
to be independent on the initial condition. However, it
strongly depends on the perturbation strength. For a
small perturbation, fidelity shows a slow Gaussian de-
cay (upper panel in Fig.3). With increasing perturba-
tion strength, one meets a border ǫp ∼ 1/L3/2, at which
the typical transition matrix element of perturbation be-
tween quasi-energy eigenstates becomes larger than the
average level spacing. With the intermediate perturba-
tion above the border (lower panel in Fig.3), the fidelity
decays in an exponential way, where the decay rate Γ is
the function of the interaction strength and the classical
action diffusion constant[10]. With strong perturbation,
the fidelity decays faster and finally saturates at some
perturbation-independent decay rate [13] (lower panel in
Fig.3).

From the above discussions and calculations we see,
in practical applications of the BEC, the perturbation
border ǫp gives a up-limit for the perturbation strength
that is tolerable, in order to avoid low fidelity.
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Figure 5: Fidelity decay in the mixed system whose classical
phase space structure is shown in Fig. 1. L = 500 and ǫ = 6×
10−4, the intermediate perturbation. The non-decaying solid
line is the fidelity of an initial coherent state lying within the
largest regular region. The other two solid curves correspond
to fidelity of two initial coherent states lying in the chaotic
region of the classical system. One of them has an exponential
decay with Γ = 0.03, as expected. Unexpectedly, the other
one first has a fast Lyapunov decay e−λt, with λ being the
Lyapunov exponent, then follows the exponential decay as the
first one.

As we choose parameters as K = 2, gc = 0.2, the clas-
sical system is nearly integrable where the phase space
is full of periodic and quasi-periodic orbits. We found
Gaussian decay for the fidelity of single initial coherent
states, with a strong dependence of decaying rate on the
choice of initial condition [12]. However, after averaging
over the whole phase space, we found that the fidelity
decay can be well fitted by a inverse power law 1/t (see
Fig. 4). In this case, for the quantum evolution of initial
coherent states, high fidelity can be expected because the
fidelity has a power law decay on average.

Now we turn to the mixed case, which is more compli-
cated than the previous two cases. It is usually expected
that fidelity decay of initial coherent states lying in regu-
lar regions would be similar to that in a nearly integrable
system, and that from chaotic regions be similar to that
in a chaotic system. However, we found that this naive
picture is not exact. As shown in Fig. 5, for initial states
from both irregular and regular regions, the behavior of
fidelity may be quite different from those in the fully
chaotic case and in the nearly-integrable case as shown
in Figs. 3 and 4. We concentrate our discussions on the
case in which initial coherent states lie within the largest
regular island. We found that their fidelity almost has no
decay up to time t = 200, quite different from the initial-
condition-dependent Gaussian decay shown in Fig. 4 for
a nearly integrable system. Note that the quantum per-
turbation strength is chosen to be in the intermediate
perturbation regime in Figs. 4 and 5. This phenomenon
of high fidelity cannot be explained by means of expand-
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Figure 6: Contour plot of the fidelity M(t) at t = 200, for
K = 2, gc = 1, L = 500, and ǫ = 0.0006. The initial quantum
states are cohenet states with corresponding (Sz, θ).

ing the coherent states in the eigenstates |α〉 of the sys-
tem [17], since the values of the participation function
of the coherent states, defined by 1/(

∑

α |〈α|Φ0〉|
4), is

about 22. The principle of this way of sustaining high
fidelity in quantum evolution of an coherent state may
be useful in applying BEC in information processing.

In order to have a knowledge of the global situation
of fidelity decay in a mixed system, in Fig.6 we show
a contour plot for M(t = 200), with respect to initial
coherent states. With this figure at hand, in applying
BEC to quantum information processing we may care-
fully choose the parameters to avoid the regimes of low
fidelity. Moreover, in surprise we find the structure of
fidelity plotting in Fig.6 quite similar to that of classi-
cal phase space in Fig.1. This similarity indicates a kind
of connection between the dynamical instability of the
classical meanfield equation and the fidelity of quantum
boson system, i.e., the dynamical instability regime of
the classical system usually corresponds to the low fi-
delity regime of the quantum system. Moreover, inside
the islands (the large or small) where the classical mo-
tions are dynamical stable with zero Lyapunov exponent,
the fidelity shows different behavior: The fidelity in the
large island of a mixed-type phase space is higher than
that in the small islands or even that in near-integrable
case. This fact indicates that the fidelity contains more
information about the system under a perturbation and
therefore is a more general quantity to describe the sta-
bility of the BEC.

Experimentally, one can prepare two nearly identical
two-component BECs by applying a strong blue detuning
laser beam at the center of the two-component BEC with
prepared initial state ψχ, where ψ is the external state
and χ is the internal state [18]. The strength of laser
beam is strong enough, so that the tunnelling between the
two condensates is negligible. Then, two pulsed radiation
fields with slight different strengths are applied to the

two condensates and kick the internal state to χi (i =
1, 2) without important change of the external states ψi

[14]. After certain numbers of kicks, the radiation field
and the strong blue detuning laser beam are turned off
simultaneously and two BECs begin to interfere. The
visibility of the interference is governed by

I ∝ |ψ1χ1|
2
+ |ψ2χ2|

2
+ 2Re (ψ∗

1ψ2χ
∗
1χ2) . (4)

Clearly, high fidelity of the two internal states corre-
sponds to high visibility of the interference.
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