
Figure 1: Generalized schematic of a planar gas sensing interface.
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Figure 2: Micrograph of a single micro-hotplate.
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Figure 3: Static mode response at 130 C of a Pt/SnO2 microsensor to on/off
CO exposures, into (dry) air, of increasing concentrations from 5 to 45 ppm.
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Figure 4: Deformation of the SAW substrate resulting from the propagation of
a Rayleigh surface wave. The vertical displacement amplitude is typically about
10 A.
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Figure 5: SAW delay line oscillator system (top) and RF amplifier schematic
(bottom).
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Figure 6: SAW oscillator frequency shift produced by various thicknesses of
poly(methylmethacrylate).
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Figure 7:

“Immunosensing of photoimmobilized proteins on surface acoustic wave sen-
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Figure 8: Change of resonance frequency as a function of the analyte concen-
tration. SAW sensors were coated with T-GOD and probed with polyclonal
anti-GOD antibodies.
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Figure 9: Changes in the differential frequency ∆f vs. time for a bilayer sensor
structure at 30 C and six different concentrations of hydrogen in nitrogen (0.5
to 3%).

“Bilayer structure for hydrogen detection in a surface acoustic wave sensor sys-
tem,” Wieslaw P. Jakubik et al., Sensors and Actuators 82 (2002) 265-271.

Figure 10: Schematic diagram of the experimental apparatus showing the PETN
vapor generator. A similar generator was used for RDX measurements.
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Figure 11: When explosive compounds bind to these V-shaped cantilevers, the
microscopic structures bend and produce a signal.
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Figure 12: The response of a 4-MBA-coated silicon cantilever to a PETN stream
of 1.4 ppb concentration in ambient air. The solid curve depicts the bending
response, and the dots depcit the resonance frequency of the cantilever. The
frequency shift due to the adsorption of PETN vapor corresponds to a mass
loading of 15 pg on the cantilever.
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