

Find I_t , I_b , V_L , and V_C at t = 0, just after switch S is closed.

$$(A) \quad I_t = rac{\mathcal{E}}{R_t} \,, \qquad V_L = \mathcal{E} \,, \qquad I_b = 0 \,, \quad ext{and} \quad V_C = \mathcal{E} \,.$$

B)
$$I_t = 0$$
, $V_L = \mathcal{E}$, $I_b = \frac{\mathcal{E}}{R_b}$, and $V_C = 0$.

C)
$$I_t = \frac{\mathcal{E}}{R_t}$$
, $V_L = 0$, $I_b = 0$, and $V_C = \mathcal{E}$.

$$(D) \quad I_t = 0 \,, \qquad V_L = 0 \,, \qquad I_b = rac{\mathcal{E}}{R_b} \,, \quad ext{and} \quad V_C = 0 \,.$$

For the top loop, $\mathcal{E} - V_L - I_t R_t = 0$. At $t = 0_+$, the current starts to increase from $I_t = 0$. The loop equation implies that $V_L = \mathcal{E}$.

For the bottom loop, $\mathcal{E} - V_C - I_b R_b = 0$. At $t = 0_+$, I_b is maximum and the initial charge on the capacitor C = 0 implies that $I_b = \frac{\mathcal{E}}{R_b}$. The loop equation implies that $V_C = 0$.

Answer **B**.

32.02-01 A Simple RL Circuit 2004-11-9