
Iterative Calculation of Projectile Motion

OBJECTIVES
In this activity you will learn how to:

• Create 3D box objects
• Update the position of an object iteratively (repeatedly) to animate its motion
• Update the momentum and position of an object iteratively (repeatedly) to predict its motion

TIME
You should plan to finish this activity in 50 minutes or less.

COMPUTER PROGRAM ORGANIZATION

A typical program has four sections:

1. Setup statements
2. Definitions of constants (if needed)
3. Creation of objects and specification of initial conditions
4. Calculations to predict motion or move objects (done repetitively in a “loop”)

1. Setup statements
Using the VIDLE editor, open the shell file, "Model2_Shell.py" and save it on your computer as “Model2.py”.
Notice that the first few lines are the import statements you have seen before.

2. Constants
Following the setup section of the program you would define physics constants. The only such constant we will
need for this model is the Earth's gravitational acceleration, which you can see has been defined.

3a. Creating objects
The first two statements of the Objects section create a white track and a green cart to slide on that track. The
next statement, “cart.m=1”, creates a mass attribute for our cart variable and gives it a value of 1 kg.*

Run the program by pressing F5. Arrange your windows so the Python Shell window is always visible. You
should currently see the cart sitting just above the track.
Kill the program by closing the graphic display window.

3b. Initial conditions
Any object that moves needs two vector quantities declared before the motion loop begins:

1. initial position; and
2. initial momentum

*Note: In VPython there are no “built in” physical attributes like p or m the way there are for geometrical
attributes like pos or radius. However, Python allows us to create new attributes for objects. We could have
called the momentum and mass pcart and mcart, instead of cart.p and cart.m It can be helpful to
create attributes like mass or momentum associated with objects so we can easily tell apart the masses and
momenta of different objects in a complex program.

Edited by M. Haley

You’ve already given the cart an initial position at the left end of the track. Now you need to give it an initial
momentum. If you push the cart with your hand, the initial momentum is the momentum of the cart just after it
leaves your hand.

To make our code flexible, we will specify the initial velocity by an initial speed and angle. For now, the speed
is 5 m/s in the direction of 0°, which is along the track in the +x direction. The radians() function converts
degrees to radians. The sin() and cos() functions have been used to decompose the initial velocity into its x
and y components.

Complete the next line defining the initial momentum using these components—use only symbols and no
numbers. Remember that a three component vector can be created in VPython with the expression
vector(, ,).

When you run your program, you should see the cart momentum outputted to the shell. Is this the value you
expect, given the cart's mass and initial velocity? Nothing is animated yet, since we haven't yet programmed
position updating.

3b. Time step and total elapsed time
To make the cart move we will use the position update equation tvrr if ∆+=

 repeatedly in a “loop”. In a
programming language, a loop is an order that executes the same operations multiple times. For our case, it will
execute the position update many times and display the corresponding box location in a 3D scene each time the
calculation is done.

Carrying out an iteration over time requires an initial time and a time step, both of which are defined in the shell
code. For the moment we will suppose that our time step, deltat, is small enough for our purposes.

This completes the first part of the program, which tells the computer to:
a. Create numerical values for constants we might need
b. Create 3D objects
c. Give them initial positions and momenta

4. Repeated calculations: Loops
The kind of loop we will use in VPython starts with a "while" statement. Instructions inside the loop are
indented; this is not just for readability! The Python interpreter uses the indent to parse your code, so you must
indent the contents of a loop.

In the Calculations section, uncomment all of the lines below “## CALCULATIONS”. The fastest way to
accomplish this in the VIDLE editor is to highlight these lines and press Alt-4 (Alt-3 would add comment
markings). Note that you only want to remove the first # sign of each line.

