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Spin-resolved core-level photoemission data from the 3p level of ultrathin Fe films [1.4~5.1 mono-
layers (ML)] epitaxially grown on W(110) have been obtained. A nonlinear least-squares analysis, based
on a one-particle Hamiltonian that simultaneously includes core-valence exchange and core-hole spin-
orbit interactions, is developed. It is first tested on Fe 2p magnetic circular dichroism (MCD) photo-
emission spectra and shown to successfully describe the MCD asymmetry data. The model is then used
to analyze our thin-film 3p data. With increasing film thickness the spin-orbit splitting (0.67+0.02 eV)
remains constant (as expected), the exchange splitting increases from 0+0.12 eV to 0.41£0.05 eV, the
average Fe film magnetization (=1.2+0.3u, at 1.4 ML) increases, and the singularity index decreases.
The analysis highlights the importance of simultaneously considering all relevant photoemission parame-
ters in extracting meaningful values of the spin-orbit and exchange interactions.

I. INTRODUCTION

Core-level photoemission has long been utilized as an
atom-specific probe of the local electronic structure in a
variety of solids. Its application to the investigation of
magnetic structure dates to the pioneering work of Fad-
ley et al. on Mn and Fe ions.! Recently, with the advent
of three spin-sensitive techniques—spin-polarized photo-
emission, magnetic circular dichroism (MCD) in photo-
emission, and magnetic linear dichroism (MLD) in
photoemission—the core-level spectra of ferromagnetic
metals such as Fe have come under increased scrutiny.
One particular core level which has been widely investi-
gated in the 3d ferromagnets is the 3p state. The 3p level
has several photoemission parameters which are quite
sensitive to the valence-band structure: (1) the exchange
splitting A_,. of the core states by the polarized 3d
valence electrons, (2) the spin-orbit (SO) splitting Agg
which is affected by the valence-charge screening of the
nuclear charge, (3) the lifetime of the core hole which is
dominated by Auger transitions involving two 3d elec-
trons, and (4) the singularity index a which parametrizes
the screening of the core hole by the valence band. For
the highly studied 3d ferromagnet Fe there is little, if
any, consensus on the values of these important parame-
ters. E.g., reported values of the Fe 3p exchange splitting
include 0.26,> <0.5,% 0.5,%° 0.7,% 0.77,7 0.95+0.05, and
1.11+0.05 eV,’ while the SO splitting has been deduced
to be 0.7 eV (Ref. 10) and 1.120.1 eV.® From several
measurements®>° it has been concluded that a lifetime
difference for majority and minority core holes!! exists;
however, values for majority (minority) lifetime widths
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range between 1.7 and 2.7 eV (1.0 and 1.4 eV).>* Similar-
ly, fitted singularity indices for bulk Fe have ranged from
0.2 (Ref. 7) to 0.44.

Part of the difficulty in deducing these crucial parame-
ters has been that the exchange and SO splittings of the
3p states are of roughly the same magnitude.!? Indeed, in
analyses of the lifetime width and singularity index the
SO splitting has been altogether ignored.>>> Further,
many of the reported exchange splittings simply reflect
the peak separation of minority and majority spectra.?”¢
Only recently have there been attempts to include the SO
splitting in the deduction of the exchange interaction.®®
However, in those analyses a realistic line shape was not
used in the comparisons between experiment and theory.
Clearly, a model which simultaneously includes all of
these parameters would be immensely helpful in mean-
ingful extraction of the relevant physical information
from the photoemission spectra.

In this paper we present spin-resolved 3p photoemis-
sion data from thin, ferromagnet Fe films grown on
W(110). We then outline a simple one-electron model
which simultaneously incorporates the spin-orbit and ex-
change interactions. It is shown that the model success-
fully describes Fe 2p MCD spectra!® where the spin-orbit
splitting is an order of magnitude larger than the ex-
change interaction. The model is then applied to our 3p
spin-polarized spectra in order to simultaneously extract
the spin-orbit and exchange splittings along with the life-
time and singularity-index line-shape parameters. The
importance of simultaneously considering all relevant pa-
rameters clearly emerges from the analysis. The model
and analysis technique should be widely applicable to
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spin-sensitive photoemission spectra from itinerant fer-
romagnets when final-state scattering effects (such as
spin-orbit induced polarization'*) can be neglected.

