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Abstract

Vortex dynamics in superfluids is investigated in the framework of the non-

linear Schrödinger equation. The natural motion of the vortex is of cyclotron

type, whose frequency is found to be on the order of phonon velocity divided

by the coherence length, and may be heavily damped due to phonon radia-

tion. Trapping foreign particles into the vortex core can reduce the cyclotron

frequency and make the cyclotron motion underdamped. The density fluc-

tuations can follow the vortex motion adiabatically within the phonon wave

length at the cyclotron frequency, which results in a further downward renor-

malization of the cyclotron frequency. We have also discussed applications on

the dynamics of vortices in superconducting films.

PACS numbers: 64.40.Mj, 67.40.Db, 67.40.Rp, 67.40.Vs, 74.60.Ge
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I. INTRODUCTION

Besides collective excitations of density fluctuations, superfluid systems can also have

topological excitations called vortices. Vortices are associated with many important phe-

nomena, such as quantization of circulation [1], Kosterlitz-Thouless phase transition [2],

mutual friction [3,4], and flux creep [4,5]. Although the static properties of vortices are

relatively well understood, the dynamical side is still wide open to investigations.

It has been a common practice to treat a vortex in two dimensions as a particle, and to

describe its motion by Newton’s law in the following form

Mvr̈0 = −2πh̄ρ̄ṙ0 × ẑ − ηṙ0, (1)

where r0 denotes the vortex position, and ρ̄ is the 2D superfluid number density. The

terms on the right hand side represent Magnus and frictional forces respectively, and Mv

stands for the vortex mass. The Magnus force term was motivated from the behavior of

vortices in classical fluids, and has recently been related to the Berry phase of the many-

body wave function [6–8]. Its existence has been experimentally established for superfluid

4He, but this has been a controversial subject for magnetic fluxes in superconductors [9].

The friction term is considered to be a result of the interaction of the vortex with collective

excitations, or with the core excitations in the case of superconductors [3,4]. However, very

little experimental information is available to test the theories on dissipation at low enough

temperatures. The vortex mass has also been a topic of debate. For incompressible classical

fluids, it has been customary to regard the vortex as massless. This point of view has also

been adopted in some calculations for nucleation and motion of quantized vortices [10].

Another point of view is that quantized vortices should have finite masses, roughly equal

to the mass of the vortex core [11]. In references [12–17], the vortex mass was found to be

renormalized by the condensate motion to a value logarithmically divergent with the system

size in neutral superfluids. For charged superfluids, the vortex mass turns out to be finite,

because the screening currents effectively replace the system size by the London penetration
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length [12–17]. Some recent discussion on the nature of the vortex mass can be found in [8].

The size of the vortex mass may affect tunneling and specific heat of a vortex lattice [18].

In this work, we study the vortex dynamics based on the nonlinear Schrödinger equation,

which has been used to model superfluids in a semi-microscopic manner. This equation has

been derived by Gross and Pitaevskii for a weakly interacting superfluid [19,20]. In the

appendix, we derive a nonlocal version of the nonlinear Schrödinger theory from Feynman’s

many-body trial wave function, which can take into account strong correlations in a super-

fluid such as 4He. The derivation of the nonlinear Schrödinger equation for superconductors

in the clean limit is given in Refs. [21,22]. This equation contains both solutions for collective

excitations of density fluctuations and for topological excitations of vortices. It provides a

useful starting point for the study of vortex motion and its coupling to the collective excita-

tions. An effective Lagrangian will be derived for the vortex coordinate and for the density

and phase fields of the superfluid condensate. As we will see, the equation of motion for a

vortex naturally contains the Magnus force, and the effect of the condensate motion.

We will concentrate our attention on the cyclotron motion of the vortex. Such a motion

is a natural solution of the phenomenological equation (1), with the cyclotron frequency

given by

ω =
2πh̄ρ̄

Mv
(2)

if damping is ignored. We found that the cyclotron motion is also a natural solution of

the equations of motion of the vortex based on the nonlinear Schrödinger equation. We

found that the cyclotron motion is damped by phonon radiation from the vortex. For a bare

vortex, the damping rate is found to be about the same as the cyclotron frequency. For a

vortex with trapped particles in it, the damping can be much smaller than the cyclotron

frequency, although the cyclotron frequency itself is also reduced. With the cyclotron fre-

quency determined from the equations of motion for the vortex coupled to the condensate,

we can use equation (2) to define the vortex mass. The frictional coefficient η in equation

