
Magnetic fields and tokamak plasmas    Alan Wootton 

 1 

Magnetic Fields and Magnetic Diagnostics  

for  

Tokamak Plasmas 

 

Alan Wootton 

 

 
pitch changes sign 'width' changes sign

p pI
I

 



Magnetic fields and tokamak plasmas    Alan Wootton 

 2 

 
INTRODUCTION........................................................................................................................... 5 

1.  SOME CONCEPTS AND DEFINITIONS................................................................................ 7 

Maxwell's equations.................................................................................................................... 7 

Pick-up or Induction Coils .......................................................................................................... 7 

Integration ................................................................................................................................... 8 

Vector potential......................................................................................................................... 12 

Mutual inductance..................................................................................................................... 16 

Self inductance.......................................................................................................................... 17 

Poloidal flux.............................................................................................................................. 18 

Field lines and flux surfaces ..................................................................................................... 21 

An example ............................................................................................................................... 23 

Circuit equations ....................................................................................................................... 28 

2.  SOME NON STANDARD MEASUREMENT TECHNIQUES............................................. 30 

Hall Probe ................................................................................................................................. 30 

Faraday Effect ........................................................................................................................... 31 

The Compass............................................................................................................................. 31 

Flux gates .................................................................................................................................. 32 

3.  GENERAL FIELD CHARACTERIZATION.......................................................................... 34 

Fourier components .................................................................................................................. 34 

Field components on a rectangle............................................................................................... 36 

4.  PLASMA CURRENT.............................................................................................................. 39 

Rogowski coil ........................................................................................................................... 39 

5. LOOP VOLTS, VOLTS per TURN, SURFACE VOLTAGE.............................................. 40 

Introduction............................................................................................................................... 40 

The single volts per turn loop ................................................................................................... 40 

Poynting’s theorem ................................................................................................................... 41 

Uses of the Volts per turn measurement ................................................................................... 44 

6. TOKAMAK EQUILIBRIA....................................................................................................... 45 

6.0.  AN INTUITIVE DERIVATION OF TOKAMAK EQUILIBRIUM ................................ 45 

Introduction........................................................................................................................... 45 

Energy associated with plasma pressure ............................................................................... 46 

Energy associated with toroidal fields .................................................................................. 47 

Energy associated with poloidal fields.................................................................................. 48 

Total forces ........................................................................................................................... 49 

6.1. THE FLUX OUTSIDE A CIRCULAR TOKAMAK ........................................................ 50 

6.  CIRCULAR EQUILIBRIUM .............................................................................................. 53 

Derivation of the Grad Shafranov equation .......................................................................... 53 

Solving the Grad Shafranov equation ................................................................................... 57 

The poloidal field at the plasma edge ................................................................................... 59 

Simple current distributions.................................................................................................. 60 

The surface displacements: the Shafranov Shift ................................................................... 64 

Matching vacuum and plasma solutions ............................................................................... 65 

More complicated configurations. ........................................................................................ 69 

7.  Position and βI + li/2 for the circular equilibrium ................................................................... 70 



Magnetic fields and tokamak plasmas    Alan Wootton 

 3 

An ‘exact’ circular equilibrium................................................................................................. 70 

Extension of position measurement to non circular shapes ...................................................... 73 

Extension of βI + li/2 measurement to non circular shapes...................................................... 74 

Non-circular contours. .............................................................................................................. 75 

8.  SOME FUNDAMENTAL RELATIONS ................................................................................ 78 

Geometry................................................................................................................................... 78 

Field representation................................................................................................................... 79 

Identities.................................................................................................................................... 80 

Ideal MHD ................................................................................................................................ 82 

Boundary conditions ................................................................................................................. 82 

9.  MOMENTS OF THE TOROIDAL CURRENT DENSITY.................................................... 84 

10.  PLASMA POSITION ............................................................................................................ 87 

Position by multipole moments ................................................................................................ 87 

Application to the large aspect ratio circular tokamak.............................................................. 89 

11.  PLASMA SHAPE.................................................................................................................. 92 

12.  MOMENTS OF PLASMA PRESSURE ............................................................................... 94 

The Virial Equation................................................................................................................... 94 

m = -1, B2 = Bext ..................................................................................................................... 96 

m = 0, B2 = 0 ............................................................................................................................ 97 

m = -1, B2 = 0 ........................................................................................................................... 98 

13.  βI + li/2 ................................................................................................................................ 100 

Solution................................................................................................................................... 100 

Separation of βI and li............................................................................................................. 101 

Comments on the definition of poloidal beta.......................................................................... 102 

14.  DIAMAGNETISM .............................................................................................................. 103 

Comments ............................................................................................................................... 103 

Microscopic picture for a square profile plasma in a cylinder................................................ 103 

Macroscopic picture................................................................................................................ 104 

Paramagnetic and diamagnetic flux ........................................................................................ 105 

Toroidal, non circular geometry.............................................................................................. 106 

The meaning of βI................................................................................................................... 107 

Measurements ......................................................................................................................... 109 

15.  FULL EQUILIBRIUM RECONSTRUCTION.................................................................... 113 

16.  FAST SURFACE RECONSTRUCTION............................................................................ 115 

17.  FLUCTUATING FIELDS ................................................................................................... 118 

(MIRNOV OSCILLATIONS and TURBULENCE) .................................................................. 118 

Mirnov Oscillations ................................................................................................................ 118 

Analysis techniques................................................................................................................. 124 

Turbulence .............................................................................................................................. 127 

18.  INTERNAL PLASMA MEASUREMENTS....................................................................... 133 

Equilibrium ............................................................................................................................. 134 

Mirnov Oscillations ................................................................................................................ 138 

19 .  THE CONDUCTING VACUUM VESSEL....................................................................... 140 

Skin depths.............................................................................................................................. 140 

Application to a diamagnetic loop .......................................................................................... 142 



Magnetic fields and tokamak plasmas    Alan Wootton 

 4 

Application to position measurement ..................................................................................... 143 

20 .  THE IRON CORE .............................................................................................................. 144 

21.  TOKAMAK POSITION CONTROL .................................................................................. 149 

The axisymmetric instability................................................................................................... 149 

Analysis of sensor coils allowing for vessel currents ............................................................. 152 

The dipole model .................................................................................................................... 152 

The feedback model ................................................................................................................ 156 

Application of stability criteria. .............................................................................................. 159 

22. MAGNETIC ISLANDS........................................................................................................ 161 

23. SOME EXPERIMENTAL TECHNIQUES.......................................................................... 164 

Coils winding.......................................................................................................................... 164 

Interference suppression.......................................................................................................... 164 

Screened rooms....................................................................................................................... 165 

Misaligned sensor coils........................................................................................................... 166 

 



Magnetic fields and tokamak plasmas    Alan Wootton 

 5 

INTRODUCTION 

This series of notes tries to lay the foundations for the interpretation of magnetic fields and 

fluxes, often in terms of equilibrium plasma parameters.  The title, 'magnetic diagnostics', is 

taken to mean those diagnostics which are used to measure magnetic fields and fluxes using 

induction, or pick-up, coils.  More specifically, what is often inferred is a question: "How much 

can we tell about a plasma given certain measurements of magnetic fields, and fluxes, outside 

that plasma?"  I don’t consider here diagnostics which measure the plasma current density 

distribution utilizing phenomena such as the motional Stark effect, or Faraday rotation; these are 

found in a series of notes on Plasma Diagnostics..    

The measurements themselves are in principle simple, although in practice they are always 

complicated by unwanted field components, for example from misaligned pick-up coils.  There is 

also the problem of allowing for image currents flowing in nearby conductors; dealing with these 

image currents becomes a large part of the problem.  Including the effects of an iron core also 

leads to complications.   

Many people think the topic under consideration is boring, in that there is nothing new to do.  

You have only to read current issues of plasma physics journals to recognize that there is still 

much interest in the topic. For example, equilibrium and its determination, axisymmetric stability 

and disruptions are all of current interest, and all involve ‘magnetic diagnostics’.  The subject 

does appear to be difficult (students starting in the topic have a hard time). 

The layout of the notes is as given in the list of contents.  Generally I have included topics which 

I have found useful in trying to understand tokamaks.  Some basic concepts (inductances, fluxes, 

etc.) are included, because they are made use of throughout the notes.  There is also a section on 

plasma equilibrium, in which the large aspect ratio, circular tokamak is described.  The fluxes 

and fields from this model are used as examples for application of certain ideas in the remainder 

of the text. 

References I find useful include: 

o B. J. Braams, The interpretation of tokamak diagnostics: status and prospects, IPP 

Garching report IPP 5/2, 1985. 

o L. E. Zakharov and V. D. Shafranov, Equilibrium of current carrying plasmas in toroidal  

 configurations, in Reviews of Plasma Physics volume 11, edited by M. A.    

 Leontovich, Consultants Bureau, New York (1986). 

o V. S. Mukhovatov and V. D. Shafranov, Nucl. Fusion 11 (1971) 605. 

o V. D. Shafranov, Plasma Physics 13 (1971) 757. 

o L. E. Zakharov and V. D. Shafranov, Sov. Phys. Tech. Phys. 18 (1973) 151 
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o J. A. Wesson, in Tokamaks, Oxford Science Publications, Clarendon press, Oxford, 1987. 

o P. Shkarofsky, Evaluation of multipole moments over the current density in a tokamak  

 with magnetic probes, Phys. Fluids 25 (1982) 89. 
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1.  SOME CONCEPTS AND DEFINITIONS 

Maxwell's equations 

We are going to make extensive use of Maxwell’s equations.  In vector form, these are 

 ∇ × B = µ j +
∂D

∂t

 
 

 
           1.1 

 ∇ ⋅ B = 0             1.2 

 ∇ × E = −
∂B

∂t
           1.3 

 ∇ ⋅ D = ρ             1.4 

If charge is conserved we can add to these the continuity equation.  We shall ignore the 

displacement current ∂D/∂t, and take µ = µo, the free space value, inside a plasma.  Without the 

last term Equation 1.1 is Amperes law.  We have effectively restricted ourselves to assuming ni = 

ne = n, the charge neutral assumption, and that any waves have frequencies much less than the 

electron plasma frequency, with characteristic lengths much greater than the Debye length .  We 

have not said E or ∇.E = 0.  When considering plasma equilibrium we shall also assume the 

electron mass me approaches 0.  This allows electrons to have an infinitely fast response time.   

Pick-up or Induction Coils 

This is the heart of the matter.  Magnetic fields are usually measured with pick-up or induction 

coil circuits.  Changing the magnetic flux in a circuit generates a current; the direction of this 

current is in a direction such as to set up a magnetic flux opposing the change.  The 

electromotence or voltage ε (∇ ε = -E, the electric field intensity) in Volts induced in a circuit 

equals the rate of change of flux N = B ⋅ ndS
S∫  in Webers per second, i.e. 

 ε =
dN

dt
            1.5 

The flux can be changed either by changing its strength, changing the shape of the circuit, or 

moving the circuit.  Then 

 E ⋅ dl
l∫ = −

d

dt
B ⋅ndS

S∫           1.6 
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for any path l, with n the normal to a two sided surface S.  Applying Stokes theorem 

( A • dl =
l∫ n • ∇ × AdS

S

∫  for any vector A) to the left hand side of Equation 1.6 gives Equation 

1.3.  Figure 1.1 shows the geometry of a coil used in applying Equation 1.6, Faraday’s Law.  The 

output signal must be time integrated to obtain the required flux.  By taking a small enough coil 

the local field B can then be determined.  This becomes difficult if very small scale variations in 

field exist, because the pick-up coils must then be very small themselves.  The surface S includes 

any area between the leads; this is minimized by twisting them together.  A hand drill is 

particularly useful for this. 

