
Given: A network containing a battery \mathcal{E} , and capacitor C, and resistor R and an inductor L.

The switch S is left at position a for a long period of time. The switch S is then moved from position a to b at t=0.

Find the maximum charge Q_{max} and the charge Q(t) on the capacitor C.

A)
$$Q_{max} = \frac{\mathcal{E}\sqrt{LC}}{R}$$
 and $Q = Q_{max}\cos\omega t$

B)
$$Q_{max} = \frac{R\sqrt{LC}}{\mathcal{E}}$$
 and $Q = Q_{max}\cos\omega t$

B)
$$Q_{max} = \frac{R\sqrt{LC}}{\mathcal{E}}$$
 and $Q = Q_{max}\cos\omega t$
C) $Q_{max} = \frac{\mathcal{E}\sqrt{LC}}{R}$ and $Q = Q_{max}\sin\omega t$
D) $Q_{max} = \frac{R\sqrt{LC}}{\mathcal{E}}$ and $Q = Q_{max}\sin\omega t$

D)
$$Q_{max} = \frac{R\sqrt{LC}}{\mathcal{E}}$$
 and $Q = Q_{max}\sin\omega t$

$$I_{max} = \omega \ Q_{max} \Longrightarrow Q_{max} = \frac{I_{max}}{\omega} = \frac{\mathcal{E}\sqrt{LC}}{R}$$

 $Q = Q_{max}\cos(\omega t + \delta)$, at t = 0, implies that $\delta = \pm \frac{\pi}{2}$. Since $\cos(\omega t - \frac{\pi}{2}) =$ $\sin \omega t$, we have $Q = Q_{max} \sin \omega t$.

Answer C.