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Entanglement Generation and Multiparticle Interferometry with Neutral Atoms
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We study the preparation and manipulation of states involving a small number of interacting
particles. By controlling the splitting and fusing of potential wells, we show how to interconvert
Mott-insulator-like and trapped BEC-like states. We also discuss the generation of ‘‘Schrödinger cat’’
states by splitting a microtrap and taking into practical consideration the asymmetry between the
resulting wells. These schemes can be used to perform multiparticle interferometry with neutral atoms,
where interference effects can be observed only when all the participating particles are measured.
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process converts the BEC state into a MI state. The second
process is used to generate a Schrödinger cat state starting

� � � and � � 0, but any asymmetry makes these pa-
rameters rate dependent, as is discussed in detail below.
Entanglement is at the root of Bell’s theorem, which
exposes the differences between quantum theory and a
local classical theory based on elements of reality [1]. The
predictions of quantum mechanics have been experimen-
tally observed with entangled Einstein-Podolsky-Rosen
(EPR) pairs [2,3] as well as Greenberger-Horne-Zeilinger
triples [4]. A related consequence of entanglement is the
possibility of multiparticle interferometry. Given a maxi-
mally entangled system of N particles (a ‘‘Schrödinger
cat’’ state) a measurement of interference between differ-
ent parts of the wave function corresponding to a single
particle yields random results. It is only when performing
a coincidence measurement on all N particles that an
interference pattern is revealed [5]. Experimental confir-
mation of this result has been obtained using photonic
EPR pairs [3,6] and internal states of four ions in the
same trap [7], but no experiments have been performed
using a larger number of particles. The latest generation
of experiments with photons rely on parametric down-
conversion, which has the technical disadvantage of an
exponentially decreasing number of useful counts as N
increases. Given that entanglement is the key ingredient
in all quantum computation and quantum communication
schemes, clean experimental studies of its consequences
have become an active topic of research in the last decade.

In recent years several papers [8,9] have suggested the
generation of entanglement between neutral atoms con-
fined in traps by using their interaction in controlled
atomic collisions. The atoms are guided in their motion
and their evolution yields the required entanglement of
internal states. Other schemes to achieve this sort of en-
tanglement starting from Bose-Einstein condensates
(BECs) have been suggested [10]. In this Letter we
present two general N-atom nonlinear processes. The first
one is used to convert a Mott-insulator-like (MI) state
[11] into a state with all particles in the (many-body)
ground state of a single trap (BEC-like state); its reverse
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from a BEC state by controlling the splitting of the
well. As an application of the processes we discuss a
scheme for multiparticle interferometry with spatially
separated paths.

In the first process, which is also stage I of the inter-
ferometry setup, we start with a collection of N atoms in
the ground states ofN independent traps (MI state). These
separate atoms can be extracted from a reservoir using a
quantum tweezer [12] recently proposed by our group.
Alternatively, single atoms stored and detected in micro-
optical traps (which have been experimentally reported
[13] but are in excited states of the trap) can be Raman
cooled individually to the ground state. The BEC state
(stage I, Fig. 1) is achieved by bringing together the N
wells adiabatically if the interaction between atoms is
repulsive, as is shown in detail below. This is a conse-
quence of the quantum adiabatic theorem, since the MI
state is the ground state when the wells are far apart. The
evolution is then represented by

jw1w2 . . .wNi ! j�Ii � jww . . .wi; (1)

where the states are properly symmetrized bosonic states.
In the second process (stage II of multiparticle inter-

ferometry) the interaction is switched to attractive. This
can be done by using a Feshbach resonance [14]. Starting
from the BEC state, we slowly split the well into two
approximately equal mictrotraps, which we label as L and
R. The lowest energy states are then the ones having all
atoms in the left or in the right well. Since initially the
system is in the ground state, by separating the traps at
some slow rate v when the wells are far apart we get a
linear combination of these two nearly degenerate states;
i.e., the system is in the Schrödinger cat state

j�Ii ! j�IIi � �jLL . . .Li � �ei�jRR . . .Ri; (2)

with �, �, and � real. For perfectly symmetric traps,
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FIG. 1. Schematics of the multiparticle interferometry proce-
dure. Stage I: creation of N atoms in the ground state of the trap
starting with N individual atoms in N traps. Stage II: creation
of the Schrödinger cat state. Stage III: spatial separation of the
atoms. Stage IV: applying phases, combining on the beam
splitters and measurement.
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Additional processes are needed to realize multipar-
ticle interferometry. During stage III, the interaction is
switched back to repulsive and each of the two traps is
separated to N wells. This stage can be seen as the inverse
of stage I applied to the wells L and R. Again, if the
separation is done adiabatically the system remains in the
ground state which in this case corresponds to a single
atom in each one of the wells. The state is now

j�IIi ! j�IIIi � �jL1 . . .LNi � �ei�jR1 . . .RNi: (3)

Subsequently, the atoms in wells derived from the origi-
nal R well are subjected to additional phase shifts
�1 . . .�N , which can be applied, for example, by adjust-
ing the depth of the wells adiabatically.