Surface  S

Contour l

Coil

leads

voltage  
produced
across  
leads

  
Figure 1.1.  The contour l and surface S of a pick-up coil. 

Integration 

The time integration required to obtain the magnetic field B from the pick-up coil output ε can be 

performed either digitally or by an analog circuit.   

εin
ε
out

Ω

C
 

Figure 1.2.  A passive “ΩC” integration circuit.  

The simplest thing to do is to use a capacitor (C) and resistor (Ω) network, as shown in Figure 

1.2.  The output voltage is given by 

 
dεout

dt
+

εout

τ
=

εin

τ
          1.7 

with τ = ΩC called the integrator time constant.  The solution to this equation is 
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 εout = e
− t

τ e
−t'

τ 
 
  

 
εin (t

'
)

dt'

τ
0

t

∫         1.8 

For example, suppose at t = 0 we start an input voltage εin = εin0 sin(ωt), so that the required 

integral is εint = εin0 (1-cos(ωt))/ω.  The output from the passive circuit is (obtained using 

Laplace transforms) 

 εout = εin0
ωτ

e
t
τ 1 + ωτ( )2( )

+
sin(ωt) − ωτ cos(ωt)

1 + ωτ( )2( )
 

 

 
 

 

 

 
      1.9 

Now consider two extremes.  First, if ωτ >> 1 and t << τ we have 

 εout =
εin0

ωτ
1− cos(ωt)( )         1.10 

That is, εout  = 1/τ times the required integral.  In this limit we have integrated the input signal.  If 

ωτ << 1 and t >> τ, then εout = εin.  

As an example, we show in Figure 1.3 the output from the passive integrator (“integrator 

output”, dotted line) for a sinusoidal voltage input of 1V at a frequency of 100 Hz (“coil input”, 

solid line), with an integrator time τ = 0.1s.  The exact integral (“field”) divided by τ is shown as 

the broken line.  The integral is only performed accurately for times t << τ; as the pulse proceeds 

there is a “droop”, and significant errors result.  We can imagine the curve “field” represents a 

specified magnetic field time history B = B0(1-cos(ωt))/(ωτ), with B0 = τ/(nA) T, and B/τ is 

plotted.  The curve “coil output” represents the unintegrated output from a magnetic pick-up coil 

with area nA m2, (n turns each of area A), which becomes the input voltage to a passive 

integrator εin = sin(ωt).  Finally the curve “integrator output” represents the output from the 

passive integrator, which we would interpret as the original magnetic field.  

A common situation is that the required signal from the pick-up coil has a low frequency 

component of angular frequency ω0, and superimposed upon this is a higher frequency unwanted 

“noise” signal of angular frequency ω1.  By carefully choosing the time constant τ of our passive 

integrator so that ω0τ << 1 (εout = εin) but ω1τ >> 1 (integration) we filter the noise, leaving the 

required slowly time varying voltage.  As an example, Figure 1.4 shows the passive integrator 

output εout (dashed line) for an input voltage εin (solid line) comprising a slow (ω0 = 10 rs-1, εin0 

= 1 V) and fast (ω1 = 2x103 rs-1, εin1 = 0.2 V) component.  The time constant τ = 0.01 s, so that 



Magnetic fields and tokamak plasmas    Alan Wootton 

 10 

ω0τ = 0.1 (<< 1) and ω1τ = 100 (>> 1).  The output voltage is filtered, as required.  The dashed 

line shows the exact integral divided by τ, for comparison. 

(V)

 
 Figure 1.3.  The input (“coil input”, solid line) sinusoidal voltage with f = 100 Hz and 

 output (“integrator output”, dotted line) of a passive integrator circuit with τ =  ΩC =  

 0.1 s.  The (exact integral)/τ is denoted by “field”, the broken line.   

 

 time (s)

input

(exact 
integral)/τ

output

V

 
Figure 1.4.  The output of a passive integrator circuit used as a filter.  An input voltage 

 (solid line) with summed sinusoidal voltages is smoothed to give the dash-dot line.   

The exact integral divided by τ = ΩC is shown as the dashed line. 

A more common system to perform the time integration is an active integrator, but in many cases 

an input filter consisting of a passive integrator is still used.  Active integration is performed 

using a circuit such as shown in Figure 1.5; the output voltage εout =
1

ΩΩΩΩC
ε indt

t1

t

∫ .  The example 

shown grounds one side of the coil.  A useful feature shown is the integrator gate, which defines 
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the time t1 the integration starts.  On tokamaks this gate is often used to help reduce errors from 

misaligned pick-up coils.  For example, tokamaks have a large toroidal field and a much smaller 

poloidal field.  Therefore if the pick-up coil used to measure the poloidal field is misaligned even 

by a small amount, the resulting component of the toroidal field which is picked up (as dB/dt) 

can be significant.  However the toroidal field usually evolves on a much slower time scale than 

the poloidal field, and in fact it is usually time independent at the time the poloidal field is 

initiated.  Therefore the integrator gate can be opened when the toroidal field is time 

independent, and therefore the induced voltage in the misaligned pick-up coil is independent of 

the toroidal field.     

Integrator gate

inε εout

Ω C

.
 

Figure 1.5.  An active integrator circuit. 

If the data is digitized, integration can be performed numerically.  Sufficiently fast systems now 

exist for “real time” integration; the integration can be performed in µs so that integrated signals 

suitable for real time feedback control can be obtained.  A p bit digitizer has a resolution of 1 part 

in 10p, e.g. an 8 bit system has a resolution of 1 in 256, while a 10 bit system has a resolution of 

1 part in 1024.  This can be a limitation if we intend to investigate large but low frequency 

magnetic fields in the presence of small, high frequency fields.  An example is that of trying to 

measure the equilibrium poloidal field in the presence of Mirnov oscillations.  The pick-up coil 

output is dominated by the voltage produced by the time derivative of the small but high 

frequency component.  Avoiding saturating the input by the higher voltage, high frequency 

component means that the resolution of the low frequency fields is now restricted.  If we want to 

use the full capability of the digitizer in recording the lower frequency fields, then the solution is 

to filter the signal and only allow frequencies below a certain value to be recorded, i.e. use the 

filter described above with reference to Figures 1.2 and 1.4. 

Intuition suggests that if a time varying wave form is sampled sufficiently fast then the original 

wave form can be recovered.  However, we must determine how close the samples must be, and 

how to interpolate between adjacent points.  The sampling theorem provides answers to these 

questions.  An original signal x(t) can be recovered from sample values x(nts), with ts the sample 

time, by locating sinc functions at nts with amplitudes x(nts).  The signal x(t) can only be 
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recovered if the signal bandwidth b ≤ fs/2, with fs the sampling frequency = 1/ts.  If this is not 

done, aliasing occurs. 

If b > fs/2 then the high frequency signal can appear as a low frequency signal.  The fact that 

spoked wheels in films sometimes appear to rotate backwards is a manifestation of aliasing.  

Aliasing can be avoided using a passive filter to remove the high frequencies f > fs/2.  For 

example, sampling at 5 kHz (i.e. a sample every 0.2 ms) then an “anti aliasing” filter with τ = 0.5 

ms can be used.   

Vector potential  

In describing plasma equilibria we shall make use of the vector potential A.  It is related to the 

poloidal flux, and used to determine self and mutual inductances.  It is defined through the 

equation 

 ∇ × A = B            1.11 

In cylindrical geometry (R,φ,z), which we shall use a lot, this is 

 

BR =
1

R

∂Az

∂φ
−

∂Aφ

∂z

Bφ =
∂AR

∂z
−

∂Az

∂R

Bz = 1

R

∂ RAφ( )
∂R

− 1

R

∂AR

∂φ

         1.12 

Then the electric intensity E is proportional to the vector potential A whose change produces it: 

 E = −
dA

dt
            1.13 

From Equation 1.1 (ignoring D and ρ) we then have that A is given in terms of the current 

density j (the current per unit area) by Poisson's equation: 

 ∇2
A = −µj             1.14 

which has a solution 

 A =
µ

4π
jdV

rV∫ =
µ

4π
Idl

r∫          1.15 
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where the total current I flows inside the volume V, the line element dl is along the direction of 

the total current I, and r is the distance from the line element to the point of interest.  A useful 

example for us is the vector potential of a circular filament.  This is used to represent windings 

(vertical field, shaping, ohmic heating) on the tokamak, and elements of the plasma current itself. 

P

Y

X

r

r

dl

dl

R0
R

φ

z

R0

−φ

 

Figure 1.6.  The geometry used to evaluate the vector potential of a circular filament. 

Consider a circular filament of radius R0, with current I in the φ direction.  Aφ must be 

independent of φ, so choose the point of interest P in the (X,z) plane of Figure 1.6, where φ = 0.  

Pairing equidistant elements dl shown in thickened lines at ±φ we see the resultant is normal to 

(R,z).  Therefore only consider the component dlφ of dl in the direction normal to the plane (R,z); 

dlφ = R0cos(φ)dφ.  The radial distance r from the point P to the element is given by 

r
2 = z

2 + R0

2 + R
2 − 2R0 Rcos φ( ).  Then 

 Aφ =
µ

4π
Idlφ

r∫ =
µI

2π
R0 cos(φ )dφ

R0

2 + R2 + z2 − 2R0 Rcos(φ)( )
1

2
0

π

∫      1.16 

Far from the loop (i.e. a small loop) we have r0 = (R2+z2)1/2 >> R0, and the integral becomes 

 

Aφ =
µI

2π
R0 cos(φ)

r
0

1 +
RR0 cos(φ)

r
0

2

 

 
  

 
 

0

π

∫ dφ

≈
RR0

2µI

4r
3 = µ

M × r( )
4πr

3

       1.17 

Here we have written the magnetic moment of the loop M = πR0

2
I , directed upwards.   

If the loop is not small, then let φ = π + 2θ, so dφ = 2 dθ and cos(φ) = 2 sin2(θ) - 1, and we obtain 
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 Aφ =
µR0 I

π

2sin2 (θ) −1( )dθ

R0 + R( )2 + z 2 − 4R0R sin2 (θ)( )
1

2
0

π
2

∫       1.18 

This can be re-written in terms of K(k2) and E(k2), the complete elliptic integrals of the first and 

second kind, ( E m( ) = 1− msin
2 θ( )( )

0

π
2

∫ dθ , K m( ) =
dθ

1− m sin2 θ( )( )0

π
2

∫  as 

 

AΦ = µI

πk

R0

R

 
 

 
 

1
2

1 − k
2

2

 
 
  

 
K − E

 

  
 

  

k
2 = 4R0R R0 + R( )2

+ z
2[ ]−1

        1.19 

φ

R

Z

ρ

ω

  

 Figure 1.7.  Cylindrical (R,φ,z) and quasi cylindrical (ρ,ω,φ) coordinate systems. 