II. EXPERIMENTAL DETAILS

The experiments were performed on the U5 undulator
beam line at the National Synchrotron Light Source at
Brookhaven National Laboratory. Ultrathin p(1X1) Fe
films were epitaxially grown on a highly aligned, 250 K
W(110) substrate at a rate of 0.5 ML/min using an
electron-beam pendant-drop evaporator in a base pres-
sure of 2X 107! Torr. Each sample was subsequently
annealed to ~400 K in order to produce a well-ordered
film'® before cooling to the measurement temperature of
~150 K. The cleanliness and the structure were checked
by photoemission and low-energy electron diffraction, re-
spectively.

The Fe film thicknesses were determined from a quartz
microbalance crystal monitor which was calibrated by
the attenuation of the substrate 4f core-level photoemis-
sion intensity. Figure 1 plots the W 4f integrated intensi-
ty vs the crystal monitor signal. The straight-line linear
fit to the log of the 4f intensity illustrates that the intensi-
ty decay is well described by an exponential. From the
straight-line fit and an experimental inelastic mean free
path (IMFP) of 3.6 A (Ref. 16) the absolute thicknesses of
the films were determined. The uncertainty in film
thicknesses arises largely from the +20% uncertainty in
the IMFP.'¢

Figure 2 illustrates the experimental geometry. P-
polarized light (photon energy =93 eV) incident at an an-
gle of 58.5° was used to excite the photoelectrons. The
plane of incidence was defined by the [001] and [110]
directions of the substrate. The Fe films were magnetized
along either the [170] or [110] directions by applying
current pulses through a pair of Helmholtz coils. The
angle-resolved photoelectrons were detected normal to
the sample surface and energetically analyzed by a com-
mercial 50-mm hemispherical analyzer equipped with a
low-energy spin polarization detector.!” The overall
(monochromator and spectrometer) energy resolution
was 60020 meV, determined by fitting the sharp 4/, ,,
spectrum from clean W(110) using previously determined
line-shape parameters.'® The spin polarization was mea-
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FIG. 1. W 4f core-level integrated photoemission intensity

vs Fe film thickness. Solid circles: experiment. Solid line:
exponential-decay fit to the data.
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incident
light
FIG. 2. Experimental geometry used in spin-polarized photo-
emission measurements.

sured in the remnant state of the films and the complicat-
ing effect of spin-orbit-induced spin polarization'* was el-
iminated by averaging two sets of data with opposite
magnetization directions.

III. RESULTS

Spin-resolved Fe 3p photoemission data from four Fe
films with thicknesses of 1.4, 2.0, 3.4, and 5.1 ML have
been obtained and are consecutively displayed in Figs.
3-6. In each figure (a) and (b), respectively, show the
majority and minority spectra, while (c) displays the
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FIG. 3. Spin polarized 3p photoemission spectra of 1.4 ML
Fe film on W(110): (a) majority spectrum, (b) minority spec-
trum, (c) spin-integrated spectrum, (d) residual between spin-
integrated data and least-squares analysis. Solid circles: data;
solid lines: least-squares analysis.



15172
5 [T T T . T T T
2.0x10 — (a) .
- 1.8x10°
k<
3
Q
R=2
=
B
c
[0}
S
3.6x10°
%
o
el
£
KR 0
ER
- 1 1 1 1 1 1
.= 3 2 1 0o 1 -2
& Relative Binding Energy (eV)

FIG. 4. Same as Fig. 3 for 2.0 ML Fe film.

spin-integrated spectrum. In agreement with previous
measurements®~® of the 3p level of ferromagnetic, metal-
lic Fe our spin-resolved spectra of the 2.0, 3.4, and 5.1
ML films exhibit a majority-spin peak with a binding en-
ergy greater than the minority-spin peak. In each of
these spectra the majority peak has less weight and is
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FIG. 5. Same as Fig. 3 for 3.4 ML Fe film.
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FIG. 6. Same as Fig. 3 for 5.1 ML Fe films.

broader than the minority peak. The 1.4 ML film, howev-
er, exhibits no splitting between the minority and majori-
ty peaks, and the peaks have nearly equal integrated in-
tensities. The origin of spin-polarized splitting in these
measurements is the exchange interaction between the
core-hole and valence electrons. The energetic ordering
observed here is consistent with an exchange interaction
which energetically favors the excited core-hole shell and
partially filled 3d valence shell to have parallel spin direc-
tions, i.e., to be ferromagnetically coupled.

