Visualize free electrons moving through a crowded medium. They collide with the atoms along the way. As the temperature increases, what will happen to the average collision time, τ ? What will happen to the resistivity, ρ ? - 1) τ increases, and ρ increases. - 2) τ decreases, and ρ increases. - 3) τ increases, and ρ decreases. - 4) τ decreases, and ρ decreases. When the temperature is increased, the atoms in the medium are "vibrating" with faster average speed. Free electrons will collide with atoms more frequently. So the average collision time τ is decreased. The resistivity $\rho = \frac{m}{n \, q^2 \, \tau}$; i.e., ρ is inversely proportional to τ . As the collision time decreases, resistivity increases. Answer 2. 27.03-01 Thermal Effect on Resistivity 2004-3-24