 Both are right handed 

Going into a quasi-cylindrical coordinate system (ρ,ω,φ) shown in Figure 1.7, based on the 

current path, then  

 
R = R0 − ρcos(ω)

z = ρsin(ω)
           1.20 

Expanding k we find that keeping terms of order ρ/R0 then k2 ≈ 1.  We must go to higher order 

(to find k < 1) because K(1) = ∞.  Keeping terms of order (ρ/R0)4 we find 

k
2 ≈ 1−

1

4

ρ 2

R0

2 −
ρ3

R0

3

cos(ω
4

) −
ρ4

R0

4

1 + 2cos 2ω( )( )
16

.  Using the expansions for E and K found in the 

Handbook of Mathematical Tables, Abramowitz, Dover Publications, and after some  

rearranging, we obtain up to order (ρ/R0)2 E ≈ 1+
ρ2

8R0

2 1 + ln
2R0

ρ

 

 
  

 
 

 

 
  

 
  and 
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K ≈ ln
8R0

ρ

 

 
  

 
 −

ρ
2R0

cos ω( ) +
ρ2

16R0

2 ln
2R0

ρ

 

 
  

 
 +

1

2
1 + 4cos 2ω( )( )

 

 
  

 
 .  Finally we can write an 

expression for the vector potential near the loop keeping terms of order (ρ/R0):  

 Aφ ≈
µ 0 I

2π
ln

8R0

ρ

 

 
  

 
 − 2

 

 
  

 
 +

ρ
R0

cos ω( )
2

ln
8R0

ρ

 

 
  

 
 − 3

 

 
  

 
 

 

 
 

 

 
     1.21 

Figures 1.8  and 1.9  show a comparison between the approximate (Equation 1.21) and exact 

(Equation 1.19) solutions for a case with current I = 1/µ, and a major radius R0 = 1.0 m.  For the 

approximate solutions we show results both for zero order (i.e. neglecting terms proportional to 

ρ/R0) and including first order corrections (i.e. including terms proportional to ρ/R0).  Figure 1.8  

shows a cut in the plane of the coil (z = 0), while Figure 1.9  shows contours for Aφ = 0.15, 0.2, 

0.3 and 0.4.  We see that it is sufficient to consider only the zero order terms, that is the terms 

proportional to ρ/R0 can be neglected. In fact in Figure 1.8  the effects of including the first order 

terms cannot be detected.  The simple approximation Aφ ≈
µ 0 I

2π
ln

8R0

ρ

 

 
  

 
 − 2

 

 
  

 
  is excellent.   

The field components are given, in the original circular coordinate system (R,φ,z), as  

 

BR = −
∂Aφ

∂z
=

µ 0I

2π
z

R R + R0( )2

+ z2[ ]
1

2

−K +
R0

2 + R2 + z2

R0 − R( )2 + z2
E

 

 
 

 

 
 

Bz =
1

R

∂ RAφ( )
∂R

=
µ 0 I

2π
1

R + R0( )2

+ z2[ ]
1

2
K +

R0

2 − R2 − z2

R0 − R( )2 + z 2
E

 

 
 

 

 
 

   1.22 

where we have made use of  

 

∂K

∂k
=

E

k(1− k
2
)

−
K

k
;

∂E

∂k
=

E

k
−

K

k
;

∂k

∂z
= −

zk3

4R0R
;

∂k

∂R
=

k

2R
−

k 3

4R
−

k3

4R0

       1.23 

On the axis R = 0 we have BR = 0 and Bz =
µ0IR0

2

2 R0

2 + z 2( )
3

2
. 
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major radius R (m)

exact

approximate

vector potential

 

height 
 z (m)

major radius R (m)

0.4

0.3

0.15

0.2

 
Figure 1.8.  The exact (solid line), the approximate Figure 1.9.  Contours of vector potential  

 zero order (dashed line) and the approximate first  from the exact solution (thin dark line), 

order (dotted line) solutions in the z = 0 plane for the zero order approximation (thick gray  

 the vector potential from a circular current filament  line) and including first order corrections 

with current I = 1/µ.        (intermediate thickness dark line) for a  

         circular current filament with current I =  

         1/µ.  Contours of potential equal to 0.15,  

         0.2, 0.3 and 0.4 are shown.   

Mutual inductance 

We shall use mutual and self inductances, often between circular filaments.  They can be used to 

derive the vertical field necessary to maintain a plasma equilibrium, and to analyze axisymmetric 

instabilities.  We are interested in the relationships between mutual and self inductances and 

fluxes, and how to write energy in terms of mutual and self inductances. 

The mutual inductance M12 between two circuits is defined as the flux N12 through circuit 1 

produced by unit current in circuit 2.  Then  

 M12 =
A2

I2
l1
∫ dl1            1.24 

with A2 the total vector potential due to current 2 in circuit 2.  That is,  

 M12 =
µ

4π
dl1dl2

rl2
∫l1

∫ = M21          1.25 

The electromotance through circuit 1 due to a current I2 in circuit 2 is 
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 ε1 = M12

dI2

dt
           1.26 

The total energy (in a volume V) associated with two circuits is  

 

Wt =
1

2µ
B1 + B2( )

V∫ • B1 + B2( )dV

=
1

2µ
B1

2

V∫ dV +
1

2µ
B2

2

V∫ dV +
1

µ
B1 • B2V∫ dV

      1.27 

The first two terms represent the energy required to establish the currents I1 and I2 producing the 

fields B1 and B2 in circuits 1 and 2.  The third term is the energy used in bringing the two circuits 

together.  This mutual energy between the two circuits W12 is 

 W12 = M12I1I2 =
1

µ
B1B2dV

V∫          1.28 

Self inductance 

The magnetic energy density W of a single circuit carrying current I1 is used to define the self 

inductance L11 of the circuit: 

 W =
1

2µ
B

2

V∫ dV =
1

2
L11I1

2
         1.29 

To maintain the current I1 a power source must, in each second, do an amount of work  

 ε1I1 = I1

dN1

dt
           1.30 

(because ε = dN/dt) in addition to working against resistance Ω.  The stored energy per second in 

the magnetic field equals dW/dt, so that 

 I1

dN1

dt
= L11I1

dI1

dt
           1.31 

i.e.  

 N11 = L11I1             1.32 

Therefore we can also define the self inductance of a circuit through the change in flux linking 

that circuit when the current changes by one unit: 
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 ε1 =
dN11

dt
= L11

dI1

dt
          1.33 

Poloidal flux 

Suppose that a system consists only of toroidally wound loops producing only poloidal fields.  In 

a cylindrical coordinate system R,φ,z shown in Figure 1.7 (φ is also the ‘toroidal' angle in a quasi 

cylindrical coordinate system) nothing depends on the angle φ.  Then  

 M12 = 2πR1

A2

I2

           1.34 

and A has only a toroidal component Aφ.  In this case the fields are given by (B =∇xA): 

 

BR = −
∂Aφ

∂z

Bφ = 0

Bz = 1

R

∂ RAφ( )
∂R

           1.35 

These poloidal fields are also expressed in terms of the transverse (poloidal) flux function 

Ψ: Ψ(R,z) = constant defines the form of the equilibrium magnetic surfaces, proved later: 

 B =
1

2πR
∇ΨΨΨΨ × eφ( )          1.36 

with eφ a unit vector in the toroidal (φ) direction, so that 

 

Bz =
1

2πR

∂ΨΨΨΨ
∂R

BR = −
1

2πR

∂ΨΨΨΨ
∂z

           1.37 

But we know that we can write, in terms of the vector potential for our toroidally symmetric 

system (∂/∂φ = 0),  

 

BR = −
∂Aφ

∂z

Bz =
1

R

∂ RAφ( )
∂R

           1.38 

That is, the poloidal flux can be written as (with subscripts implied but not given): 
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 ΨΨΨΨ = 2πRAφ = MI = 2π Bz RdR
0

R

∫         1.39 

That is, for the system we are considering, the poloidal flux at a position R is simply the vertical 

field Bz integrated across a circle of radius R.  Note that sometimes in the literature the flux 

function ψ = Ψ/(2π) is used.  

As an example we show in Figure 1.10  the poloidal flux ψ produced by a single circular 

filament (see the section on vector potentials for the derivation of Aφ) of radius R0 = 1 m, current 

I = 1/µ0.  Results are shown in the plane of the coil (z = 0).  The exact results are shown as the 

solid line.  Also shown are two approximate solutions; the very near field solution and the far 

field solution.  Near the current (“near field”) we can write  

 ψ = RAφ ≈
µ 0IR0

2π
ln

8R0

ρ

 

 
  

 
 − 2

 

 
  

 
 −

ρ
R0

 

 
  

 
 cos ω( )

2
ln

8R0

ρ

 

 
  

 
 −1

 

 
  

 
 

 

 
 

 

 
   1.40 

The very near field solution is the zero order in ρ/R0 term, i.e. ψ 0 =
µ0IR0

2π
ln

8R0

ρ

 

 
  

 
 − 2

 

 
  

 
 .  Far 

from the loop (“far field”) we can write 

 ψ =
MR2

R2 + z 2( )
3

2
           1.41 

We see that neither the very near or far field solutions are good for distances of about half a coil 

radius from the coil itself.  However, if we use the full expansion expression including terms of 

order ρ/R0 (Equation 1.40) then the results are very near to the exact solution. This is shown in 

Figure 1.11.  

ψ

exact

far field

near field

R (m)

very
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 Figure 1.10.  The poloidal flux ψ in the plane z = 0 for a circular current loop,  

 radius 1 m, current I = 1/µ0.  The solid line is the exact solution, the long dash line  

 is the far field solution, and the short dash line is the very near field solution (zero  

 order in ρ/R terms only).   

ψ

Radius R (m)

exact

very near first order
zero order

 
 Figure 1.11  The poloidal flux ψ in the plane z = 0 for a circular current loop,  

 radius 1 m, current I = 1/µ0.  The solid line is the exact solution, the short dash line  

 is the first order expansion in ρ/R0 solution keeping terms of order ρ/R0, and the  

 long dash line is the very near field solution (zero order in ρ/R terms only).   

We can also compare the zero order, first order and exact solutions by plotting contours of ψ in 

(R,z) space.  This is done in Figure 1.12, for the conditions described in the caption of Figure 

1.11.  We see that it is very important to include the first order in ρ/R0 terms; even then the 

solution contours are significantly different from the exact solution contours. This is very 

different from the case of the vector potential, where the zero order solution was accurate. 
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height z (m)

radius R (m)

0.4

0.3

0.2

0.15

 
 Figure 1.12  Contours of flux ψ from the exact solution (thin dark line), the zero  

 order approximation (thick gray line) and including first order corrections  

 (intermediate thickness dark line) for a circular current filament with current I = 

  1/µ.  Contours of flux equal to 0.15, 0.2, 0.3 and 0.4 are shown.   

Field lines and flux surfaces 

Before starting on TOKAMAK EQUILIBRIUM, I want to discuss the field line equation, and 

apply it to a case very similar to a tokamak.  The field line equation is 

 
dx

Bx

=
dy

By

=
dz

Bz

           1.42 

or, in cylindrical geometry (the system (R,φ,z) of Figure 1.7) 

 
dR

BR

=
dz

Bz

=
RBφ

Bφ

           1.43 

This is easy to see in two dimensions, as illustrated in Figure 1.13.   
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B

B

B

z

x

z

x
 α

α = dz/dx = B /Bz x  
Figure 1.13.  A field line made up from two components Bx and Bz. 

