A light ray passes through a slab with index of refraction n_2 , which is submerged in a liquid with index of refraction $n_1 = n_3 = 1.2$.

Case A: $n_2 = 1.5$. Case B: $n_2 = n'_2 = 2.0$.

Assuming the incident angle of case B θ'_1 is the same as θ_1 of case A, compare θ'_3 of case B with θ_3 of case A.

- A) $\theta_3' > \theta_3$
- B) $\theta_3' = \theta_3$
- C) $\theta_3' < \theta_3$

Based on Snell's law and the set up, $n_1 \sin \theta_1 = n_2 \sin \theta_2 = n_3 \sin \theta_3$. Since $n_3 = n_1$, so $\theta_3 = \theta_1$. Similarly, $\theta_3' = \theta_1' = \theta_1$. So $\theta_3' = \theta_3$.

Answer **B**.

35.04-03 Light Passing Through a Slab02 2004-3-24