For the double-slits-finite-width setup: "d" is slit-distance, "a" slit-width. Incident light has a wavelength λ . Denote $\phi = k \Delta = k d\theta$ and

$$\beta = k \, a \, \theta$$
. The intensity is given by: $\frac{I(\phi, \beta)}{I(0, 0)} = \cos^2 \frac{\phi}{2} \left[\frac{\sin \frac{\beta}{2}}{\frac{\beta}{2}} \right]^2$. Here the

"double-slit ϕ -pattern" oscillates within the "single-slit β -pattern", while the latter serves as an envelope (dotted distribution above).

If the d = 6 a, number of zeros within the dotted central peak is:

First minimum of single-slit is at $\beta=2\pi$, or $\theta_1^s=\frac{2\pi}{k\,a}=\frac{\lambda}{a}$, that of double-slit is at $\phi=\pi$, or $\theta_1^d=\frac{\pi}{k\,d}=\frac{\lambda}{2\,d}$. For $d=6\,a$, $\theta_1^d=\frac{1}{12\,a}=\frac{\theta_1^s}{12}$. For double slits, zeros are at: $\phi=[1,3,...,11]\,\pi$, or $\theta=\pm[\frac{1}{12},...,\frac{11}{12}]\,\theta_1^s$. There are $12(=2\times6)$ zeros within central peak.

Answer **D**.

38.04-03 Double Slits Finite Width Pattern 2006-9-14