If the length along a field line is l, then these equations are equivalent to dl/B = constant (B is the 

magnitude of B).  Now a magnetic surface is defined by an equation ψ(R) = constant; we use ψ 

because it will turn out to be the poloidal flux that is constant on a surface.  The condition that all 

lines of magnetic force lie upon that surface ψ(R) is written as  

 ∇ψ • B = 0             1.44 

because ∇ψ is the normal to the surface, so the equation says there is no component of B 

perpendicular to the surface.  Now we describe the fields B through the vector potential A, so 

that 

 

BR =
1

R

∂Az

∂φ
−

∂Aφ

∂z

Bφ =
∂AR

∂z
−

∂Az

∂R

Bz = 1

R

∂ RAφ( )
∂R

− 1

R

∂AR

∂φ

         1.45 

For axial symmetry, nothing depends on φ (we will also call this toroidal symmetry).  Now  take 

 ψ (R, z) = RAφ            1.46 

Using Equation 1.45 in 1.46 gives 

 R component:
∂ RAφ( )

∂R

1

R

∂Az

∂φ
−

∂Aφ

∂z

 

  
 

  
= − R

∂Aφ

∂R
+ Aφ

 
 
  

 
∂Aφ

∂z
 

 φ component: 
1

R

∂ RAφ( )
∂φ

∂AR

∂z
−

∂Az

∂R

 
 

 
 

= 0  
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 z component : 
∂ RAφ( )

∂z

1

R

∂ RAφ( )
∂R

−
1

R

∂AR

∂φ

 

 
 

 

 
 =

∂Aφ

∂z
R

∂Aφ

∂R
+ Aφ

 
 
  

 
   1.47 

where the RHS of each equation represents the result for ∂/∂φ = 0.  Therefore, with the assumed 

symmetry, the φ component is zero and the R component and z component cancel.  Therefore our 

assumed form for the surface (Equation 1.46, ψ (R, z) = RAφ ) ensures that ∇ψ • B = 0 , i.e. it 

ensures that all field lines lie on that surface where ψ = RAφ = constant.  In the case of toroidal 

symmetry the z component of Equation 1.45 gives 

 

Bz =
1

R

∂ RAφ( )
∂R

=
1

R

∂ ψ( )
∂R

i.e.ψ = Bz RdR
0

R

∫ =
1

2π
2πBz RdR

0

R

∫

=
1

2π
Bz RdR

0

2π

∫ dφ
0

R

∫ =
ΨΨΨΨ

2π

        1.48 

where the total poloidal flux Ψ is the integral of the vertical field Bz through the circle we are 

considering. 

An example 

I want to consider what the magnetic surfaces look like starting with a single filament in the φ 

direction (a ‘toroidal’ current), then adding a uniform ‘vertical’ field in the z direction, and 

finally adding a filament in the z direction to produce a ‘toroidal’ field.  This is meant to 

approximate a tokamak equilibrium, but note we are not specifying that the conductors are in 

equilibrium yet. 

Consider a circular filament, as shown in Figure 1.6, with current Iφ.  The field lines lie in a 

surface (the flux surface) defined by ψ = constant, and we have shown previously that to zero 

order in the normalized distance ρ/R0 from the filament   

 ψ = RAφ =
µ 0Iφ R0

2π
ln

8R0

ρ

 

 
  

 
 − 2

 

 
  

 
 = constant       1.49 

where  

 ρ2 = R0 − R( )2

+ z
2

          1.50 
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i.e. the magnetic surfaces are described by circles with ρ = constant. 

Far away from the loop we have shown that the field looks like that due to a dipole with moment 

M: 

 M = πR0
2Iφ.           1.51 

Then the equation for the magnetic surfaces becomes 

 ψ =
MR2

R2 + z 2( )
3

2
= constant          1.52 

Now we add a uniform field Bz0 in the z direction.  This has a vector potential given by 

 Aφ0 =
Bz 0R

2
            1.53 

The magnetic surfaces are now given by 

 R Aφ + Aφ 0( )= constant          1.54 

Finally we add a filament up the z axis, which produces a field ∝ 1/R in the φ direction (a 

‘toroidal’ field.  The vector potential due to this filament is 

 Az = −
µ0 Iz

2π
ln R( )          1.55 

Because this has only a z component, it does not affect the result (Equation 1.54).  The results are 

shown in Figure 1.14  and Figure 1.15  for a vertical field (the form used is relevant to that 

required to maintain a circular tokamak in equilibrium) 

 Bz =
±µ 0 Iφ

4πR0

ln
8R0

a

 
 

 
 + ΛΛΛΛ −

1

2

 
 

 
 

        1.56 

with Λ = 2, R0 = 1 m, and a = 0.2 m.  In the figures the exact form for Aφ from the circular 

current filament (written in terms of elliptic integrals) is actually used.  The positive current Iφ 

produces a field downwards (in the -z direction) at the outer equator (z = 0, R > 1 m).  Adding a 

positive vertical field Bz cancels this field at some point, producing a point where Bz(z=0) = 0.  

This is called an X point; the flux surface through this point is called the separatrix.  Note that, 

with the negative uniform vertical field applied, there is no inner X point.  However, if a vertical 
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field ∝ 1/R was applied the more negative Bz at the inner equator would cancel the positive Bz 

from the filament, and an X point would appear 

z (m)

major radius R (m)

0.1
0.2

0.3
0.4

0.5

0.6

0.610.61

z (m)

major radius R (m)

-0.2
-0.1

0

0.1

0.15

0.3

0.2

 
Figure 1.14.  Contours of constant flux ψ,  Figure 1.15.  Contours of constant flux ψ,  

with positive Bz.      with negative Bz. 
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Figure 1.16.  The geometry used for calculating the flux surfaces of a straight filament in a 

quadrupole field.  z is into the plane of the figure. 
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For a second example, consider the field lines and flux surfaces resulting from a quadrupole field 

applied to a single filamentary current, in straight geometry.  In a straight system the field lines 

will lie in a surface defined by constant vector potential A (i.e. ψ constant, with R ⇒ ∞).  The 

single (“plasma”) filament of current Izp lies at the origin of a rectalinear coordinate system 

(x,y,z) shown in Figure 1.16, where z will approximate the toroidal direction in a toroidal 

system.  The vector potential at P is given by Equation 1.55 as Azp = −
µ 0I zp

2π
ln r( ), with r the 

radius from the plasma filament to a point P.  There are then four additional filaments, at a 

distance d from the plasma filament, with currents Izq alternatingly + (into the plane) and - (out 

of the plane).  The  ith additional filament (i = 1 to 4) has a vector potential Azqi = −
µ 0I zq

2π
ln ri( ) in 

its own local coordinate system.  Transforming to the coordinate system (r,θ) we obtain 

 Az =
−µ0 Izp

2π
ln r( ) +

µ 0Izq

2π

ln d 2 + r 2 − 2dr cos θ( )( )1 /2

+ ln d2 + r 2 + 2drcos θ( )( )1/ 2

− ln d2 + r 2 − 2drsin θ( )( )1/2

− ln d2 + r 2 + 2drsin θ( )( )1/2

 

 

 
 
 
 
 

 

 

 
 
 
 
 

    1.57 

The resulting contours of constant Az are shown in Figures 1.17a through 1.17d for the ratio 

Izq/Izp = 1.0 to 2.0.  In the examples d = 0.25 m.  The equi-distant contours shown are different 

from frame to frame.  Clearly approximately elliptic cross sections are obtained; in tokamaks 

elliptic surfaces are produced by applying quadrupole fields.  A separatrix appears and defines 

the last closed vector potential surface (a straight circular system is the only one without a 

separatrix). 

We can derive an analytic expression for the shape of a given flux surface.  By expanding 

Equation 1.57 to third order in r/d, we find 

 Az = −
µ0 Izp

2π
ln r( ) −

r

d

 
 
 
 

2 µ 0 Izq cos 2θ( )
π

       1.58 

With Izq = 0 the surfaces are described by r = constant = a, i.e. a circle.  If we assume the surfaces 

with Izq ≠ 0 are described by 

 r = a + ∆∆∆∆2 cos 2θ( )          1.59 

 



Magnetic fields and tokamak plasmas    Alan Wootton 

 27 

 
Figure 1.17a.  Vector potential contours with     Figure 1.17a.  Vector potential contours with 

Izq/Izp = 1.  The quadrupole filaments are at Izq/Izp = 2.  The quadrupole filaments are at 

± 0.25 m.       ± 0.25 m. 

then Equation 1.58 gives, after expanding in ∆/a,  

−Az =
µ0 Izp

2π
ln a( ) +

∆∆∆∆
a

 
 

 
 

µ0 Izp

2π
cos 2θ( )+

a

d

 
 

 
 

2 µ0I zq cos 2θ( )
π

+
a

d

 
 

 
 

2 ∆∆∆∆
a

 
 

 
 

2µ 0 Izq cos
2

2θ( )
π

   

              1.60 

For a/d << 1, ∆/a << 1 we can ignore the last term (∝ cos2(2θ)).  Then we ensure that 

Az = const = −
µ0I zp

2π
ln a( ) by setting the coefficient in front of the cos(2θ) to zero, i.e.  

 
∆∆∆∆
a

= 2
I zq

I zp

 

 
 

 

 
 a

d

 
 

 
 

2

           1.61 

The elongation of the surface is then 

 
height

width
=

1 + 2
Izq

Izp

 

 
 

 

 
 a

d

 
 

 
 

2

1 − 2
Izq

Izp

 

 
  

 
 a

d

 
 

 
 

2
≈1 + 4

Izq

Izp

 

 
  

 
 a

d

 
 
 
 

2

      1.62 
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Figure 1.18a  and 18b  show the computed distortion to a particular surface (A = constant) for d 

= 0.25, Izq/Izp = 0 and 2.0.  With Izq/Izp = 1.0 the value of height to width is measured to be 1.28, 

as compared to the value of 1.25 derived from Equation 1.62.   

  

Figure 1.18a.  Contours of vector potential  Figure 1.18b  Contours of vector potential 

with Izq/Izp = 0.  The larger contour is taken  with Izq/Izp = 2.  The contours have the same  

as a reference in determining the distortion  flux values as those shown in Figure 1.18a. 

produced by an applied quadrupole field. 

Circuit equations 

For some applications we will consider the plasma as a lumped series resistance and inductance, 

coupled to other circuits (including a conducting vacuum vessel) by mutual inductances.  Figure 

1.19 shows how this is represented. 

The equation for circuit l consisting of a series self inductance Lll and resistance Ωl, coupled by 

mutual inductances Mli to other circuits i, is 

         1.63 

The sum over the mutual inductances is for i ≠ l because Mll = Lll is brought out separately.  If 

the circuit is closed (short circuited), then εl = 0.  If the circuit is open, or connected to a high 

input impedance, then Il = 0 and εl = d/dt(ΣMl,iIi).  The plasma is sometimes represented as one 

series inductance-resistance circuit, or sometimes as a number of such circuits in parallel, all 

short circuited together.  The vacuum vessel is similarly represented as a number of paralleled 

resistor-inductor circuits, which can be open circuit (a vessel with an insulating gap) or short 
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circuited (no insulating gap).  For a perfectly conducting plasma the plasma series resistance 

elements are set to zero, so that the flux enclosed by the plasma loop is conserved.  These models 

are very useful in analyzing axisymmetric stability problems.  

plasma

vessel/shell (switch open = gap)

ohmic heating

vertical field, shaping

 
Figure 1.19.  Representation of circuits coupling to a plasma. 
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2.  SOME NON STANDARD MEASUREMENT TECHNIQUES 

Hall Probe 

Other techniques (than pick-up coils) are used to measure magnetic fields.  The most common 

alternative is a Hall probe, shown in Figure 2.1. A semiconductor is placed in a field B, and a 

current I driven perpendicular to B.  The current carriers experience a Lorentz force, producing a 

charge buildup in the direction perpendicular to both B and I.  The resulting charge buildup 

produces an electric field which cancels the magnetic force.  This electric field is measured by 

electrodes.  This was iscovered in 1879 in Johns Hopkin University. 

B

j

E+
+ + + +

+ +

- - -
-

- -
-

Drive j.  Charge build 

up perpendicular to B 

and j.  Measure E.

-

j

 

Figure2.1a.  A Hall probe. 

 
Figure 2.1b.  A Hall probe in use 
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Assume the electrons move inside a flat conductive strip in a magnetic field.  Then the output 

voltage is: 

 VH = hiBsin α( )        2.1 

Where i is current, h is efficiency which depends on geometry, temperature, area.  Theoretically 

the overall efficiency depends on the Hall coefficient, the transverse electric potential gradient 

per unit B field per unit current density. 

