
Given: A constant electric fields \vec{E} along the x-direction.

The first rectangle abcd has an area A_1 perpendicular to \vec{E} . The second rectangle abc'd' has an area A_2 and it is inclined with an angle $\angle_{dad'} = \theta$.

Find Φ_2 , the flux due to the field \vec{E} through the second rectangle abc'd'.

A)
$$\Phi_2 = E A_2$$

B)
$$\Phi_2 = E A_2 \cos \theta$$

C)
$$\Phi_2 = E A_1 \cos \theta$$

D)
$$\Phi_2 = E A_2 \sin \theta$$

E)
$$\Phi_2 = E A_1 \sin \theta$$

For the second rectangle, the projection of its area which is perpendicular to \vec{E} is

$$A_{\perp} = \operatorname{area}_{abc'd'} = A_2 \cos \theta$$
.

Answer **B**.

24.01-02 Electric Flux 2006-9-14