In the final stage, IV, of the scheme, we combine states
Li and Ri in a 50-50 beam splitter [15]. Notice that in the
experiment only one of these two is occupied so the
interatomic interaction plays no role in this stage. We
denote the outputs of each beam splitter by Ai and Bi
and assign a value of �1 to the measurement of an atom
in channel Ai, and �1 to the measurement of atom in
channel Bi. The probability, P��1�, that the product of
all measurements gives �1 (for instance A1B2B3 in the
case of three atoms) is 	1� 2�� cos��� ��
=2, where
� �

PN
i�1�i. The probability for the product to be �1 is

P��1� � 1� P��1�; hence the expectation value over a
large number of measurements is �2�� cos��� ��. We
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stress that a correlated measurement of less than N atoms
does not show any dependence on phase and appears
random.

In order to obtain the relevant parameters for the
operation of our inteferometer, we study the evolution
of an N particle system using optical microtraps. As an
example, we numerically solve the Schrödinger equation
in the case of three atoms in a quasi-1D configuration.
This is achieved by strongly trapping the atoms in the
perpendicular dimensions, effectively freezing these de-
grees of freedom.We scale the equations choosing units of
length Lu � 2 �m, of energy Eu � 
h2=�2MuL2

u�, and of
time tu � 
h=Eu. The particle interaction is represented by
a delta-function potential

U�x1; x2� � U0��x1 � x2�: (4)

The atoms are also subject to external potentials due to
the optical traps, which in each stage are

VI; III�x; d� �
X3
i�1

�1� qi�V�x; �i� 2�d�;

VII�x; d� �
X2
i�1

�1� qi�V�x; �i� 3=2�d�;

(5)

with

V�x; d� � �V0 exp

�
�
�x� d�2

2�2

�
: (6)

The qi parametrize the asymmetry between the inten-
sities of the beams defining the different wells; we as-
sume that these are of the order of 10�4.

Let us consider first the evolution during the first and
the third stages of the operation. There are four different
energy scales in the problem. The first one is the energy
difference between the energy levels localized in different
wells, which we can estimate as Easym � qV0. The second
one is the energy required to move one of the atoms to an
already occupied well, estimated to be Eint � U0=�0,
where �0 � �V0=�2�1=4 is the width of the wave function
in a well. The third scale is the energy Eexc � ��2

0 re-
quired to put one of the atoms in an excited state of one of
the traps. The last energy scale ED � � =ND�2 is the
energy required to excite the atoms out of the ground
state when the distance between the wells is D � 2�, at
which time the trap can be approximated by a square well
of width ND. We operate in the regime in which

Easym � Eint; Eexc; ED: (7)

Figure 2 shows the dependence of the adiabatic levels on
the separation d during this stage. The presence of the
small asymmetry in this stage does not affect the nature
of the ground state, which is nondegenerate. Joining or
separating the wells at a slow speed keeps the system in
the ground state, i.e., the lowest curve in the figure.
We can estimate the rate at which the adiabaticity is lost
010402-2
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FIG. 3. Stage III: probabilities to find the system in the
adiabatic states after a single well with three atoms is split
into three wells with an atom per well (dfinal � 3:0) as a
function of the speed v. The energy levels are the ones shown
in Fig. 2. For velocities smaller than denoted with the dashed
line the probability to state in the ground state is larger than
0.99; for velocities larger than denoted with the dash-dotted
line dephasing is less than 0.1. For stage I the dynamics are
very similar except there is no limit on how slow the process
could be done.
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FIG. 4. Stage II: adiabatic levels of three atoms in two wells
in the case of attractive interaction for different values of
the separation d. The other parameters of the potential are
V0 � 30, � � 0:5, U0 � �4, q1 � 0, q2 � 10�4.
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FIG. 2. Stage I: adiabatic energy levels for three atoms in
three wells with repulsive interaction as a function of d.
The other parameters of the potential are V0 � 10, � � 0:5,
U0 � 10, q3 � �q1 � 10�4, q2 � 0.
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by applying the Landau-Zener formula [16], vad �
��Egap�

2=�dE=dx�. The slope can be estimated as����������
NV0

p
=�2. The size of the gap depends on which of the

three large energy scales in (7) is the smallest. In
the example that we are presenting, all three are roughly
the same order of magnitude. The probabilities jaij2 �
jh ij ij2 to find the system in the states j ii at the end of
the evolution is plotted in Fig. 3 as a function of the speed
v. In our example, the critical rate is vcI;2 � 0:35; the
probability to find the system in other states is less than
0.01. For multiparticle interferometry it is critical not to
accumulate an additional phase during the third process
due to the asymmetry between the right and left set of
wells. This gives rise to a lower bound for the allowed
velocity, as explained below. For the parameters chosen in
the figure this is vcI;1 � 0:09.