IV. ANALYSIS

A. Model Hamiltonian

In order to quantitatively determine the spin-orbit in-
teraction, exchange interaction, and line-shape parame-
ters of our spin-resolved photoemission spectra, we intro-
duce a simple one-particle perturbative potential Hgg 4 oxc
for the core electrons which simultaneously includes the
spin-orbit coupling and exchange interactions:

Hgotexe =6L-S+A. 1

Simultaneous treatment of the SO and exchange interac-
tions is necessary since for the Fe 3p states the two in-
teractions have nearly the same magnitude.!? The first
part of our model Hamiltonian, {L-S, accounts for the
standard spin-orbit interaction with coupling constant &,
orbital angular momentum L, and spin angular momen-
tum S. The SO splitting Ago=3¢£/2 equals the binding-
energy difference between the p,,, and p;,, peaks in the
absence of any exchange interaction. The second part of
the Hamiltonian A is a potential which couples the core-
hole to the average magnetic moment of the 3d valence
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TABLE I. Energies of photoemission components derived
from model Hamiltonian.

J.m;? AE®
3/2,—3/2 £/2+e
3/2,—1/2 [—&+(982+8Le +16€%)' 2] /4
3/2,1/2 [— &+ (982 —8Le+16€2)' /2] /4
3/2,3/2 £/2—¢
1/2,1/2 [_g_(9§2—8§8+1652)1/2]/4
1/2,—1/2 [—&—(9&%+8Le+16€2)1 /21 /4

2Orbital quantum numbers in the limit of zero exchange split-
ting.
bShift in energy from state with £=¢=0.

electrons. This type of exchange interaction, which cou-
ples the core-hole spin to the average magnetization of
the valence band, is thought appropriate for itinerant fer-
romagnets such as Fe and has been used in previous anal-
yses.® 1 Its respective eigenvalues are +e for pure-spin,
core-hole states having spin components of +#/2 along
the magnetization axis. The exchange splitting A, =2¢
is the difference in binding energy between two opposite
pure-spin states. In Table I we show the eigenvalues AE
which are referenced to the energy of the six degenerate p
states in the limit of e={=0. Note that the j and m;
values used to identify the states in Table I are good
quantum numbers only in the limit of e—0; however, we
continue to use them for nonzero € since they are the
most convenient labels for the six eigenstates and their
respective eigenvalues. We note that even though our
model is quite simple it produces the same angular-
momentum-projected density of states as the more so-
phisticated calculation by Tamura et al.®

We calculate the photoemission intensities, i.e., the rel-
ative transition strengths, under the assumptions of (1)
radial wave functions independent of the photoelectron
orbital state, (2) no interference between photoelectron
states with different angular momenta !’ and m’, and (3)
no photoelectron diffraction. (We thus cannot account
for spin-orbit induced spin polarization of the photoelec-
tron spectra.'*) With these assumptions the transition
strength for a core-hole state ¥,(r), obtained via the Fer-
mi golden rule in the dipole approximation, is propor-
tional to

S Vi (006 K Yyl Acxly) 2, )

I'm’
where A is the vector potential and 8, and ¢, are the po-
lar and the azimuthal angles in which photoelectrons are
emitted.”’ From Eq. (2) it is obvious that in general the
intensity depends upon the incident-light direction and
polarization, the photoelectron emission direction, and
the outgoing-electron spin polarization. For a p-state
core hole the dipole approximation produces intensity
only in s and d outgoing states. Calculated spin-resolved
intensities of the six p-level eigenstates for angle-averaged
photoemission are presented in Table II. Intensities for
A,.=0.4 eV and Ag5=0.75 eV are further illustrated in
Fig. 7. The top and bottom parts of the figure show p to s
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TABLE II. Calculated component intensities for angle-
integrated, spin-resolved photoemission for p—s and p—d
transitions

Relative transition strengths®™®

Jj,m;?® Majority Minority
p—>s p—d p—S p—d

3/2,—3/2 0 0 1 1

3/2,—1/2 Ay Ay 0 (6/7)(1—A4,)
372,172 0 (6/7)(1—A,) A Ay

372,372 1 1 0 0

1/2,1/2 0 (6/7)0(1—Ay) Ay Ay
1/2,—1/2 A3 Az 0 (6/7)(1—A;)

2Orbital quantum numbers in the limit of zero exchange split-
ting.
®The values of A; are as follows:

AM=(14+a?)"La=[E—4e+(9E*—8Le+ 16€2) 2] /(2V2¢) .
A=b2/(14b?),b=[ —E—4de+ (9 +8Le+16e2)1 /2] /(2V2¢)
A=ct/(1+c?),c=[—E—4e—(9E2+8Ce +16€2) 2] /(2V2E) ,
AM=(1+d?) " d=[E—4e— (92— 8Le+16€2) 721 /(2V2E) .