 

Figure 2.1c.  A Hall probe at and angle to the field 

Specific problems include:  susceptibility to mechanical stress, and temperature (of resistors). 

Faraday Effect 

It has also been proposed to use the magneto-optic effect (the Faraday effect) in fused silica 

single mode optical fibers to measure magnetic fields, and the electro-optic (Kerr) effect to 

measure electric fields.  The Faraday effect is the consequence of circular birefringence caused 

by a longitudinal magnetic field.  Circular birefringence causes a rotation F of the plane of 

linearly polarized light, given by 

 

 F = Vc H •dl
l

∫          2.2  

around a contour l.  No time integration is required.  The Verdet constant Vc ≈ 5x10-6 radA-1 for 

silica.  Thus the rotation must be now measured.  Another approach is to coat a fiber with 

magnetostrictive material and measure the strain effects, with the fiber as one arm of a Mach 

Zender interferometer.   

The Compass.   

Chinese 2634 BC, magnetite suspended on silk. 
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Flux gates 

This is intended for weak fields.  A B-H curve below is shown below.   

 

 

Figure 2.3 a  A simple flux gate and the B-H curve 

An applied field H to the core induces a magnetic flux B = mH.  For high B the material saturates 

and µ is very small.  There is hysterisis, and the path is different for increasing and decreasing H.  

When the core is not saturated the core acts as a low impedance path to lines of magnetic flux in 

the surrounding space.  When the core is saturated the magnetic field lines are no more affected 

by the core.  Each time the core passes from saturated to unsaturated and backwards, there is a 

change to the magnetic field lines.  A pickup coil around the core will generate a spike.  Flux 

lines drawn out of core implies positive spike, lines drawn into core, a negative spike.  The 

amplitude of the spike is proportional to the intensity of the flux vector parallel to the sensing 

coil.  The pulse polarity gives the field direction. 

The core must be driven in and out of saturation by a second coil.  The excitation current will 

induce a corresponding current in the sensor coil, but this can be allowed for. 
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Figure 2.3b.  A driven flux gate 

A better approach is to position the excitation coil so that it will excite without affecting the 

sensor coil.  i.e. excite the flux at right angles to the axis of the sensor coil.  One can use a  

toroidal core with a drive winding and a cylindrical sensor coil.. 

 
Figure 2.3c: A flux gate with toroidal core with a drive winding and a cylindrical sensor coil 
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3.  GENERAL FIELD CHARACTERIZATION 

Fourier components 

Suppose we want to characterize the tangential (subscript τ) and normal (subscript n) fields on a 

circular contour of radius al.  It is often convenient to express the results as a Fourier series: for 

the poloidal (θ) and radial (ρ) fields outside a current I we can write 

 Bω = Bτ =
µ0I

2πal

1 + λ n cos nω( ) + δn sin(nω )
n

∑
 

  
 

  
     3.1 

 Bρ = Bn =
µ 0 I

2πal

κn cos nω( ) + µ n sin(nω )
n

∑
 

  
 

  
      3.2 

We are working in a coordinate system ρ,ω,φ, centered on the contour center-see Figure 3.1.  

Note that it is not uncommon to use a left handed coordinate system.   

Φ

R

Z

ρ

ω

 
Figure 3.1.  Coordinates. 

We can measure the components either by performing a Fourier analysis of the data from a set of 

individual coils measuring Bn(ω), Bτ(ω), or we can construct integral coils which will do the job 

directly.  For example, a "modified Rogowski coil", or “cosine coil”, whose winding density 

(number of turns per unit length) nA = n0cos(nω), each turn of area A, will give a signal which, 

when time integrated, is proportional only to λn: 
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ε = −
d

dt
B •nSdS( )

S

∫ = −
d

dt
Bω (ω )nA (ω )al Adω( )

0

2π

∫
 
 
 

 
 
 

= −
µ0 An0

2π
d

dt
I cos(nω ) 1 + λ n sin(nω ) + µ n cos(nω )

n

∑
 
 
  

 
 

  
 

  0

2π

∫ dω
 
 
 

 
 
 

= − µ0 An0

2

d

dt
Iλn{ }

  3.3 

The elemental area dS = nAAdl, the unit length dl = aldω, and ns is the unit normal to the coil 

area.  That is, the only contribution to the space integral comes from the term cos2(nω), because 

∫
0

2π
cos(nω)cos(mω)dω = π if m = n, otherwise = 0.  If the winding density is proportional to 

sin(nω), the time integrated output is proportional to δn.  To obtain the coefficients µn and κn, we 

must wind a “saddle coil” with nw turns of width w varying as sin(nω) or cos(nω), so that for a 

”sin” saddle coil w(ω) = w0 cos(ω), and 

 

ε = − d

dt
B(ω )nw w(ω )aldω( )∫

 
 
 

 
 
 

= −
µ

0
w0nw

2

d

dt
Iµ n{ }

        3.4 

In this case the elemental area dS = nwwdl = nwwaldω, the time integrated output provides the 

coefficient µ.  Figure 3.2 shows a cosine coil which measures λ1.  Although it is not illustrated, a 

center return wound inside the Rogowski coil should be used.  Figure 3.3 shows an unfolded “sin 

saddle coil” measuring µ1.  Of course, we cold also use an array of coils placed on a contour, 

measuring independent Bτ and Bn at different positions (different ω) and construct the required 

integrals.   

pitch changes sign 'width' changes sign
p pI

I

  
Figure 3.2.  A modified Rogowski coil.    Figure 3.3. A saddle coil.
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Field components on a rectangle 

If we want to characterize the fields on a rectangular contour, we can make use of the fact that an 

arbitrary function in a plane can be expressed as 

 B(η,ξ ) = cm, pξ
mη p

m, p

∑          3.5 

with cm,p constant coefficients.  Here we are working in a rectalinear coordinate system ξ,η, 

centered on the contour center, at R = Rl, shown in Figure 3.4. 

η

ξ

Rl

z

R

Contour l

 
Figure 3.4.  The geometry used in describing fields on a rectangle or square.   

On a one dimensional contour there will be degeneracy.  Suppose we have a "modified 

Rogowski" coil whose winding density varies as some function fp(η,ξ ), so that the time 

integrated output is proportional to  

 s p ,τ = f p Bτdl
l

∫            3.6 

The subscript τ refers to the tangential (normal) field component on the contour.  We could also 

construct the signal sp,τ from individual measurements of Bτ around the contour.  Further 

suppose that we express the tangential field itself in terms of our functions f as 

 Bτ = cm f m

m

∑            3.7 
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Then we can write 

 s p ,τ = cm

m

∑ fm f p dl
l

∫           3.8 

i.e. if we can calculate ∫
l
fmfpdl for our chosen functions f, then we can express the coefficients cm 

through the measured parameters sp,τ.  In a similar way we can build a saddle coil of width fp 

whose time integrated output is then  

 s p ,n = f pBndl
l

∫            3.9 

Expressing the normal field as  

 Bn = dm f m

m

∑            3.10 

we have 

 s p ,n = dm

m

∑ f m f pdl
l

∫           3.11 

Again, assuming we can calculate ∫
l
fmfpdl, the coefficients dm can be expressed in terms of the 

measured sp,n.   

We still have to choose the functions fp.  One choice, which is used in 'multipole moments', 

discussed later, is ρp, the pth power of a vector radius on the contour l.  This can be expressed in 

the form of a complex number as 

 ρ = ξ + iη             3.12 

e.g. for p = 2 we have 

 ρ2 = ξ2 − η2 + i ξη( )          3.13 

If the contour chosen is a square of half width and height a, then this form for the functions f 

gives  

 f m

l

∫ f pdl = 4a
m + p( ) a

m +1
+

a

p +1

 

  
 

  
 if m and p are even     3.14 

 f m

l

∫ f pdl = 0  = 0 otherwise         3.15 
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Then we would have the output from the 'modified Rogowski' coil 

 

s p ,τ = cm fm

l

∫ f p d
m

∑ l

= cm 4a
m + p( ) a

m + 1
+ a

p +1

 

  
 

  m

∑
 for m, p even      3.16 

    = 0  otherwise        3.17 

Equations 3.16 and 3.17 show specifically how, by including a finite number of terms (say pmax 

= mmax = 5) we will end up with a set of linear equations relating the measured signals to the 

required constants cm.  We must now solve them to obtain the coefficients cm as functions of the 

measured sp,τ; a similar procedure provides the dm as functions of the signals sp,n.  The result is 

not as elegant as the Fourier analysis applicable on a circular contour, where a single coil can be 

wound to measure each individual Fourier coefficient, but I don’t know another way to represent 

the fields on a square contour.  Of course, instead of using these specially wound coils to 

measure sp,τ and sp,n directly, the required integrals can always be constructed from individual 

coil signals of Bτ and Bn around the contour l. 

An example of a saddle coil for a particular f = η(1+ξ/Rl) is shown in Figure 3.5.  Here Rl is the 

major radius of the contour center.  These strange looking coils are actually useful for helping 

determine plasma position 

 
Figure 3.5.  A saddle coil suitable for winding on a square vessel     
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4.  PLASMA CURRENT 

Rogowski coil 

The plasma current is measured by a "Rogowski coil", which is a multi turn solenoid completely 

enclosing the current to be measured.  Figure 4.1 shows an example, the placement of this coil 

around the plasma is shown in Figure 4.2.  The transient plasma current generates a voltage ε 

which, for a uniform winding density of nA turns per unit length of area A, is (after applying 

Faraday's Law) 

 ε = nA Aµ0

dI

dt
         4.1 

from which Ip is deduced after time integration.  This is just a special case of our general model 

for how to measure the fields on a contour.  Integration can be performed passively with a 

resistance-capacitance circuit, with active integrators, or numerically on a computer.  In each case 

there is an associated 'integration time constant' τint.  The Rogowski coil must not be sensitive to 

other than the wanted field components, so that a center return must be used.  The angle between 

the Rogowski coil and the enclosed current is irrelevant, as is the contour on which the coil is 

wound.  

Figure 4.1.  A Rogowski coil

Ip

Rogowski

Volts

Volts

Figure 4.2.  Coil 
placement around  plasma

plasma
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5. LOOP VOLTS, VOLTS per TURN, SURFACE VOLTAGE. 

Introduction  

The Loop Volts εl, also called the Volts per Turn or Surface Voltage, is used in calculating the 

Ohmic power input to the plasma.  It also allows a calculation of the plasma resistivity Ωp.  εl is 

also a useful measure of cleanliness: clean ohmic heated tokamaks usually have εl  ~ 1.5V.   

What we want to measure is the resistive voltage drop across or around a plasma.  In a linear 

machine, this simply done by measuring the potential across the end electrodes with a resistive 

potential divider.  A similar method can be used in a torus with a conducting vacuum vessel 

which has one or more insulating sections.  In an all metal torus the voltage induced in a single 

turn pickup coil (a volts per turn loop) wound close to the plasma is used, as shown in Figure 5.1.  

However, the interpretation of the output signal is not trivial.  Here I want to address two 

questions.  The first is “What does a toroidal loop as shown in Figure 5.1 tell me?”.  The second 

is, “How do I measure the Ohmic power input into a plasma?”. 

The single volts per turn loop 

The voltage across the toroidally wound volts per turn loop (subscript l) is given by: 

 ε l =
d

dt
Ll ,lIl( )+ ΩΩΩΩ lIl +

d

dt
Ml, j I j( )

j

∑ +
d

dt
Ml , p Ip( )    5.1 

Here subscript j refers to all fixed windings, such as the Ohmic heating, the vertical field, and the 

shaping winding.  The plasma current contribution (subscript p) is brought out separately.  We 

can arrange for the voltage of the loop to be measured with a high input resistance amplifier.  