Between these stages and stage I we need to change the
sign of the effective interaction between the particles. For
the cases we are considering, the particles remain the
ground state with very high probability ( � 99%) even if
this change is performed suddenly.

The adiabatic energy levels during stage II as a func-
tion of d are shown in Fig. 4; corresponding transition
probabilities are plotted in Fig. 5. In this case we also
have four energy scales, which can be approximated by
Easym � NqV0, Eint � �N � 1�jU0j=�0, Eexc � ��2

0 , and
ED � � =2D�2. Once again, we work in the regime in
which (7) is valid. Separating the wells adiabatically
maintains the system in the ground state and corresponds
to allN atoms placed in the lowest of the two wells, which
is not the desired state. In order to mix the lowest two
energy states we need to evolve the system nonadiabati-
cally with respect to the lowest gap but at a slow enough
speed to remain adiabatic with respect to the larger gap.
Below vcII;2 � 0:27 the probability to tunnel to these
excited states is less than 0.01 and entanglement is ob-
tained with 2�� � 0:99 or larger. On the other hand, the
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asymmetry yields a dephasing between the two parts of
the wave function � � Easymtsep, where the separation
time is inversely proportional to the velocity v.
Allowing a maximum dephasing �max, we must go faster
than vcI;1 � qV0;IIIN=�max. This calculation assumes,
however, that the asymmetry is constant. In a practical
situation, q is driven by fluctuations in the laser power,
and consequently the phase � grows diffusively, as the
square root of tsep instead of linearly, making the con-
dition less restrictive.

The only two conditions for the applicability of the
method are related to the asymmetry of the potential. As
long as condition (7) is met and as long as vc;2 is larger
than vc;1, there is a range of velocities for which
the operation is successful. The critical velocities have
010402-3



TABLE I. Parameters of the numerical estimates in dimen-
sional units. For the estimates we take scattering lengths of
23Na at � 65a0 and 87Rb at � 106a0 in triplet states with no
magnetic field with a0 being the Bohr radius [17]; we assume
that near a Feshbach resonance the values will be of the same
order of magnitude.

Parameter Na Rb Units

!? 79.9 13.0 2 kHz
vcI;1 62.2 16.5 �m=s
vcI;2 242 64.0 �m=s
vcII;1 117 31.1 �m=s
vcII;2 186 49.4 �m=s
V0;II 2.47 0.665 h� kHz0.01 0.1 1
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FIG. 5. Stage II: full lines are probabilities to find the system
in the adiabatic states after the separation of one well with
three atoms to two (dfinal � 3:0) as a function of the speed v.
The dashed line is �. The interaction is attractive and the
parameters are the ones used in Fig. 4. For velocities in the
interval between vertical lines the desired state is prepared
with probability of 0.99 and dephasing smaller than 0.1.
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different dependence on N, so for fixed values of the
parameters defining the potential and the interaction,
there is a largest number of atoms for which this happens.
However, by choosing a different set of parameters this
condition can be relaxed. In particular, the fact that ED /
N�2 during the preparation of the MI state can be over-
come by separating the atoms in series instead of doing
this in parallel (for N � 2n, we can think of n steps in
which each well is split into two).

Finally, numerical values for realistic experimental
parameters are given. In the model described above the
effective interaction between atoms is determined by the
scattering length a and the strength of the confinement in
the transverse direction. The frequency !? of the con-
finement in the case in which the system stays in the
ground state of transverse motion may be expressed in
terms of the dimensionless interaction parameterU0 used
above [8] as

!? �
U0 
h

4jajMuLu
: (8)

Hence it is desirable to use atoms with the largest product
of mass and scattering length possible. In Table I
we present the rescaled values used in the calculation
for two workhorses of cold atom experiments, sodium
and rubidium. The magnetic fields needed to observe
Feshbach resonances in alkali atoms are typically hun-
dreds of gauss [14]. In the proposed scheme for multi-
particle interferometry one should work on the side of the
resonance where the scattering length changes sign to
avoid the losses associated with crossing the resonance.
010402-4
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