(1) can be calculated from the rate of damping due to phonon radiation.
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We have carefully examined the adiabaticity assumption used in references [12–14,16,17]

that the field of condensate phase follows rigidly with the moving vortex. We found that

this is possible within a length scale of λ ≈ ξ(1 +Me/Mc), where ξ is the coherence length,

and Mc and Me are the masses of the vortex core and of the trapped particles. Outside this

length scale, the condensate cannot follow the vortex motion. Because of this, we found

that the logarithmic divergence of the vortex mass with the system size, which was found

in references [12–14,16,17], is cut off by the scale of phonon wavelength,.

The organization of the paper is as follows. In Sec. II, we will give the basic ingredients

of the nonlinear Schrödinger theory, and obtain the static vortex solution. In Sec. III, we

will introduce vortex motion, derive the effective Lagrangian and the dynamical equations

for the vortex and condensate. In Sec. IV, we will solve for the condensate response to

the cyclotron motion, and find the conditions when the adiabaticity assumption is valid. In

Sec. V, we will study the low frequency motion of the vortex, which is possible when the

mass of the trapped particles is large. In Sec. VI, we present our numerical results for finite

frequency of the cyclotron motion. In Sec. VII we will present our conclusions.

II. NONLINEAR SCHRÖDINGER LAGRANGIAN

Our starting point is the nonlinear Schrödinger equation which may be derived from the

following Lagrangian:

L =
∫

d2r

[

ih̄ψ∗
∂

∂t
ψ − h̄2

2m
|∇ψ|2 − 1

2
V

[

|ψ|2 − ρ̄
]2

]

, (3)

where m stands for the mass of the superfluid atom, V represents the interaction potential

between the atoms, and ρ̄ is the background superfluid number density. The sign of V is

positive to represent a repulsive interaction.

The natural length and time scales of the nonlinear Schrödinger equation are ξ =

h̄/(mV ρ̄)1/2 and τ = h̄/(V ρ̄). As will be seen later, ξ gives the length scale of a vortex, and

τ gives the time scale of a bare vortex in cyclotron motion. If we scale the Lagrangian by
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the energy h̄2ρ̄/m, then the Madelung transformation ψ =
√
ρeiS puts the Lagrangian in

the dimensionless form

L = −
∫

[

ρṠ +
1

2
ρ |∇S|2 +

1

8ρ
|∇ρ|2 +

1

2
[ρ− 1]2

]

d2r. (4)

The dynamical equations of the condensate follow from the variation of the action with

respect to the phase and the density

ρ̇+ ∇ · [ρ∇S] = 0, (5)

Ṡ +
1

2
|∇S|2 +

|∇ρ|2
8ρ2

− ∇2ρ

4ρ
+ ρ− 1 = 0. (6)

The first equation is nothing but the continuity equation, whereas the second resembles the

Euler equation of hydrodynamics of classical fluids. The normal modes of the linearized

equations of the fluctuations around the uniform condensate describe the collective excita-

tions of the system. The low frequency part of the spectrum is phonon like with velocity

cs = ξ/τ =
√

V ρ̄/m [3,20]. However, the roton minimum is absent in the spectrum, because

the short range atomic repulsion is not appropriately taken into account. In the Appendix,

we give the derivation of an effective Lagrangian that may overcome this problem.

The equations also allow vortex solutions. For simplicity, we consider a single vortex with

unit circulation around the center r0 in the x− y plane, with the phase S of the condensate

wave function given by

S = S0 ≡ Θ(r − r0), (7)

where Θ = arctan[(y − y0)/(x− x0)] is the polar angle of r − r0. The density ρ0 satisfies

|∇ρ0|2
8ρ2

0

− ∇2ρ0

4ρ0

+ ρ0 − 1 +
1

2|r− r0|2
= 0. (8)

The asymptotic forms are easy to find:

ρ0(r) =















2r2 , r ≪ 1;

1 − 1
2r2 , r ≫ 1,

(9)
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A simple analytical expression that interpolate between the above asymptotic forms is given

by [23]

ρ0(r) =
2r2

1 + 2r2
. (10)

III. MOVING VORTEX

In this section we will derive the equations of motion for a moving vortex. We assume

that the motion of the vortex has a small amplitude (not necessarily slow), such that the

fields of density and phase of the condensate may be expanded as

S = S0(r − r0(t)) + S1(r, t),

ρ = ρ0(r− r0(t)) + ρ1(r, t), (11)

where at any instant of time, S0 and ρ0 satisfy the static vortex equations (7) and (8). S1

and ρ1 represent small corrections caused by the motion of the vortex. By substituting

Eq.(11) into the Lagrangian (4), we arrive at an effective Lagrangian for S1(r, t) and ρ1(r, t)

as well as the vortex coordinates r0(t). There is no problem of redundancy in the dynamic

variables; unlike the original phase field S(r, t), S1(r, t) is required to be single valued [24].