°The maximum transition strength for p —s or p —d emission is
normalized to 1.

and p to d transitions, respectively.

A comparison of Fig. 7 with the present and previously
published 2p and 3p spin-polarized core-level spectra
from itinerant ferromagnets such as Fe (Refs. 2—-6 and
21) and Co (Refs. 22 and 23) shows that the model quali-
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FIG. 7. Calculated intensities of p states in spin-resolved
photoemission for angle-integrated p to s and p to d transitions.
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tatively describes the observed features. For 2p photo-
emission, where the p3 , and p, , manifolds largely main-
tain their integrity, our model predicts the p;,, minority
emission to be more intense and at lower binding energy
than its majority counterpart. In contrast the p,,, emis-
sion has more intensity in the higher-binding-energy ma-
jority channel. Both of these features are experimentally
observed.>21%3 For 3p photoemission, where the SO in-
teraction, exchange interactions, and lifetime broadening
are all approximately the same size, the model predicts a
more sharply peaked minority spectrum with an overall
shift to lower binding energy when compared to the ma-
jority spectrum, in agreement with our measurements
(Figs. 4—6) and previous observations.?~ %22

B. Application to Fe 2p MCD photoemission

As a quantitative test of our model to simultaneously
describe the spin-orbit and exchange interactions of a
core hole we first apply the model to recent Fe 2p mag-
netic circular dichroism (MCD) photoemission data of
Baumgarten et al.'> In MCD photoemission, separate
spectra are collected with the photon helicity (right-hand
circularly polarized or left-hand circularly polarized)
parallel and antiparallel to the sample magnetization.
The data are reported as an intensity asymmetry
[T —I7)/(IT+17)] between the intensities I* and
I~ collected for the parallel and antiparallel conditions,
respectively. In Fig. 8(b) we show the MCD asymmetry
data of Baumgarten et al. as the filled circles with the er-
ror bars.

In fitting the asymmetry data we fixed the background
intensity and the overall 2p;,, peak height to match the
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FIG. 8. Least-squares analysis of Fe 2p MCD asymmetry
data (Ref. 12). (a) calculated I+ and I~ intensities. (b) MCD
data (solid circles with error bars) and least-squares fit (solid
line).
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experimental I and I~ data. Each core-level com-
ponent?* is modeled by a Doniach-Sunjié (DS) function®®
convolved with a Gaussian (to represent the instrumental
broadening).?® The shape of the DS function is deter-
mined by two parameters, the Lorentzian lifetime full-
width half-maximum I' and a singularity index a which
describes the asymmetry of the line. The Lorentzian
widths were fixed at 0.80 and 1.25 eV for the 2p;,, and
2p,, lines, respectively.?’” The singularity index o was
set to 0.27 (as determined below for thick Fe films), while
the Gaussian contribution was left as a free parameter.
Since in the experiment the kinetic energy of the outgo-
ing photoelectrons is rather high at ~ 150 eV, the photo-
electron d channel is expected to dominate the s chan-
nel;?® hence, we neglect the s states in this comparison.
Additionally, the SO splitting 3§ /2 is held to 13.0 eV, the
observed separation between the spin-integrated p;,, and
P, peaks.'¥?!

Under these specific assumptions (and the more general
ones noted above) our model predicts the normalized in-
tensities shown in Table III for the corresponding
eigenenergies listed in Table I. With these constraints a
nonlinear least-squares fit produces the solid line through
the data in part (b) of Fig. 8. Our model clearly repro-
duces all of the features of the MCD asymmetry spec-
trum. From the fit we extract an exchange splitting
A, .=0.90£0.05 eV. This value is quite close to the
theoretical result of A,.=0.8 eV by Ebert.!? In (a) of
Fig. 8 we show the two helicity-resolved intensities, I T
and I, calculated from the model. The splittings are
0.43 and 0.18 eV for the p3,, and p, , peaks, respectively.
These are in good agreement with the experimental split-
tings of 0.5+0.2 and 0.3+0.2 eV.!®> The model thus ap-
pears quite capable of representing core-level photoemis-
sion spectra of ferromagnetic, metallic Fe. We note that
the MCD splitting of either the p;,, or p,, peaks
significantly underestimates the exchange splitting A, ...