Try running the program now. Looking at the shell, can you see what the following two active lines are doing?

print 'the time is now', t
t = t + deltat

This should give you a sense of the enormous number of times a computer can quickly do iterative calculations,
which are quite tedious when done by hand. The loop will continue until the condition of the loop, t < 10, is

Edited by M. Haley

no longer true. Since we don't need to see the time for every run of the loop, comment out the print statement
before going on (but leave the print statement that is after the loop.)

The statement:

t = t + deltat

may look like a mathematical error. However, in a program the "=" sign has a different meaning than in a
mathematical equation. The right hand side of the statement tells Python to read the old value of t and add the
value of deltat to it. The left hand side of the statement tells Python to store this new value into the variable
t. For this reason, the “=” is better read as “gets” than “equals”, as in the phrase, “t gets t plus deltat”.

4a. Constant momentum motion

Consider a cart moving with constant momentum. We will predict how the cart will move in the future, after it
acquired its initial momentum using your iterative calculational “loop”. Each time the program runs through this
loop, it will do two things:

1. Use the cart’s current momentum to calculate the cart’s new position
2. Increment the cumulative time t by deltat

You know that the new position of an object after a time interval t∆ is given by
tvrr if ∆+= avg

where fr

is the final position of the object, and ir

 is its initial position. Since the time interval t∆ is very short,
the velocity doesn’t have time to change very much and is therefore similar to the initial or final velocity. We
will approximate the average velocity by the final velocity of each iteration.*

Since at low speed vmp ≈ , or mpv / ≈ , we can write
tmprr if ∆+=)/(

We will use this equation to increment the position of the cart in the program. First, we must translate it so
VPython can understand it. Complete the position update line in your code with the following:

cart.pos = cart.pos + (cart.p/cart.m)*deltat

Notice how this statement corresponds to the algebraic equation:

* The accuracy of this approximation obviously increases as t 0 .
Edited by M. Haley

Initial
position

Final
position Velocity Time step

cart.pos = cart.pos + (cart.p/cart.m)*deltat

tmprr if ∆+=)/(

Slowing down the animation
The animation speed of your program depends on many factors, such as the machine running the code.
Depending on what you want to observe, it is important to know how to slow down or speed up the animation.
Notice the statement in the loop,

rate(100)

A larger number in the argument causes the program to run faster. Change the rate so that when you run the
program, the cart takes a few seconds to reach the end of the track. You should observe a constant velocity at
this point in the program.

Note: The cart going beyond the edge of the track isn’t a good simulation of what really happens, but it’s what
we told the computer to do. There are no “built-in” physical behaviors, like gravitational force, in VPython.
Right now, all we’ve done is tell the program to make the cart move in a straight line. If we wanted the cart to
fall off the edge, we would have to enter statements into the program to tell the computer how to do this.

4b. Changing momentum
Now we will complete the program by adding in the possibility of a changing momentum. Recall that a change
in momentum is given by the Momentum Principle:

tFpp if ∆+= net

Complete the line in your code defining cart.p. If you are unsure how to accomplish this, look at how you
programmed the position update—it is very similar. Your line should set the new value of the cart momentum
equal to the old value of the cart momentum plus the net force times the time step. Note that the variable Fnet
has already been defined in the line above the momentum update.

Since Fnet is currently set to the zero vector, the momentum update will still produce a constant momentum
motion, but in a few minutes you will get to play with some other possibilities.

5. Reflection

At this point, you may begin answering the reflection questions for Model 2.

Remember that you only get one try per question on a reflection assignment, so be sure discuss with your group
or an instructor before answering!

Edited by M. Haley

Initial
momentu

Final
momentum

Net force Time step

	Iterative Calculation of Projectile Motion
	OBJECTIVES
	TIME
	COMPUTER PROGRAM ORGANIZATION
	1. Setup statements
	2. Constants
	3a. Creating objects

	3b. Initial conditions
	3b. Time step and total elapsed time

	4. Repeated calculations: Loops
	4a. Constant momentum motion
	Slowing down the animation
	4b. Changing momentum