Then Il ≈ 0, so that the first two terms on the RHS are zero, and 

 ε l =
d

dt
Ml , jI j( )

j

∑ +
d

dt
Ml , pIp( )      5.2 

If this signal is time integrated, then the result is exactly the poloidal flux Ψ, because  

 

ε = d

dt
B• nsdS( )

S

∫ = d

dt
Bz RdRdφ( )

R ,φ
∫∫

= d

dt
2π Bz RdR

0

R

∫ = dΨΨΨΨ
dt

      5.3 
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Now consider the voltage εp around the plasma.  It is connected on itself (a torus) so that: 

 ε p = 0 =
d

dt
Lp, pIp( )+ ΩΩΩΩ pIp +

d

dt
M p, jI j( )

j

∑      5.4 

Now remembering the definition of mutual inductance in terms of linked fluxes, we can always 

write the flux through circuit i due to current Ij in circuit j as the flux through another circuit k 

due to the current Ij in circuit j plus the incremental flux between the circuits k and i due to the 

current Ij in circuit j, ∆Ψk,i;j.  Then 

 Mi, j I j = Mk , jI j + ∆Ψ∆Ψ∆Ψ∆Ψ k ,i; j = M j ,k I j + ∆Ψ∆Ψ∆Ψ∆Ψ k ,i; j      5.5 

Then for example Ml,ohIoh = Mp,ohIoh + ∆Ψp,l;oh  

Thus we can write 

 ε l =
d

dt
M p, jI j( )

j

∑ +
d

dt
Ml , pI p( )+

d

dt
∆Ψ∆Ψ∆Ψ∆Ψp,l ; j( )

j

∑     5.6 

Substituting from Equation 5.4 gives 

 ε l = −
d

dt
Lp, p Ip( )− ΩΩΩΩpIp +

d

dt
ΨΨΨΨ plasma−loop( )     5.7 

where ∆Ψplasma-loop is now the total flux between the loop and the plasma, provided by all 

circuits, including the plasma (plasma, ohmic heating, vertical field, shaping).  If the plasma 

current is constant the volts per turn loop tells us the plasma resistance.  A more elegant approach 

to seeing this is to use Poynting’s theorem. 

Poynting’s theorem 

Consider a number of non integrated flux loops, i.e. volts per turn loops, measuring dΨ/dt, all 

placed around the plasma on some contour l, which might be the vacuum vessel.  Figure 5.1 

shows the configuration.  Note that the emf ε = -2πREφ will not necessarily be the same in each 

loop, because the contour l is not necessarily on a magnetic surface. 
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plasma

volts per turn 

contour

 
Figure 5.1.  A subset of volts per turn coils on a contour l. 

To interpret what we are measuring, notice that the poloidal (subscript p) and toroidal fields are 

not coupled in Maxwell's equations, so that we can write Poynting's theorem for the poloidal 

fields alone.  To remind you, the basic equations needed are 

 ∇ × B = µj          5.8 

 ∇ × E = −
∂B

∂t
         5.9 

Multiplying these by -E and B/µ respectively, adding, and writing the poloidal component, gives 

(φ is the direction the long way around the plasma) 

 
∂
∂t

Bp

2

2µ 0

 

 
  

 
 + ∇ • E ×

Bp

µ 0

 

 
  

 
 + jφ Eφ = 0      5.10 

Integrating over the volume V defined by rotating the contour l in the φ direction gives 

 
∂
∂t

LiI p

2

2

 

 
  

 
 + jφ Eφ dV = εBτdl

l

∫
V

∫       5.11 
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Here we have used ∇ • E × Bp( )dV =
V

∫ Eφ × Bp( )• dSφ =
S

∫ 2πREφ Bpdl
S

∫ .  Li is defined by (LiIp2)/2 

= ∫(Bp
2/(2µ0)dV.  Note the integration is to the contour l, not the plasma edge.  Therefore the 

inductance is not just that internal to the plasma, which is usually called li.  Now use Ohms law 

j.B = σ||E.B, and assuming |Bφ0-Bφ| << Bφ0 gives Eφ = jφ/σ||.  Therefore  

 
∂
∂t

LiI p

2

2

 

 
  

 
 +

jφ
2

σ ||

dV = Ip

V

∫ ε        5.12 

where 

 ε =
1

µ0Ip

εBτ dl
l

∫         5.13 

What we find, from Equation 5.12, is that the ohmic input power ∫jφ2/σ||dV into the plasma must 

be evaluated knowing the poloidal distribution of both ε and Bτ around the contour l, as well as 

the inductance Li within that contour.  For example, suppose the contour is a circle of radius al, 

and 

 ε = ε0 1 + ε n cos nω( )
n

∑
 

  
 

  
       5.14 

 Bτ =
µ 0 Ip

2πal

1+ λn cos nω( )
n

∑
 

  
 

  
      5.15 

Then we obtain 

 ε = ε0 1+ λnε n

n

∑
 
 
  

 
        5.16 

The inductance Li is given approximately by (i.e. the "straight" circular tokamak )  

 Li ≈ µ0 Rp ln
al

ap

 

 
  

 
 +

li

2

 

 
 

 

 
        5.17 

with ap, Rp the plasma minor, major radius.  The term µ0/(4π)li is the inductance per unit length 

(toroidally) inside the plasma, and the ln term represents the inductance between the plasma 

surface (r = ap) and the contour l (r = al).  The approximation given is for a straight circular 

tokamak coaxial with a circular contour.  That part of the inductance between the plasma and the 

contour is sensitive to plasma position. 
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Uses of the Volts per turn measurement 

We can deduce an average value of the plasma conductivity, <σ>, by writing 

 
2πRpI p

2

πap

2 σ
=

jφ
2

σ ||V

∫ dV = Ip ε −
∂
∂t

LiIp

2

2

 

 
  

 
      5.18 

From this we can define a conductivity temperature Tσ.  The conductivity deduced by Spitzer for 

Coulomb collisions is given by (there are corrections for the fact that, in a torus, trapped particles 

cannot carry current and so σ must be reduced) 

 σ = 1.9 ×10
4 Te

3
2

Zeff ln ΛΛΛΛs( )
       5.19 

Then Tσ is defined as that temperature which gives a Spitzer conductivity (with Zeff = 1) equal to 

the average conductivity <σ>, with an approximate value taken for ln(Λs).  We can also derive an 

average “skin time”, from the formula for the penetration of a field into a conductor of uniform 

conductivity <σ>: 

 τskin =
πµ0σa p

2

16
        5.20 

The definition of energy confinement time for an ohmic heated plasma with major radius Rp, 

cross sectional area Sφ.(here we assume a circular minor radius ap, so Sφ = πap
2), total energy 

content W = 3πRp∫Sφ
pdSφ, ohmic input power Poh = Ip2Ωp, can we written in terms of the 

poloidal beta value βI = 8π/(µ0Ip2)∫
Sφ

pdSφ (discussed later) as 

 τ E =
W

Poh

=
3µ0βI Rp

8ΩΩΩΩ p

=
3µ 0βI ap

2 σ
16

τ      5.21 

Combining equations 5.20 and 5.21 shows that  

 
τE

τskin

≈ βI           5.22  

Therefore for ohmic heated plasmas, where typically βI ≈ 0.3, the currents penetrate 

approximately 3 times slower than the energy escapes from the plasma. 
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6. TOKAMAK EQUILIBRIA 

6.0.  AN INTUITIVE DERIVATION OF TOKAMAK EQUILIBRIUM 

Introduction 

After having described how to measure the plasma current and loop voltage, the next most 

important parameter to measure is the plasma position.  We will show how we determine both 

this, and certain integrals of the pressure and field across the plasma cross section (specifically βI 

+ li/2), in section 7.  The basic idea is that we want an expression for the fields outside the plasma 

in terms of plasma displacement ∆ and (βI + li/2).  We can only do this by knowing a solution to 

the plasma equilibrium, i.e. we must solve the Grad Shafranov equation.  I deal with this later in 

this section, but first we can gain a physical picture of tokamak equilibrium by considering the 

various forces acting on a toroidal plasma.  Also note that there are techniques to measure plasma 

position without recourse to equilibrium solutions, the so called “moments” method.  However, 

the interpretation of this method (i.e. what has been measured) itself requires a knowledge of the 

equilibrium. 

The total energy of our system must be made up of 3 parts,  

 W = W
p + W1

B + W 2

B
        6.0.1 

where WP is the energy stored as pressure, W1
B is the energy stored in toroidal fields (poloidal 

currents), and W2
B is the energy stored in poloidal fields (toroidal currents).  Once we have 

calculated expressions for these terms, we can obtain the required forces: the minor radial force 

Fa = ∂W/∂a, and the major radial force FR = ∂W/∂R.  By setting the net force = 0 we will obtain 

the conditions necessary for equilibrium.  We work with a circular cross sectioned plasma with 

major radius R and a minor radius a, and a/R << 1.  Figure 6.0.1 shows the geometry.  The 

poloidal coordinate is θ.  We use <...> to mean an average over the volume (which is the same as 

an average over the plasma surface if a/R << 1) and V = 2πRπa2.  A positive force is in the “R” 

or “a” direction (an expansion).  
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pp

Bφi
Bφi

Bφe

dφ

The toroidal fields and pressures p 
present in a section of a toroidal 
plasma colum.  the toroidal angle is  

φ

 
Figure 6.0.1.  Elemental volume discussed in deriving force balance. 

Energy associated with plasma pressure WP 

The major radial force FR

p
 exerted by the plasma pressure in expanding a distance dR is given by 

FR

p
dR = <p>dV, and the minor radial force Fa

p
 exerted by the plasma pressure in expanding a 

distance da is given by Fa

p
da = <p>dV.  The total energy Wp is given by 

  W
p = pdV

V

∫ = p V = p 2π 2
Ra

2
:      6.0.2 

so that 

 Fa

p =
∂W p

∂a
=

2V p

a
         6.0.3 

 FR

p =
∂W p

∂R
=

V p

R
        6.0.4 

These forces were computed at constant pressure. 
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Energy associated with toroidal fields  W1
B 

The energy associated with poloidal currents is written as 

 W1

B =
L1I1

2

2
+

L1eI1e

2

2
+ M1I1I1e        6.0.5 

Here I1 is the poloidal current in the plasma, and I1e is the poloidal current in the toroidal field 

coil (subscript e for external).  I1 is that poloidal current flowing in the plasma edge which 

produces a toroidal field equal to the difference between the internal toroidal field Bφi and the 

external toroidal field Bφe.  By definition we have 

 
L1I1

2

2
=

Bφi − Bφe( )2

V

2µ 0

       6.0.6 

 M1I1I1e =
Bφi − Bφe( )BφeV

µ0

       6.0.7 

Now the circuits I1 and I1e are perfectly coupled, so that L1 = M1.  The field B1 = µ0I1/(2πR), and 

so   

 M1 = L1 =
1

I1

2

B1

2

µ 0

dV
V

∫ = µ0 R − R
2 − a

2( )
1
2 

 
 
 ≈

µ 0a
2

2R
    6.0.8 

for skin currents.  To get the forces we will need only the functional dependencies, namely 

 

∂L1

∂a
=

2 L1

a

∂M1

∂a
=

2M1

a

         6.0.9 

 

∂L1

∂R
= −

L1

R

∂M1

∂R
= −

M1

R

          6.0.10 

The forces will be computed at constant current.  For example, the part of the force due to 

∂/∂R(L1I12/2) is then written as (I12/2)∂/∂R(L1) = -(I12/2)L/R = -(L1I12/2)(1/R).  Using Equation 

6.0.6 this becomes (I12/2)∂/∂R(L1) = <Bφi-Bφe)2>V/(2Rµ0).  Doing this for each component in 

Equation 6.0.5 gives 
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 F1a

B =
∂W1

B

∂a
=

2V

a

Bφi

2 − Bφe

2( )
2µ 0

 

 
 

 

 
       6.0.11 

 F1R

B =
∂W1

B

∂R
=

V

R

Bφe

2 − Bφi

2( )
2µ0

 

 
 

 

 
       6.0.12 

There will be no force from the term L1eI1e
2/2, because we keep the external currents constant. 