C. Spin-polarized Fe 3p photoemission

We now apply our model to the thin-film Fe data
shown in Figs. 3-6 in order to extract the spin-orbit
splitting, exchange splitting, and line-shape parameters
for each set of data. For photoelectron kinetic energies

TABLE III. Calculated component intensities in MCD pho-
toemission for experimental geometry of Baumgarten et al.
(Ref. 13).

Relative transitions strengths®

Jjsm;? I* spectrum I~ spectrum
3/2,—3/2 1/6 1
3/2,—1/2 (3—24,)/6 (1+A,)/2
372,172 (1+A))/72 (3—2X,)/6
372,372 1 1/6
172,172 (14+X4)/2 (3—2A4)/6
1/2,—1/2 (3—2A;)/6 (1+A3)/2

?Orbital quantum numbers in the limit of zero exchange split-
ting.
*The values of A, are given in Table II.
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TABLE IV. Results from analysis of Fe 3p spin-polarized data for epitaxial Fe films on W(110).

Fe film thickness (ML+20%) 1.4 2.0 34 5.1

Background polarization (%) 7£1.5 16+2 19+2.5 19+3

SO splitting (eV) 0.66+0.02 0.67+0.04 0.69+0.04 0.66+0.05
Exchange splitting (eV) 0.0x+0.12 0.29+0.05 0.42+0.04 0.414+0.05
Singularity index 0.45+0.01 0.32+0.01 0.26+0.01 0.27+0.01
'y V) 0.94+0.26 1.17+£0.08 1.01+0.07 1.22+0.08
T, V) 0.87+0.25 0.74+0.05 0.60+0.03 0.75%0.04
r,/T, 1.08+0.44 1.58+0.15 1.68+0.16 1.63+0.14
I,/ 1.01+0.27 1.50+0.28 1.77+0.28 1.37+0.24

applicable to our experiment (~40 eV),” calculations®®
for 3p photoemission from nearby elements (Ni, Cu, Ga,
and Ge) indicates that the d-wave to s-wave intensity ra-
tio is of the order of 1:1. However, for our experimental
geometry of normal emission the s and d wave intensities
are proportional. Hence, in what follows, we consider
only p to s transitions (see Table II) in the data analysis.
Note that the theoretical model predicts overall equal in-
tensities in the majority and minority spectra.

Each data set was analyzed by a simultaneous non-
linear least-squares fitting of the spin-integrated and
spin-resolved spectra. In analyzing the data the Gaussian
width was set equal to the experimental resolution of 600
meV. Two different Lorentzian-width parameters were
used, one for a pure spin-up core hole (I';) and one for a
pure spin-down core hole (I'}). For simplicity, the
Lorentzian width for each of the six components is set to
AT +BI'| where 4 and B are the probabilities of the
eigenstate being spin up or spin down, respectively. The
singularity index parameter a was constrained to be the
same for all components. A minority/majority scaling
parameter I /I, which is not inherent in the model, was
introduced in order to account for the experimental ob-
servation that the overall intensity of the minority and
majority spectra are unequal. This is discussed in more
detail below.

In Figs. 3-6 the lines which pass through the data are
the fitted majority, minority, and spin-integrated intensi-
ties in parts (a), (b), and (c), respectively. The solid lines
below the data in (a) and (b) show the six fitting com-
ponents (intensities listed in Table II) for the spectra. The
statistical nature of the residuals (for the spin-integrated
spectrum), shown in (d) of the figures, demonstrates that
our one-particle model fully accounts for the Fe 3p spin-
resolved photoemission features.

The results of the least-squares analysis, summarized in
Table IV, show several obvious trends as the film thick-
ness is increased. The background polarization increases
by a factor of ~2.5 from 1.4 to 5.1 ML. The exchange
splitting also markedly increases with increasing thick-
ness, from 0.0£0.12 eV for 1.4 ML to 0.41£0.05 eV for
the 5.1 ML film. Within errors, the SO splitting remains
constant with increasing film thickness as expected for Fe
atoms in very similar metallic environments. The SO
splitting is quite well described by a value of 0.67+0.02
for all four film thicknesses. With increasing film thick-
ness the singularity index decreases from 0.45+0.01 to

0.27+0.01. The data also shows a I'; to I'} ratio of
~ 1.6 for the three thickest films.

