
A laser beam has a cross section A_1 and a power P_1 .

Find the maximum electric field, E_{max} of the laser beam. Assume the area of the book is $A_2 = 1000A_1$ and $\frac{3}{4}$ of the light is reflected by the book.

A)
$$E_{max} = \sqrt{\frac{2 c \mu_0 P_1}{A_1}}$$
B) $E_{max} = \sqrt{\frac{2 c \mu_0 P_1}{A_2}}$

B)
$$E_{max} = \sqrt{\frac{2 c \mu_0 P_1}{A_2}}$$

$$C) \quad E_{max} = \sqrt{\frac{c \,\mu_0 \,P_1}{A_1}}$$

$$D) \quad E_{max} = \sqrt{\frac{c\,\mu_0\,P_1}{A_2}}$$

Recall:
$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$$
; $E = cB$; $I = S_{av} = c u_{av} = \frac{\text{power}}{A}$; Therefore $\frac{P_1}{A_1} = S_{av} = \frac{1}{2 \mu_0} E_{max} B_{max} = \frac{E_{max}^2}{2 c \mu_0}$. Solving for E_{max} , we have $E_{max} = \sqrt{\frac{2 c \mu_0 P_1}{A_1}}$. Answer \mathbf{A} .

34.03-04 Laser Beam 2005-11-10