Keeping up to second order terms in r0, S1 and ρ1, we find the new Lagrangian as

L = −
∫

d2r
[

ρ0Ṡ0 +
1

2
ρ0|∇S0|2 +

1

2
[ρ0 − 1]2 + ρ0Ṡ1 + ρ1Ṡ0 + ρ0∇S0 · ∇S1 +

+
1

2
|∇S0|2ρ1 + [ρ0 − 1]ρ1 + ρ1Ṡ1 +

1

2
ρ0|∇S1|2 + ρ1∇S0 · ∇S1 +

1

2
ρ2

1

+
1

8ρ0
|∇ρ0|2 +

1

4ρ0
∇ρ0 · ∇ρ1 −

|∇ρ0|2
8ρ2

0

ρ1 +
|∇ρ0|2
8ρ3

0

ρ1
2 − ρ1

4ρ2
0

∇ρ0 · ∇ρ1 +
|∇ρ1|2

8ρ0

]

. (12)

We will add an extra kinetic energy term of the form

1

2
Meṙ

2
0, (13)

to simulate the situation with particles trapped inside the vortex core. It is understood that

this may be an over simplification of the real interactions between the trapped particles and
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the vortex [25], but the main purpose of introducing this term is to provide a mechanism

for controlling the time scale of the vortex motion. The external mass Me is measured in

units of (mξ2ρ̄), and a bare vortex is described by Me = 0.

The resulting Lagrangian can be simplified considerably by using the equations for the

static vortex, integration by parts and dropping the constant terms:

L = −
∫

d2r
[

ρ0Ṡ0 + ρ0Ṡ1 + ρ1Ṡ0 + ρ1Ṡ1 +
1

2
ρ0|∇S1|2 + ρ1∇S0 · ∇S1 +

+
|∇ρ0|2

8ρ3
0

ρ1
2 − ρ1

4ρ2
0

∇ρ0 · ∇ρ1 +
1

8ρ0
|∇ρ1|2 +

1

2
ρ1

2
]

−

−
∮

S1ρ0∇S0 · n̂dℓ+
1

2
Meṙ

2
0. (14)

The boundary conditions will be taken as ρ1 = 0 and ∇S1 = 0 as well as Ṡ1 = 0 at infinity.

Then, the line integral, which is taken around the boundary, only adds a constant to the

Lagrangian and can be dropped. The dynamical equation of the vortex is then obtained by

variation of the action with respect to r0. The equation, linearized in ṙ0, ρ1 and S1, is

− 2πṙ0 × ẑ +
∫

[

Ṡ1∇ρ0 − ρ̇1∇S0

]

d2r −Mer̈0 = 0, (15)

where we have used the fact that ∇r0
can be replaced by −∇ when it acts on (r− r0). The

first term represents the well-known Magnus force. The second term shows the coupling

between the vortex and the condensate, and the last term is the usual inertial force on the

particles trapped at the core. Note that by comparing Eq.(15) to Eq.(1), one can extract the

phenomenological parameters, such as the vortex mass and coefficient of viscosity. Also note

that, it is not possible to identify the vortex mass immediately from this equation without

knowing the perturbations ρ1 and S1.

The linearized equations for ρ1 and S1 are

Ṡ1 + ∇S0 · ∇S1 +
1

4ρ2
0

∇ρ0 · ∇ρ1 −
1

4ρ0
∇2ρ1 −

|∇ρ0|2
4ρ3

0

ρ1 +
∇2ρ0

4ρ2
0

ρ1 + ρ1 = ṙ0 · ∇S0, (16)

ρ̇1 + ∇ρ0 · ∇S1 + ρ0∇2S1 + ∇S0 · ∇ρ1 = ṙ0 · ∇ρ0. (17)

From these two equations, we notice that the dynamics of the condensate is driven by

the motion of the vortex. In other words, the vortex is accompanied with backflow-like
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corrections, ρ1 and S1, which on the other hand, act back on the vortex in a way determined

via Eq.(15).