In fitting the data we have not included any interface-
atom core-level shifts (ICS’s) or surface-atom core-level
shifts (SCS’s) of the core-electron binding energies.*° The
excellent fits to the four data sets suggest that such shifts
are indeed negligible on the scale of the exchange or
spin-orbit splittings. Theoretical calculations for the
SCS’s of Fe support this conclusion for the surface atoms:
the SCS has been calculated to be <50 meV using two
different theories.?"> The small SCS for Fe suggests that
the core-level binding energies for metallic Fe atoms are
rather insensitive to the chemical environment. Hence,
we expect the ICS to be similarly small and thus
insignificant in our analysis. In fact, since by gross mea-
sures the electronic structures of W and Fe are quite
similar [electronegativity difference of 0.1 (Ref. 33) and
first-ionization-energy difference of 0.12 eV (Ref. 34)] one
expects the ICS to be even smaller in magnitude than the
SCS since the environment of a bulk atom is expected to
be closer to an interface Fe atom than to a surface Fe
atom.

V. DISCUSSION

The magnetization of the films is directly related to the
secondary-electron polarization (SEP). Previous mea-
surements have shown that the SEP of bulk Fe drops
from a value of 45% near 5 eV kinetic energy to ~27%
at 10 eV.?35 Between 10 and ~25 eV the polarization
remains constant at ~27%, a value equal to the 3d
valence-electron polarization.3® Such a plateau in SEP at
the valence-band polarization is expected theoretically®®
and has been observed in several 3d ferromagnetic sys-
tems.>> "3 At higher kinetic energies, in FegB,;, €.g.,%
the SEP has been observed to smoothly decrease from the
plateau valence-band polarization level to zero with in-
creasing kinetic energy towards the primary excitation
energy.

Our measured SEP’s have implications for the intrinsic
SEP of bulk Fe at a kinetic energy of 40 eV. The mea-
sured polarizations are not equal to the intrinsic SEP of
the Fe films since there is an unpolarized contribution
from the W substrate which is responsible, in part, for
the decrease in measured SEP with decreasing film thick-
ness. In Fig. 9 we plot the measured polarizations (solid
circles with error bars) and several calculations of the
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FIG. 9. Measured secondary electron polarization vs Fe film
thickness. Data are the solid circles with error bars and calcu-
lations with shown parameters are the various lines.

measured polarization vs film thickness. The calculations
are based on a model which assumes that an unpolarized
contribution arises from the secondary spectrum of the
W substrate and that this unpolarized component is at-
tenuated by the Fe film in escaping from the sample. In
the model there are two parameters in addition to the
IMFP in the Fe films. The first is the intrinsic
secondary-spectrum-strength ratio R between W and Fe
for photoexcitation at 93 eV. From calculations of the
photoionization cross sections of Fe and W electronic
states®® with binding energies lower than the Fe 3p level,
we estimate this ratio to be ~0.5. The second parameter
is the intrinsic SEP of bulk Fe, P, at 50 eV. We have
determined the possible range of Pg, based upon the con-
clusion that the two thickest films have an inherent SEP
equal to bulk Fe. (This conclusion comes from the obser-
vations that the two thickest films display identical
secondary-electron polarizations, exchange splittings, and
singularity indices which imply they have essentially the
band structure, and hence the intrinsic SEP spectrum, of
bulk Fe.) With this assumption and an estimate of
R =0.5%0.2, the solid and dashed lines in Fig. 9 max-
imize the range of possible P, values. From this we con-
clude that Pg,=20.8%2.7%. This is somewhat smaller
than the bulk polarization of 27%, indicating that 40 eV
kinetic energy is slightly above the SEP plateau region.
However, since this SEP is fairly close to the plateau
value of 27%, in what follows we assume that the 40 eV
intrinsic SEP is proportional to the magnetic moment per
atom of the films.

Our measured SEP’s also put constraints on the mag-
netic moment of the thinnest (1.4 ML) Fe film. As dis-
cussed above, a diminished polarization with decreasing
film thickness arises from unpolarized secondary-electron
emission from the W substrate; however, this effect can-
not account for all of the decrease observed in the thin-
nest film. The dotted and dot-dashed curves in Fig. 9
maximize the possible range of calculated polarizations at
1.4 ML consistent with the above assumptions and an ad-
ditional assumption that the 2.0-ML-film intrinsic polar-
ization is less than or equal to the polarization of the two
thickest films. (This last assumption is based on the ob-
servation that the exchange splitting for this film is be-
tween the 1.4-ML and thick film values.) Neither calcu-
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lated curves shows as large a reduction in polarization as
measured: we deduce a calculated polarization at 1.4 ML
of 13+2%, significantly greater than the experimental
value of 7£1.5%. Hence, the thinnest film appears to
have a magnetic moment per Fe atom of only 1.2+0.3u,
compared to the bulk Fe value of 2.22u5. Theoretically,
for 1 ML of Fe on W(110) a slightly reduced moment of
2.18up has been predicted.*

