AAC 2010 June 15, 2010

Frequency Domain Streak Camera for Ultrafast Imaging of <u>EVOLVING</u> Wakefields

<u>Z. Li</u>, R. Zgadzaj, X. Wang, S. Reed, M. C. Downer Department of Physics, The University of Texas at Austin

aim of

this work

Snapshots of Quasi-static Wakes

N. H. Matlis *et al.*, Nature Phys. **2**, 749 (2006) P. Dong *et al.*, Phys. Rev. Lett.**104**, 134801 (2010)

Movies of Evolving Wakes...

In the "Bubble" regime, <u>evolution</u> of the LPA structure is essential to the accelerator's function

S. Kalmykov, S. A. Yi, V. Khudik, G. Shvets, Phys. Rev. Lett. **109**, 135094 (2009); G. Shvets, AAC WG1, Thursday, June 17; S. Y. Kalmykov, AAC WG1, Thursday, June 17

Simulated pictures...

Bubble Formation

Bubble Expansion: election self-injection

Bubble Contraction: e⁻ injection terminated, mono-energetic electron

We aim to visualize such evolution in the laboratory on each laser shot in order to better understand and optimize LPA function

Basic method we developed to visualize weakly evolving wakefields: Frequency Domain Holography (FDH)* ...

* Le Blanc *et al.*, Opt. Lett. (2000)

Frequency Domain Streak Camera (FDSC) records evolution of the "bubble" by probing at an oblique angle

Measured Streak...

Conventional X-ray CT projection: static object, moving probe

In reference frame of FDSC probe ...

Static probe, moving object

Transverse line-out: "projection" of object at z

Longitudinal line-out: refractive index evolution as pump propagates.

FDSC is a Time Sequence of Projections (TSP)!

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, 1987.

space domain

To demonstrate the FDSC method, we performed prototype experiment with µJ pump in glass...

 $\bullet \mathbf{n} = \mathbf{n}_0 + \mathbf{n}_2 \mathbf{i}$

• The "object" is space-time profile of pump pulse which is evolving because of diffraction, self-focusing, absorption, etc. Temporal multiplexing will be discussed later...

FDSC improves the accuracy of interpreting the object compared to collinear FDH alone...

Time-varying phase shift in FDSC reveals pump intensity evolution!

Longitudinal line-outs reveals pump intensity EVOLUTION during propagation...

Longitudinal line-outs of FDSC under different intensities...

To fully generalize FDH, probes at multiple angles are required: Frequency Domain Tomography (FDT)

X-ray CT scan...

http://qnde.org/ct.html

Probes at multiple angles...

Time Sequences of Projections(TSsP)

FDT reconstruction...

The first difficulty comes in mind: EXPENSIVE spectrometers!!!

Analyzing a dozen of probes with a SINGLE spectrometer is possible by temporally multiplexing those probes...

Tomography reconstruction of the EVOLVING "bubble" with "streaks" from multiple angle probes...

objects

- θ : angle between pump & probe
- Φ : streak axis angle
- δ = φ-θ: projection angle

Numerical experiments...

The evolving object propagation writes "streaks"

Reconstructions with tomography algorithm...

Conclusion

- We demonstrated Frequency Domain Streak Camera (FDSC), which is a Time Sequence of Projections (TSP), revealing time-varying properties of evolving laser plasma wakefields.
- We also proposed **Frequency Domain Tomography (FDT)**, with probes at multiple angles spatially and temporally multiplexed, yielding a movie of evolving wakefields.
- FDSC/FDT application for several types of advanced accelerators
 - 1. Channeled LPA, where longitudinal probing is impossible
 - 2. Particle beam driven LPA, where longitudinal probing is inconvenient.
 - 3. Visualization of evolving LPA.

This work was supported by U.S. DoE grants DE-FG02-07ER54945 and DE-FG03-96ER40954 and NSF grant PHY-0936283.

Z. Li, R. Zgadzaj, X. Wang, S. Reed, M. C. Downer, *"Frequency-Domain Streak Camera for Ultrafast Imaging of Evolving Light-Velocity Object,"* submitted to Optics Letters.