In the rest of the paper, we choose the origin of r to be instantaneously at r0. The

dynamical equations (15), (16) and (17) remain unchanged up to second order terms in r0,

ρ1 or S1. Also, the boundary conditions are such that ρ1 and S1 are regular at the origin,

while ρ1 → 0, ∇S1 → 0 at infinity (boundary).

IV. THE EQUATIONS FOR CYCLOTRON MOTION

We would like to consider solutions of the following form:

r0 = Re
[

be−iωt(x̂ + iŷ)
]

, (18)

ρ1 = Re
[

bF (r)e−i(ωt−θ)
]

, (19)

S1 = Re
[

ibG(r)e−i(ωt−θ)
]

. (20)

The constant parameters ω and b, and the functions F (r) andG(r), are yet to be determined.

The first expression shows that the motion of the vortex is of cyclotron type with size b and

frequency ω. The frequency is allowed to have an imaginary part to describe a damped

cyclotron motion. A complex phase factor in b is immaterial, because it only affects the

initial angle of r0. A simple angular harmonic analysis shows that the angular dependence

of the condensate response has to be in the given form. In a general sense, this motion is

the analogue of the massive branch of the helical vortex waves in classical fluids [26,27]. For

simplicity the expression “Re” will be dropped in the rest of the discussion.

Using the following expressions for the right hand sides of equations (16) and (17)

ṙ0 ·
θ̂

r
=
bω

r
e−i(ωt−θ),

ṙ0 · r̂ρ′0 = −ibωρ′0e−i(ωt−θ), (21)

we find that Eqs.(15),(16) and (17) imply the following equations for ω, F , and G:
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1

2

∫

∞

0
[rρ′0G + F ] dr +

Me

2π
ω = 1, (22)

ρ′0
4ρ2

0

F ′ − 1

4ρ0

[

F ′′ +
F ′

r
− F

r2

]

−
[

ρ′0
2

4ρ3
0

− ρ′′0 + ρ′0/r

4ρ2
0

− 1

]

F +
[

ω − 1

r2

]

G =
ω

r
, (23)

ρ′0G
′ + ρ0

[

G′′ +
G′

r
− G

r2

]

−
[

ω − 1

r2

]

F = −ωρ′0, (24)

where a prime denotes differentiation with respect to r. Note that the parameter b has been

factored out from the above equations, and it is only to be fixed by the initial velocity of

the vortex.

V. CONDENSATE RESPONSE TO THE CYCLOTRON MOTION

In this section, we consider the response of the condensate density and phase to the vortex

motion. Analytic and semiquantitative results may be obtained by studying the limits of

large (r ≫ 1) and small distances (r ≪ 1). The large r limit carries the information on how

the system size may affect the dynamics, and the small r limit gives the contribution of the

core where most of the variation in ρ0 occurs. These two limits cover the essential features

of the dynamics.

When r ≪ 1, we can neglect ω and replace ρ0 by 2r2 (cf.Eq.(9)) on the left hand side

of Eqs.(23) and (24). After a straightforward but tedious calculation one can show that the

solutions are of the following form

F (r) = 4Aωr3, (25)

G(r) = Bωr. (26)

It is not difficult to find A + B = −1, although the individual values of A and B are

undetermined yet. Our knowledge of their sum will be enough for the purpose of evaluating

the integrand in Eq.(22).
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When r ≫ 1, we may use the approximation of ρ0 for large r as given in Eq.(9). Also,

the first three terms on the left hand side of Eq.(23) is dominated by F , yielding

F +
[

ω − 1

r2

]

G =
ω

r
. (27)

Substituting this relation into Eq.(24), we arrive at the following equation for G

G′′ +
1

r
G′ − 1 + 2ω

r2
G+ ω2G =

ω2

r
− 2ω

r3
. (28)

It is easily verified that a special solution is G = 1
r
. To obtain the general solution, we note

that the corresponding homogeneous equation for G is that of the Bessel functions of order

ν =
√

1 + 2ω. We only keep the outgoing wave, which represents the radiated phonons, then

the general solution is given by

G =
1

r
+ CH(1)

ν (ωr), (29)

where C is a constant and H(1)
ν is the first kind Hankel’s function. This implies via Eq.(27)

F =
1

r3
− C

[

ω − 1

r2

]

H(1)
ν (ωr), (30)

A similar radiation process is also found for an oscillating object in a classical fluid [28].