Even though the thinnest film has a reduced moment
compared to bulk Fe,*' the exchange splitting of its 3p
spectra is surprisingly small, 0+0.12 eV. The resulting
reduced degree of complication in the spectra allows us
to take with confidence the 1.4-ML film SO splitting of
0.66+0.02 eV. This SO splitting value in turn provides a
test for the analysis of the thicker films where the ex-
change splitting is significant. It is satisfying to see that
the SO splitting for all four films is, within errors, identi-
cal. We can thus further take with confidence the de-
duced exchange splittings.

In Fig. 10 we plot the fitted exchange splittings vs the
magnetic moment of the films (deduced from Fig. 9 as-
suming that the intrinsic SEP is proportional to the mo-
ment). We have used the above conclusion that the two
thickest films have a moment equal to bulk Fe and have
averaged their results for the exchange splitting. Al-
though both the moment and A, . increase with film
thickness, the relationship is clearly not proportional.
Such nonproportionality between the core-hole—valence-
band exchange interaction and the magnetic moment has
been previously pointed out by van Acker et al. in
analysis of Fe 3s spectra.*?

The deduced exchange splitting for the two thickest
films is approximately 33% smaller than that merely ob-
tained from the separation in peak positions. E.g., the
curves fitted to the minority and majority spectra for 5.1
ML show a peak separation of 0.61 eV even though
A_,.=0.4010.05 eV. The reason for this becomes ap-
parent from inspection of the spectra and the fitting com-
ponents (Figs. 5 and 6 for the two thickest films). Since
A, is defined as the binding-energy difference between
pure spin-up and spin-down states (with other quantum
numbers equivalent), A.. is given by the energy
difference between the largest components in the minori-
ty and majority analysis which are the pure-spin
m;=3/2 and m;=—3/2 states, respectively. The
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FIG. 10. Exchange splitting A.,. vs magnetic moment of Fe
films.
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analysis clearly shows, however, that the peaks in minori-
ty and majority intensities are separated by a greater
amount due to the relatively large spectral weight of the
j=1/2 component in the majority spectra. Our peak
separation of 0.61 eV for the 5.1 ML film lies half way be-
tween previously measured spin-resolved peak separa-
tions of 0.5 (Refs. 4 and 5) and 0.7 eV.® However, since
the component intensities are dependent upon the experi-
mental geometry and incident-light polarization, these
numbers are not necessarily directly comparable.

Our spin-orbit splitting of 0.6710.02 eV is in excellent
agreement with the value of 0.7 eV deduced from peak
separations in spin-resolved MLD spectra in which the
spin-orbit interaction (instead of the exchange interac-
tion) was the cause of the spin polarization.!” These re-
sults for Agy and our exchange splitting of 0.41+0.05 eV
are both smaller than the values of Ago=1.1%0.1 and
A, =0.95+0.05 recently obtained by Tamura et al. in
analysis of spin-integrated MLD and MCD spectra.®? We
suggest that the difference arises from their neglect of the
singularity index which substantially broadens the (exper-
imental) spectra compared to (calculated) spectra without
its inclusion. Indeed, using our model to fit their MCD
spectra from 2 ML of Fe/Cu(100) (Fig. 3 in Ref. 8), we
obtain Ago=0.6410.05 and A_,,=0.09+0.08, consistent
with the values deduced from our films.

With increasing film thickness the singularity index de-
creases substantially from 0.45+0.01 to 0.27+0.01. The
value of 0.2740.01 is identical to that obtained from
spin-integrated Fe 3s photoexcitation.*? In other metals
systematic differences in a have been attributed to
differences in the relative amount of s (vs higher orbital-
momentum character) screening charge. E.g., in the
transition metals W (Ref. 18) and Ta (Ref. 43) and in the
alkali metals** the larger a for surface atoms appears due
to the more atomiclike nature of the surface atoms which
is characterized a higher degree of s charge in the valence
band. Since atomic Fe is also characterized by more
valence s charge than bulk Fe, we suggest that as the
films become thicker the overall electronic structure be-
comes less atomiclike and more bulklike, resulting in the
measured decrease in a.

