Assume: A small block of mass m_1 is released from rest at the top of a curved frictionless wedge of mass m_2 , where $m_2 \gg m_1$, which sits on a frictionless horizontal surface as shown.

As the block slides down the curved surface the x-coordinate x_{cm} of the center of mass of the $(m_1 + m_2)$ system

- A) moves to right.
- B) moves to left.
- C) remains at rest.

Note: There is no external force acting on the system, along the horizontal direction; i.e., $F_{cm}=0$.

But $F_{cm} = \frac{d p_{cm}}{dt}$, where p_{cm} is the component of the momentum vector

of the center of mass along the horizontal direction.

For the present case p_{cm} is constant.

Initially, $p_{cm} = 0$. This implies that during the entire process, the location of the center of the mass remains at rest.

Answer C.

09.01-02 Blocks on a Curve 2004-3-25