The constants B and C must be determined by matching the solutions in the intermediate

region r ≈ 1. For semiquantitative purposes, we may regard the above solutions for small

and large r to be valid up to the coherent length r = 1 (where ρ0 = 2/3). Then the continuity

of G and its derivative yield

C =
2

ωH
(1)
ν

′

(ω) −H
(1)
ν (ω)

(31)

and

B =
1

ω

ωH(1)
ν

′

(ω) +H(1)
ν (ω)

ωH
(1)
ν

′

(ω) −H
(1)
ν (ω)

, (32)

where a prime denotes differentiation with respect to the argument.
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VI. LOW FREQUENCY SOLUTIONS

It will be instructive to consider the case of small ω, which, as we will see later, may

be achieved in the limit of large mass of the trapped particles. Using the expansion of the

Hankel function for the limit of small argument, we can find the constants as C = −iπ
2
ω,

and B = 1
2
.

Depending on the assumption that the asymptotic forms of the solutions are valid in the

whole regions above and below r = 1 respectively, the cyclotron frequency can be determined

from Eq.(22). Obviously, this constitutes a rough estimate of the frequency, but we expect

the qualitative behavior to be well reflected. Then, to lowest order in ω we have

[

1

2
ln(1/ω) +

π

4
i
]

ω +
Me

2π
ω = 1. (33)

In the large Me limit, we can solve for ω as

ω =
1

Me

2π
+ 1

2
ln(Me

2π
) + π

4
i
. (34)

This gives a vortex mass via Eq.(2)

Mv = Me + ln(
Me

2π
) +

π2

2
i. (35)

Apart from the mass of the trapped particles, there is a hydrodynamic correction (the second

term) which diverges logarithmically with Me. The imaginary part represents a decay rate

of the cyclotron motion due to the radiation of phonons. It is seen that this decay becomes

unimportant when Me >> π2/2.

To understand the logarithmic correction, we divide the r > 1 region further into two

regimes: 1 < r < 1/ω, and r > 1/ω. In the former regime, we can use the asymptotic form

of the Hankel’s function, with the result:

G =
0.575ω

r
, (36)

and
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F =
ω

r
. (37)

This gives a density response ρ1 exactly the same as found using the adiabaticity assumption

[12–14,16]. We will therefore call this regime as the adiabatic regime. This regime has a size

of one phonon wavelength λ = 1
ω
, and can be very large when Me is large. The adiabatic

following of the condensate with the vortex in this region is responsible for the logarithmic

correction to the vortex mass.

For r >> 1/ω we can write the solutions as

G =
1

r
− i

√

πω

2r
ei(ωr+ π

4
), (38)

and

F =
1

r3
+ iω

√

πω

2r
ei(ωr+ π

4
). (39)

It is not difficult to show that to first order in r0, the condensate phase and density becomes

S(r, t) = S0(r) + b

√

πω

2r
ei(ωr+ π

4
)e−iωt, (40)

and

ρ(r, t) = ρ0(r) + ibω

√

πω

2r
ei(ωr+ π

4
)e−iωt. (41)

The first terms on the right hand sides are the phase and density of a static vortex at the

origin, and the other terms are oscillations in the condensate that represent the phonons

radiated by the motion of the vortex. Therefore, at distances larger than λ the motion of

the condensate is not an adiabatic following of the vortex.

We now calculate the coefficient of viscosity corresponding to the damping. It is given

by

η =
2πh̄ρ̄

Q
, (42)

where Q is the quality factor, and we have restored the real units. Using the previous

results, we find Q = Mc/Me, where Mc = π2

2
ξ2mρ̄ is roughly the mass of the superfluid
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that is expelled from the vortex core. Using the value of the three dimensional density

ρ̄3D ≈ 1028m−3 for superfluid He4, the viscosity per unit length of a vortex line becomes

η

d
≈ 7 × 10−6

[

Mc

Me

]

kg/(m · s). (43)

In comparison to the viscosity induced by the scattering of excitations in superfluid 4He at

temperature 1 K [4], the numerical factor is on the same order, but the factor (Mc/Me) can

reduce it further.

