

A rod has mass m_1 and length L. It is pivoted at the midpoint. The clay has a mass m_2 and velocity v. It hits the top of the rod and sticks to the rod. It causes the rod-clay system to spin about O. Ignore gravity.

The final angular frequency $\omega_f = \frac{L_i}{I_f}$, where L_i is the initial angular momentum and I_f is the final moment of inertia.

A)
$$L_i = m_2 v \frac{L}{2}$$
 and $I_f = \frac{m_1 L^2}{12} + \frac{m_2 L^2}{2}$.

B)
$$L_i = m_2 v \frac{L}{2}$$
 and $I_f = \frac{m_1 L^2}{12} + \frac{m_2 L^2}{4}$.

C)
$$L_i = m_2 v L$$
 and $I_f = \frac{m_1 L^2}{12} + \frac{m_2 L^2}{2}$.

D)
$$L_i = m_2 v L$$
 and $I_f = \frac{m_1 L^2}{12} + \frac{m_2 L^2}{4}$.

By inspection, the initial momentum is

$$m_2 v \, rac{L}{2} \, ,$$

and the final moment of inertia

$$m_1 \frac{L^2}{12} + m_2 \left(\frac{L}{2}\right)^2$$
.

Answer **B**.

11.05-02 A. Clay and a Rod 2004-3-24