Consider the Atwood Machine shown in the sketch. The pulley has a radius R and the moment of inertia I and $m_2 > m_1$. Since there are three moving objects, there should be three equations of motion. Two of them are $T_1 - m_1 g = m_1 a$ and $m_2 g - T_2 = m_2 a$. What is the third equation? A) $$(T_2 - T_1) R = \frac{I a}{2 R}$$. B) $$(T_2 - T_1) R = \frac{I R}{2 a}$$. B) $$(T_2 - T_1) R = \frac{IR}{2a}$$. C) $(T_2 - T_1) R = \frac{Ia}{R}$. D) $$(T_2 - T_1) R = \frac{IR}{a}$$. 10.08-06 Atwood Machine 2007-3-27 The equation of motion for the pulley is $\tau = I \alpha$, where $\alpha = \frac{a}{R}$. Notice that since m_2 is descending, T_2 should be greater than T_1 , Answer C.