
Given: A network containing a battery \mathcal{E} , and capacitor C, and resistor R and an inductor L.

Denote the angular frequency of the "LC" circuit by $\omega = \frac{1}{\sqrt{(LC)}}$.

The switch S is left at position a for a long period of time. The switch S is then moved from position a to b at t=0.

Find the plate charge on the capacitor C .

- A) $Q = \mathcal{E} C \sin \omega t$
- B) $Q = \mathcal{E} C \cos \omega t$

$$C) \quad Q = \frac{\mathcal{E}}{C} \sin \omega t$$

$$D) \quad Q = \frac{\mathcal{E}}{C} \cos \omega t$$

Since the charge is maximum at t = 0, Q = VC, and $V = \mathcal{E}C$, we have

 $Q = \mathcal{E} C \cos \omega t.$

Answer **B**.

32.06-02 RLC Circuit 2004-3-24