VII. CYCLOTRON MOTION OF FINITE FREQUENCY

In order to extend our conclusions to the small Me as well as to the bare vortex

case, we adopt a semi-numerical method. We use the approximate solutions found in

Eqs.(25),(26),(29) and (30) to find a numerical solution of the cyclotron frequency from

Eq.(22). Our results are contained in Fig.(1), where solid lines are the real and imaginary

parts of the cyclotron frequency from the numerical calculation, and the dashed lines are

from the approximate expression in Eq.(33).

The agreement between the approximate and numerical solution for large Me is quite

satisfactory. The estimate, Me >> π2/2, for the radiative damping to be negligible is seen

to be appropriate. In general we see that as Me decreases, the magnitudes of the imaginary

and real parts increase, and for Me = 0 they are both approximately given by the time scale

of the nonlinear Schrödinger Lagrangian

ωr,i ≈ τ−1 =
h̄

mξ2
. (44)

Thus, the motion of a bare vortex is heavily damped. Also, we notice that the imaginary

part is smooth over the whole range, but there is a peak in the real part near Me/2π ≈ 0.81.

This can either be a superficial defect caused by the inappropriate handling of the solutions

at r ≈ ξ, or a real physical phenomenon, the nature of which can only be substantiated

by a numerical solution of the complete dynamical equations. Such an effort is currently

underway.
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VIII. DISCUSSION AND CONCLUSIONS

In summary, we have tried to give a better understanding of the dynamics of vortices in

superfluid systems. We have derived an effective Lagrangian from a nonlinear Schrödinger

Lagrangian, and obtained the dynamical equations for the vortex coupled with the conden-

sate phase and density.

We showed that the natural motion of the vortex turns out to be of cyclotron type just

like the one predicted by the phenomenological vortex equation in (1). There are three quali-

tatively different regimes for the condensate response: the core regime (r < ξ), the adiabatic

regime (ξ < r < λ), where λ is the phonon wavelength at the cyclotron frequency, and the

radiation regime (r > λ). Combined with the numerical result, this wavelength is roughly

given by λ ≈ ξ(1 +Me/Mc). When the mass of the trapped particles is large compared to

the core mass, the cyclotron frequency is low, and there is a logarithmic correction to the

vortex mass due to the adiabatic following of the density and phase fluctuations in the large

region of adiabatic regime [12]. Similar results have been obtained by Wexler and Thouless

[29], and Arovas and Freire [30] using different methods. The phonon radiation damping is

negligible here as was expected in an earlier work of Niu, Ao and Thouless [8].

For a bare vortex, the cyclotron period is on the order of the time that a phonon travels

a coherence length, and the vortex mass is on the order of the mass of the fluid that can

occupy the core. The adiabatic regime is essentially empty, and the logarithmic correction is

absent. However, due to the large density of states of the phonons at the enhanced frequency,

radiation damping is heavy and may completely overshadow the cyclotron motion.

In order to experimentally observe the vortex cyclotron motion, one has to create a

situation of small damping. The present theory is too crude to exactly tell whether a bare

vortex in superfluid 4He should be overdamped or underdamped, because the nonlinear

Schrödinger equation does not treat the core structure accurately. One needs to carry out a

microscopic calculation in order to pin down this issue. In the appendix, we briefly outline

one such method.
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Ion trapping in a vortex core can be a useful way of reducing the cyclotron frequency

and the damping. We emulated this effect crudely by adding an external mass term to the

Lagrangian. In reality, a trapped ion also expel the superfluid particles, making the core

much bigger than the coherence length ξ. For example, for negative ions (electrons) the

expanded core size can be as large as 16Å compared to a bare core size of 1Å in superfluid

4He. In such cases the external mass in our theory should also include the expelled superfluid

mass by the ions. The vortex can be driven either by an oscillating superflow, or by an

ac electric field which acts on the ions. Resonances should be observed at the cyclotron

frequency, which is on the order of h̄
ma2 where a is the radius of the hollow core. For the case

of a negative ion, this gives ω ≈ 6 GHz.

