Given: A cubic network has identical resistors, each with a resistance r. A current I enters the network at A and leaves at G.

Find current I_1 and I_2 in terms of the total current I through the network.

A)
$$I_1 = \frac{I}{2}$$
 and $I_2 = \frac{I}{4}$

A)
$$I_1 = \frac{I}{2}$$
 and $I_2 = \frac{I}{4}$.
B) $I_1 = \frac{I}{3}$ and $I_2 = \frac{I}{3}$.
C) $I_1 = \frac{I}{3}$ and $I_2 = \frac{I}{6}$.

C)
$$I_1 = \frac{I}{3}$$
 and $I_2 = \frac{I}{6}$.

By symmetry, at A, I is equally divided into 3 equal branches. So $I_1 = \frac{I}{2}$. By symmetry, at B, I_1 is equally divided into 2 equal branches. So $I_2 = \frac{I_1}{2} = \frac{I}{6}.$ Answer C.