Energy associated with poloidal fields  W2
B 

Again we write the energy in the poloidal circuits as 

 W2

B =
L2I2

2

2
+

L2 eI2e

2

2
+ M2 I2 I2e       6.0.13 

with I2 = Ip the toroidal plasma current, and I2e the poloidal currents in external windings.  These 

windings are imagined to consist of a set which provides an external vertical field Bz but induces 

no plasma current, and a set which drives the plasma current but produces no Bz.  We will need 

the radial derivatives (with respect to both major and minor radii) of the self and mutual 

inductances.  All external currents will be kept fixed, so that ∂(L2e)/∂a = ∂(L2e)/∂R = 0.  Only 

that winding producing a vertical field is imagined coupled through a mutual inductance to the 

plasma. 

We must make use of the inductance of a current loop: 

 L2

B = µ0R ln
8R

a

 
 

 
 − 2 +

li

2

 
 

 
        6.0.14 

The term li accounts for the inductance between the center of the loop and the edge, at r = a.  We 

also need the flux Ψ = M2I2e, the external flux passing through the central aperture, which can be 

written as 

 ΨΨΨΨ = 2πRBz dR
0

R

∫         6.0.15 

Then we have 

 
∂L2

∂R
= µ0 ln

8R

a

 
 

 
 −1 +

l1

2

 
 

 
        6.0.16 
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∂L2

∂a
= −

µ0R

a
         6.0.17 

 
∂M2

∂R
=

∂
∂R

ΨΨΨΨ
I2e

 

 
  

 
 =

2πRBz

I2e

       6.0.18 

 
∂M2

∂a
=

∂
∂a

ΨΨΨΨ
I2e

 

 
  

 
 = 0         6.0.19 

Now we can deduce the forces: 

 F2a

B =
∂W 2

B

∂a
= −

2V

a

Bθa

2

2µ 0

 

 
  

 
        6.0.20 

 F2R

B =
∂W2

B

∂R
=

V

R

Bθa

2

µ 0

ln
8R

a

 
 

 
 −1+

li

2

 
 

 
 +

2Bz Bθa R

µ0a

 

  
 

  
    6.0.21 

where  

 Bθa =
µ 0 I2

2πa
=

µ 0Ip

2πa
        6.0.22 

Total forces 

We can now add Equations 6.0.3, 6.0.11 and 6.0.20 to get Fa, and Equations 6.0.4, 6.0.12 and 

6.0.21 to get FR: 

 Fa =
2V

a
−

Bθa

2

2µ0

+
Bφi

2 − Bφe

2( )
2µ0

+ p

 

 
 

 

 
      6.0.23 

 FR =
V

R

Bθa

2

µ 0

ln
8R

a

 
 

 
 −1 +

li

2

 
 

 
 +

2RBz Bθa

µ 0a
+

Bφe

2 − Bφi

2( )
2µ 0

+ p

 

 
 

 

 
   6.0.24 

with Bθa =
µ0 Ip

2πa
.  Equilibrium requires Fa = 0, so that 

 p =
Bθa

2

2µ0

+
Bφe

2 − Bφi

2( )
2µ0

+
 

 
 

 

 
        6.0.25 
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Therefore if we can measure the difference in toroidal field with and without (when Bφi = Bφe) 

plasma present, we can measure the average plasma pressure.  This is discussed later in dealing 

with “diamagnetism”. 

The condition FR = 0 specifies the vertical field: 

 

Bz = −
aBθa

2R
ln

8R

a

 
 

 
 −

3

2
+

li

2
+

2µ0 p

Bθa

2

 

  
 

  

= −
aBθa

2R
ln

8R

a

 
 

 
 −

3

2
+

li

2
+ βI

 
 

 
 

-     6.0.26 

This was the field we used in section 1, Field lines and flux surfaces, to plot out the flux surfaces 

which result from a combined circular filament and a vertical field.   

6.1. THE FLUX OUTSIDE A CIRCULAR TOKAMAK 

Later we will use the expression for the flux outside a circular tokamak.  It can be considered to 

come from two sources, that from the external maintaining fields ψext and that from the plasma 

itself, ψp.  In the previous section we derived an expression for the vertical field Bz necessary to 

maintain a circular equilibrium (Equation 6.0.26).  While the major radial term appearing as 

ln
8R

a

 
 

 
  in Equation 6.0.26 clearly refers to the geometric center Rg (it comes from the 

inductance of a plasma with radius a with a geometric center Rg), it is not obvious to what radius 

the term outside the square brackets refers.  It could be either Rg, or the coordinate itself, so that 

Bz ∝ 1/R.  In the former case, in a right-handed cylindrical coordinate system (R,φ,z), the flux 

would be derived from ψ ∝ R2, or in our local coordinate system (ρ,ω,φ) based on Rg (See 

Figure 1.7)  

 ψ = k0 + k1 cos ω( ) + k2 cos 2ω( )       6.1.1 

with ki a constant.  The constant is unimportant, but the cos(2ω) term means that such an external 

field would introduce ellipticity, and we have specifically considered a circular plasma.  

Therefore we must take Bz ∝ 1/R, and in the coordinate system (R,φ,z) this is derived from a flux 

 ψ ext =
µ 0I p R

4π
ln

8Rg

a

 
 

 
 + ΛΛΛΛ − 0.5

 

  
 

  
       6.1.2 
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where ΛΛΛΛ = β I +
li

2
−1.  In the local coordinate system (ρ, ω, φ) the necessary Bz is then derived 

from a flux (ignoring the constant of integration) 

 ψ ext =
µ 0I pρcos ω( )

4π
ln

8Rg

a

 
 

 
 + ΛΛΛΛ − 0. 5

 

  
 

  
     6.1.3 

  

∆

ρ
c

ρ

ω ω

current filament center R
c

geometric center R g

c

 
Figure 6.1.1.  The geometry used in relating the geometric and current filament centers 

Next we come to the flux ψp produced by the plasma.  Outside the plasma, where there is no 

current and no pressure, the fields and fluxes we are looking for must be able to be constructed 

from those due to circular filaments.  This will not be true inside the plasma.  For a first 

approximation we will model the flux ψp as being due to a single circular filament with current 

Ip.  If we position this filament at a position Rc then in a coordinate system (ρc, ωc, φ) based on 

the filament we have shown that the flux is well represented by 

 ψ p ≈
µ0 I pRc

2π
ln

8Rc

ρc

 

 
  

 
 − 2

 

 
  

 
 −

ρc

Rc

 

 
  

 
 cos ωc( )

2
ln

8Rc

ρc

 

 
  

 
 −1

 

 
  

 
 

 

 
 

 

 
   6.1.4 

However, we have to decide where to place this filament, that is, what to choose for Rc, and how 

ρ, ρc, ω and ωc are related.  Because we have derived ψext for a circular cross section (in the 

calculation of Bz we used inductances for circular current path), we must place the filament so 

that, in the coordinate system (ρ, ω, φ) the surface ψtotal = ψext + ψp = constant is a circle of 

radius at ρ = a.   
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Suppose we place the filament at a position R0 = Rc + ∆.  From Figure 6.1.1, and expanding in 

the small parameter ∆/r, we then derive that 

 ρc

2 = ρ 2 + ∆∆∆∆2 − 2∆∆∆∆ρ cos 180 − ω( )      6.1.5 

 ρ2 = ρc

2 + ∆∆∆∆2 − 2∆∆∆∆ρc cos ωc( )       6.1.6 

from which we have 

 ρc ≈ ρ 1 +
∆∆∆∆
ρ

cos ω( )
 

 
  

 
         6.1.7 

and 

 cos ωc( )≈ cos ω( ) 1−
∆∆∆∆
r

cos ω( ) 
 

 
 +

∆∆∆∆
r

     6.1.8 

Substituting for ρc and ωc in terms of ρ and ω, and using R0 = Rc + ∆, we obtain an expression 

for the total flux ψtotal (ρ, ω, φ) in the coordinate system based on the geometric center.  Keeping 

terms of order ∆/r and cos(ω) only (i.e. neglecting elliptic distortions to any surface) we find 

 
ψ total =

µ0 I pRg

2π
ln

8Rg

ρ

 

 
  

 
 − 2

 

  
 

  
+

µ0 I pρ cos ω( )
4π

ln
ρ
a

 
 
 
 + ΛΛΛΛ +

1

2
− 2

∆∆∆∆Rg

ρ 2

 

  
 

   6.1.9 

To ensure a circular outer contour (at r = a) we set the cos(ω) term to zero, that is we set 

 
∆∆∆∆
a

=
a

2Rg

ΛΛΛΛ +
1

2

 
 

 
         6.1.10 

Substituting for ∆ form Equation 6.1.10 into Equation 6.1.9 gives the final expression for the flux 

outside a circular tokamak: 

 
ψ total =

µ0 I pRg

2π
ln

8Rg

ρ

 

 
  

 
 − 2

 

  
 

  
+

µ0 I pρ cos ω( )
4π

ln
ρ
a

 
 
 
 + ΛΛΛΛ +

1

2

 
 

 
 1−

a

ρ

 

 
  

 
 

2 

 
 

 

 
 

 

 
 

 

 
  

           6.1.11 
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6.  CIRCULAR EQUILIBRIUM 

Derivation of the Grad Shafranov equation 

Most analysis of magnetic measurements rely on an understanding of equilibrium.  The most 

general cases are derived from integral equations, which do not constrain the plasma shape, and 

are discussed later.  However, an insight can often be gained by considering the case of a circular, 

low beta, large aspect ratio (a/Rp<<1) system.  For this we must solve the so called Grad-

Shafranov equation.  The basic equation for equilibrium is that of pressure balance: 

 j × B = ∇p          6.1 

from which B.∇p = 0, i.e. there is no pressure gradient along a field line; magnetic flux surfaces 

are surfaces of constant pressure.  Also from 6.1 we have j.∇p = 0, so that current lines lie in a 

magnetic surface.  Equation 6.1, together with Maxwell’s equations, is all we need. 

The conditions for the applicability of equation 6.1 are interesting.  It is NOT correct that it only 

applies to the ideal MHD plasma, which would imply that it is incompatible with diffusive 

phenomena.  In fact it is sufficient that 

 1) The plasma directed kinetic energy is much smaller than the thermal energy.  Inertia is 

ignored. 

 2) The gas kinetic pressure is nearly isotropic.  This is still possible for a collisionless 

plasma (λ >> 2πR) as long as the times considered are long (t >> λ/vth, i.e. t  >> τee, τei with τee, 

τei the electron -electron and ion-ion collision times). 

 3) The local distribution function deviates slightly from a Maxwellian even for a straight 

system because of the finite Larmor radius rL: δf ≈ rL.∂f(r)/∂r.  This leads to a deviation from 

pressure isotropy by an amount δp ≈ prL/a, with a the minor radius.  In toroidal geometry the 

particles are displaced from a magnetic surfaced by amounts d ≈ rLq for passing particles and d ≈ 

rLqε-1/2 for trapped particles (ε is the aspect ratio r/R, q is the safety factor).  Then there is a 

deviation from a local Maxwellian distribution function f by an amount δf/f ≈ d/a, and an 

associated pressure anisotropy δp/p ≈ rLq/a.  Therefore we should have rLq/a << 1.  i.e. the 

plasma can be considered as a gas of Larmor circles produced by charges rotating in a magnetic 

field. 
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Figure 6.1.  Nested flux surfaces.  Figure 6.2.  Field lines in a surface. 