When we consider charged superfluids, we must deal with the complication due to the

existence of yet another length scale, the London penetration length. However, for thin

superconductor films, the London penetration length is quite large, and vortices are very

similar to their counterparts in 4He. For a bare vortex, the adiabatic length is about the

same as the coherence length, so that there is no logarithmic correction due to the adiabatic

following of the condensate. The cyclotron frequency should be given by the flux quantum

times the background 2D charge density divided by the vortex mass:

ω =
h̄

meξ2
, (45)

which only depends on the electron mass and the coherence length. Using the relation

between the coherence length and the superconducting gap ∆, ξ =
h̄vf

π∆
, the cyclotron energy

is found to be smaller than the gap by a small factor equal to ∆/ǫf , where ǫf is the normal-

electron Fermi energy. The cyclotron motion may be resonantly excited by an ac superflow

as we discussed above for the case of superfluid 4He. For Al thin films, in the very clean

limit, ξ = 1.6 µm, we have ω = 45 MHz. The resonance should show itself as a peak in the

resistance-frequency plot.

The finite temperature effects can also be foreseen qualitatively along the lines of the

present analysis. Primarily, since the core size increases with the temperature, the vortex
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mass should become larger, and one expects to see the resonances at lower cyclotron fre-

quencies. Another fact that contribute to this effect is the reduction of the Magnus force

due to the reduction of the superfluid density at finite temperature.

Similar to the mechanism of phonon radiation damping in neutral superfluids, there is

plasmon radiation damping in the superconductor case, but the effect is not strong because

of low (zero for 3D) density of states of plasma at the cyclotron frequency. The cyclotron

motion may also be damped by the excitations of normal electrons in the core. This effect

might be strong due to the coincidence of the cyclotron energy with the excitation energies

of normal electrons in the core, but the exact nature of this coupling has to be established

in a microscopic calculation.
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X. APPENDIX: A NONLOCAL NONLINEAR SCHRÖDINGER THEORY

Assume that we are given the correct ground state |0〉 of a superfluid in the absence

of vortices and collective excitations. Then to a good approximation, the dynamics of the

superfluid may be described by the Feynman wave function [31]:

|ΨF 〉 =
exp (

∑

j(iS(rj) + α(rj))) |0〉
[

〈0| exp(2
∑

j α(rj)) |0〉
]1/2

, (46)

where S and α are time-dependent real functions, and the denominator is a normalization

factor. The essential feature of the Feynman wave function lies in the factor of products of
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single particle wavefunctions, whose position and time dependence may generate superflow,

density fluctuations, and quantized vortices.

The dynamical equations for S and αmay be obtained variationally. The time-dependent

Schrödinger equation can be regarded as the Euler-Lagrangian equations of the following

Lagrangian

L = i 〈Ψ| ∂
∂t

|Ψ〉 − 〈Ψ|H |Ψ〉 . (47)

where H is the full microscopic Hamiltonian containing the kinetic as well as interaction

energies of the superfluid particles. If we substitute the Feynman wave function into the

above expression, then, after some mathematical manipulations, the following Lagrangian

may be obtained for the fields S and α:

L = −
∫

ρ(r)
[

Ṡ(r) +
1

2
|∇S(r)|2 +

1

2
|∇α(r)|2

]

d2r, (48)

where the density ρ(r) is defined by

ρ(r) =
〈0| exp (2

∫

α(r′)ρ̂(r′)d2r′)ρ̂(r) |0〉
〈0| exp (2

∫

α(r)ρ̂(r)d2r) |0〉 (49)

with ρ̂ being the density operator. The last two equations provide a self-contained set. Incor-

porated with the works on the ground state wavefunctions [32], this procedure constitutes a

microscopic derivation of an effective Lagrangian that takes care of the short distance effects

in a better way than the nonlinear Schrödinger Lagrangian.

The usual nonlinear Schrödinger Lagrangian is recovered if we take |0〉 as the simple

product state of zero momentum. In this case, the density ρ(r) is simply exp(2α(r)). In the

general case, Eq.(49) still resembles the usual nonlinear Schrödinger Lagrangian by having

identical terms involving the phase field S. The term involving α is generally a nonlocal and

nonlinear functional of ρ, but is independent of S. A full scale study of the implementation

and implications of the nonlocal nonlinear Schrödinger theory will be presented in separate

publications.
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FIGURES

FIG. 1. Plot of the real (upper curves) and imaginary parts (lower curves) of the cyclotron

frequency as a function of the external mass, calculated by using the analytical solutions (solid)

and by using Eq.(33) (dashed). The frequency ω is in units of τ−1, and the external mass Me/2π

is in units of ξ2ρ̄m.
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