
Consider an electrostatic situation. A point charge Q is located at the center of a thick spherical conducting shell. The net charge on the shell is $-\frac{1}{2}Q$. Let S (dashed circular line) be a concentric spherical surface (Gaussian surface) with a radius r.

What is the charge on the outer surface of the thick spherical conducting shell?

A)
$$Q_{outer\ surface} = -\frac{1}{2} Q$$

B)
$$Q_{outer\ surface} = +\frac{1}{2}Q$$

D) $Q_{outer\ surface} = +Q$

$$C) \quad Q_{outer\ surface} = -\tilde{Q}$$

E)
$$Q_{outer\ surface} = -\frac{3}{2} Q$$

For an electrostatic case, there must not be charge(s) inside of a con-

ductor (otherwise $E_{inside} \neq 0$). So the charges can only reside on the inner surface and outer surface of the conducting shell. Since $\Phi_S = 0$, the enclosed charge $Q_{inner\ surface} + Q = 0$, thus $Q_{inner\ surface} = -Q$.

Since $Q_{shell}^{net} = Q_{inner\ surface} + Q_{outer\ surface}$, we have

$$egin{aligned} Q_{outer\ surface} &= Q_{shell}^{net} - Q_{inner\ surface} \ &= -rac{1}{2}\,Q + Q \ &= rac{1}{2}\,Q\,. \end{aligned}$$

Answer **B**.

24.03-02 Conducting Shell and Point Charge 2006-9-14