Recently Van Campen, Pouliot, and Klebanoff? have fit
spin-resolved Fe 3p photoexcitation spectra with different
a’s for majority-spin and minority-spin electrons and ob-
tained a slightly larger singularity index for the
majority-spin spectrum, Qpay=0.39£0.02 and
0in=0.351+0.02. However, their fitting did not account
for the spin-orbit interaction. Their larger deduced a’s
and spin-resolved difference in a are likely due to neglect
of the j =1 components in the spectra. Our analysis indi-
cates no appreciable difference in « for the different spin-
resolved states.

The extracted Lorentzian widths for the two thickest
films, average values of TI;=1.1£0.2 eV and
I')=0.7%0.1 eV, are substantially smaller than previous-
ly reported values.>> Again, this can be ascribed to past
neglect of the SO splitting which necessarily resulted in
the Lorentzian width compensating for the SO-splitting
induced broadening of the spectra. For all of the films,
the ratio of I'; to I' | is greater than 1 and appears to in-
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FIG. 11. Lifetime-width ratio for spin-up and spin-down core
holes vs occupation-level ratio of Fe 3d valence band. Straight
line is a proportional fit to the data (solid circles with error
bars).

crease with the magnetic moment of the films. In the
past the ratio has been intuitively explained by a simple
argument that the core-hole lifetime is proportional to
the number of available valence electrons to fill the core-
hole by a non-spin-flip core-valence-valence Auger transi-
tion. Figure 11, which plots the lifetime ratio vs the ma-
jority to minority electrons ratio Ny /N | in the occupied
3d band (calculated from the SEP-deduced magnetic mo-
ments in Fig. 10) shows a relationship consistent with a
proportionality constant of 1 (fitted value of 0.95+0.05),
in agreement with this intuitive idea.

The one feature of the experimental spectra not ac-
counted for by our one-electron model is the relative
spectral weight of the majority and minority peaks. As
for any theory which simply couples the spin of the core
hole to the average spin of the valence band (and neglects
final-state scattering effects), the predicted ratio is unity.
While data from the thinnest film is consistent with this
ratio, the three thickest films all have a ratio I'| /I, =~1.5.
In other studies of the Fe 3p level intensity ratios of 1,3
1.25,2 1.3-1.4,* and 2.6 (Ref. 6) have been observed with
photon energies of 92, 1254, 90, and 250 eV, respectively.
In all cases the majority intensity is smaller than (or equal
to) the minority intensity.

Final-state effects such as spin-dependent diffraction or
a spin-dependent IMFP seem to be ruled out as an ex-
planation. The fact that I, /I; is consistently greater
than 1 immediately suggests a spin-dependent IMFP.
However, data obtained at 38 eV kinetic energy show
that the IMFP’s for spin-up and spin-down electrons are
nearly identical.!® Recently Tamura et al. have suggest-
ed that multiple scattering plays an important role in
describing spin-sensitive photoexcitation from the Fe 3p
level.?® However, if diffraction were a major contributor
to I, /I, then one would expect at some photon energies
that I, I, would be less than 1. Another area our model
has neglected is the interference between states of the
photoemitted electron. However, as in the case of
diffraction, it is not clear how this would always manifest
itself as an increase in the minority intensity.

This lack of explanation of I /I, in approximations of
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the photoexcitation final state suggests that the nonunity
intensity ratio lies in the approximate description of the
core-hole—valence-band interaction. I.e., the itinerant
description of Fe ferromagnetism is not quite valid and
that to fully explain the core-hole—valence-band interac-
tion one must describe the eigenstates more realistically.
Our observed value of [I,/I;=1.01£0.27 for
A =0.0%0.12 in the thinnest film supports this conjec-
ture. We suggest, however, based upon the excellent,
internally consistent fits to the data presented here, that
the correct description is not substantially different from
our model and that its main effect is to alter the spin-
up-spin-down intensity ratio. Clearly, data at a substan-
tially improved resolution will be crucial in sorting out
this issue.

VI. CONCLUSIONS

The most important conclusion to emerge from this
study is that a proper interpretation of spin-sensitive pho-
toexcitation spectra critically requires a realistic model.

DI-JING HUANG, D. M. RIFFE, AND J. L. ERSKINE s1

In the case of the Fe 3p spectrum inclusion of the spin-
orbit splitting is crucial for meaningful extraction of oth-
er spectral parameters. Our analysis suggests that previ-
ous neglect of the SO coupling resulted in singularity in-
dex and lifetime values which were overestimated. Our
analysis has further shown that the majority-
electron—minority-electron peak separation in spin-
resolved photoexcitation or the peak separations in MCD
photoexcitation are often rather poor estimates of the ex-
change interactions.
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