A mass m is moving along a circular path at a fixed radius r. The motion is on the surface of a horizontal frictionless table. So gravity may be ignored.

As m curves around the point A, to an inertial frame observer there is a centripetal acceleration $a_{cp} = \frac{c}{r}$, which is pointing to right.

Consider a specific non-inertial frame; i.e., "the rest frame of m, where m is at rest".

To an observer in this "non-inertial frame", which one of the choices is equivalent to inertial frame equation $\sum F_{inertial} = m \, a_{inertial}$.

A)
$$T - \frac{m v^2}{r} = 0$$
.
B) $T = \frac{m v^2}{r}$.
C) $T + \frac{m v^2}{r} = 0$.

$$B) \quad T = \frac{m v^2}{r}.$$

$$C) \quad T + \frac{m v^2}{r} = 0.$$

As m passes the point A, the rest frame observer perceives that

- there is a tension T pulling to the right, and
- there is the inertial force with a magnitude $\frac{m v^2}{r}$ (i.e., the "centrifugal force"), pulling to the left.

To this observer there is no acceleration along the radial direction.

So **A** is " $\sum F_{non-inertial} - m \, a_{non-inertial} = 0$ " and describes the situation equivalent to the rest frame.

B is an equation in the inertial frame (not the equation in the non-inertial frame), where there is the centripetal acceleration and a force $F = m a_{cp}$.

Note: The mathematical content of the force equation of **A** and **B** is the same.

C is incorrect.

Answer**A**.

06.03-01 Nonintertial frame Description 2004-3-24