

A circular disk is suspended by a wire attached to the top of some fixed support. When the disk is twisted through some small angle θ , the twisted wire exerts a restoring torque on the body which satisfies $\tau = I \, \alpha = I \, \frac{d^2 \theta}{dt^2} = -\kappa \, \theta$, where κ is referred to as the torsion constant of the wire.

Find the period of the oscillation.

A)
$$T = \sqrt{\frac{I}{\kappa}}$$
.

B)
$$T = 2 \pi \sqrt{\frac{I}{\kappa}}$$
.

C)
$$T = \sqrt{\frac{\kappa}{I}}$$
.

$$D) \quad T = 2 \pi \sqrt{\frac{\kappa}{I}}.$$

Present equation of motion implies that, $\omega = \frac{\kappa}{I}$, in turn: $T = 2 \pi \sqrt{\frac{I}{\kappa}}$.

Answer \mathbf{B} .

13.04-04 Torsional Pendulum 2004-3-24