
The period of a physical pendulum is  $T=2\,\pi\,\sqrt{\frac{I}{m\,g\,b}}\,,$  where m is the

mass I the moment of inertia about the pivot point and b the distance between the pivot point and the center of gravity. Consider the setup where the pivot point P is at the top (see sketch).



Determine the I and b for a loop with a radius r and mass m.

A) 
$$b = r$$
 and  $I = m r^2$ .

B) 
$$b = r$$
 and  $I = 2 m r^2$ .

C) 
$$b = 2r$$
 and  $I = m r^2$ .

D) 
$$b = 2r$$
 and  $I = 2mr^2$ .

b is the distance between P and the center, so b=r .

$$I = I_{cm} + M D^2 = m r^2 + m r^2 = 2 m r^2$$
.

Answer  $\mathbf{B}$ .

 $13.04\text{-}02\text{`Simple'} Harmonic'\\ Oscillation'\\ of a'\\ Loop~~2004\text{-}3\text{-}24$