We introduce ψ, the poloidal flux per radian in φ.  This is proportional to the poloidal flux within 

each surface; it is constant on a flux surface.  Figure 6.1 shows an example of nested flux 

surfaces, and Figure 6.2  shows field lines lying in a flux surface (followed 10 times in the 

toroidal direction).  We will show that the current lies in a flux surface, but current lines do not 

follow field lines.  In Figure 6.1 the each surface is described by a radius r = r0 + ∆∆∆∆n cos nω( )
n =2

∞

∑ , 

where we have also shifted the origin of each surface with respect to each other.  The example 

shown has a circular innermost surface, a mostly elliptic (n = 2) central surface, and an outer 

surface with a combination of ellipticity (n = 2) and triangularity (n = 3).  Note that ψ = RAφ, 

where A is the vector potential (note we sometimes use the total flux Ψ = 2πψ).  In the 

cylindrical coordinates (R,φ,z) of Figure 1.7 the magnetic fields are derived from 

 BR = −
1

R

∂ψ
∂z

         6.2 

 Bz =
1

R

∂ψ
∂R

         6.3 

which satisfy ∇.B = 0.  We also introduce a current flux function f, which is related to the 

poloidal current density so that 

 JR = −
1

R

∂f

∂z
         6.4 
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 jz =
1

R

∂f

∂R
         6.5 

Now Amperes law µ0j = ∇ x B gives 

 jR = −
1

µ0

∂Bφ

∂z
         6.6 

 jz =
1

µ 0R

∂ RBφ( )
∂R

        6.7 

so that, comparing Equation 6.4 with Equation 6.6, and Equation 6.5 with Equation 6.7, we have  

 µ 0 f = RBφ          6.8 

That is, the function f includes the total current in the windings producing the toroidal field.  

Since from Equation 6.1. j.∇p = 0, using Equations 6.4 and 6.5 for j gives (∂f/∂R)(∂p/∂z) - 

(∂f/∂z)(∂p/∂R) = 0, or 

 ∇f × ∇p = 0          6.9 

Since p is a function of ψ, i.e. p = p(ψ), we must have f = f(ψ) as well.   

Now we want to derive the basic equilibrium equation in terms of ψ.  Write Equation 6.1 as 

 jp × eφ Bφ + jφ eφ × Bp = ∇p        6.10 

where subscript p means poloidal and eφ is a unit vector in the φ direction.  Now Equations 6.2. 

and 6.3 can be written as 

 Bp =
1

R
∇ψ × eφ( )        6.11 

and Equations 6.4 and 6.5 can be written as 

 jp =
1

R
∇f × eφ( )        6.12 

Substituting 6.11. and 6.12 into 6.10, (remember eφ.∇ψ = eφ.∇f = 0) gives 

 −
Bφ

R
∇f +

jφ

R
∇ψ = ∇p        6.13 
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Writing ∇f(ψ) = (df/dψ)∇ψ and ∇p(ψ) = (dp/dψ)∇ψ, and substituting into 6.13, gives 

 jφ = R
dp

dψ
+ Bφ

df

dψ
        6.14 

or 

 jφ = R
dp

dψ
+

µ0

R
f

df

dψ
        6.15 

The equilibrium conditions restrict the possible current distributions jφ in the plasma ; instead of 

a two dimensional distribution jφ(R,z) a one dimensional one is obtained, depending on the two 

profiles dp/dψ and fdf/dψ. 

We can write jφ in terms of ψ using Amperes law, µ0j = ∇ x B.  Substituting from Equations 6.2 

and 6.3 for the components of B in the toroidal component jφ gives  

 −µ0 Rjφ = R
∂

∂R

1

R

∂ψ
∂R

 
 

 
 +

∂2ψ
∂z

2        6.16 

Substituting for jφ from Equation 6.16 into Equation 6.15 finally gives the Grad Shafranov 

equation: 

 R
∂

∂R

1

R

∂ψ
∂R

 
 

 
 +

∂2ψ
∂z

2 = −µ0 R
2 dp

dψ
− µ0

2
f

df

dψ
    6.17 

In the local coordinates (θ,r,φ) of Figure 6.3, based on the plasma major radius (the geometric 

center of the outermost circular surface) Rg this equation becomes: 

 

1

r

∂
∂r

r
∂

∂r

 
 

 
 +

1

r
2

∂2

∂θ 2

 

  
 

  
ψ −

1

Rg + rcos θ( )( ) cos θ( ) ∂
∂r

−
sin θ( )

r

∂
∂θ

 
  

 
  
ψ

= −µ 0 Rg + rcos θ( )( )2 dp

dψ
− µ0

2 f
df

dψ

 6.18 

Note the ordering (θ,r,φ) in which the system is right handed.  The poloidal angle θ is measured 

from the outer equator, so that x = R + rcos θ( )( )cos φ( ), y = R + r cos θ( )( )sin φ( ), and 

z = rsin θ( ).  The metric coefficients are hθ = r , hr =1  and hφ = R + r cos θ( ) .  If a new variable 

θ1 = π − θ is defined, so θ1 is measured from the inner equator, then the system (r,θ1,φ) is also 

right handed.  We have mostly used this latter system. 
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Φ

R

Z

r

θ

 
Figure 6.3.  Geometry of the local coordinate system used.   

Solving the Grad Shafranov equation 

In a large aspect ratio expansion let us write 

 ψ = ψ0 r( ) + ψ1 r ,θ( )        6.19 

where the first term describes a set of concentric circular surfaces, and the second term is the first 

order correction.  Substituting into the general equation (Equation 6.18) gives the zeroeth or 

leading order equation for ψ0: 

 
1

r

d

dr
r

dψ 0

dr

 
 

 
 = −µ 0 Rg

2 dp ψ0( )
dψ

− µ0

2
f ψ0( )df ψ0( )

dψ
    6.20 

The first order equation for ψ1 is rearranged as: 

 

1

r

∂
∂r

r
∂
∂r

 
 

 
 

+
1

r2

∂2

∂θ2

 

  
 

  
ψ1 −

cos θ( )
Rg

dψ0

dr

= −
d

dr
µ0Rg

2 dp ψ 0( )
dψ

+ µ0
2
f ψ0( )df ψ0( )

dψ

 

 
  

 
 dr

dψ0

ψ1

−2µ0Rgrcos θ( )
dp ψ 0( )

dψ

    6.21 

Suppose each surface ψ is displaced a distance ∆1(ψ0(r)), so we can write ψ as 

 ψ = ψ0 + ψ1 = ψ 0 − ∆∆∆∆1 r( )
∂ψ0

∂R
= ψ0 − ∆∆∆∆1 r( )cos θ( )∂ψ0

∂r
   6.22 
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Substituting this form for ψ1 (= -∆1(r)cos(θ)∂ψ0/∂r) into the first order equation, Equation 6.21, 

gives: 

 
d

dr
rBθ0

2 d∆1

dr

 
 

 
 =

r

Rg

2µ0r
dp0

dr
− Bθ0

2 
 

 
      6.23 

where Bθ 0 =
1

Rg

dψ0

dr
 has been used. 

The solution of this equation gives the horizontal shift ∆1 of a flux surface away from the 

geometric axis, as illustrated in Figure 6.4.  This, together with the solution of Equation. 6.22, 

gives us what we want.  If we wanted to consider non circular surfaces, we could write 

r = r0 + ∆∆∆∆n r( )cos nθ( )
n=1

∞

∑  for each surface.  Then ψ(r) is a constant (by definition), so that 

ψ = ψ0 − ∆∆∆∆n r( )cos nθ( )
n =1

∞

∑
dψ 0

dr
.   

 
Figure 6.4.  Displaced circular flux surfaces. 
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The poloidal field at the plasma edge 

To continue, we need an expression for the boundary field Bθ(a) from the plasma equilibrium.  

We will ultimately use this to match the external and internal solutions at the plasma boundary r 

= a, where Bτ (= Bθ for a circular plasma) must be continuous.  Now  

 Bθ =
1

R

dψ
dr

=
1

Rg + r cosθ( )
dψ
dr

      6.24 

Using Equation 6.22, with ∆1(a) = 0, gives 

 Bθ a( ) = Bθ 0 a( ) 1 −
a

Rg

+
d∆∆∆∆1

dr

 
 

 
 

a

 

 
  

 
 cos θ( )

 

 
 

 

 
      6.25 

with Bθ0(a) the zero order poloidal field at the boundary.  Now we need to find an expression for 

(d∆1/dr)
a
 in Equation 6.25.  Integrating Equation 6.23 (with the condition d∆1/dr = 0 at r = 0) 

gives the displacement of the magnetic surfaces for the zero order pressure distribution p0(r) and 

zero order poloidal field Bθo(r): 

 
d∆∆∆∆1

dr
=

2µ0

rRg Bθ 0

2 r
2
p0 − 2 p0 +

Bθ 0

2

2µ0

 

 
  

 
 rdr

0

r

∫
 

 
 

 

 
      6.26 

By defining (we will be more careful with definitions later) 

 βI =
8π

µ0Ip

2 pdSφ
Sφp

∫ =
4µ 0

a
2
Bθ 0

2
a( )

p0 rdr
0

a

∫       6.27 

for our circular case, and 

 li =
4

µ 0RgIp

2

Bp

2

2µ0

dV =
V p

∫
4µ 0

a
2
Bθ0

2
a( )

Bθ
2

2µ00

a

∫ rdr      6.28 

where Bp is the poloidal field, Spφ the plasma cross section in a poloidal plane, and Vp the 

plasma volume, for our circular case we obtain 

 
d∆1

dr

 
 

 
 

a
= −

a

Rg

βI +
li

2

 
 

 
        6.29 

Now we can substitute Equation 6.29 into 6.25 and obtain  
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 Bθ a( ) = Bθ 0 a( ) 1 +
a

Rg

ΛΛΛΛ cos θ( )
 

  
 

  
      6.30 

where 

 ΛΛΛΛ = β I +
li

2
−1         6.31 

That is, we now know the distribution of poloidal field at the boundary of a circular plasma 

including terms of order (a/R). 

Simple current distributions 

Consider a case where the zero order (circular cylinder) current density is given by  

 jφ = jφ 0 1 − x
2( )α         6.32 

with 0 < x = r/a < 1 representing the normalized minor radius.   

α = 0

 1

 2

3

4

5

x

jφ__
jφ0(0)

 
Figure 6.5  The normalized current density distributions jφ/jφ0(0). 

Figure 6.5 shows these profiles for integer α = 0 through 5 as a function of normalized radius x.  

The total current J is given by 

  J =
πa2

1+ α
jφ0         6.33 

so that we can write a normalized current density jr as 
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   jr =
πa2 j

J
= 1 +α( ) 1 − x

2( )α       6.34 

Figure 6.6  shows jr as a function of x for α between 0 and 5; these curves represent the shape of 

the current density profiles with the constraint that the total current J is constant. 

α = 0

1

2
3

4
5

x

j
r

 
Figure 6.6  The normalized current density distributions jr(x) 

The poloidal field Bθ is given by 

  Bθ = Bθ 0 1( )
1 − 1 − x

2( )1+α( )
x

      6.35 

with Bθ0(1) the value at r = a, or x = 1: Bθ0(1) = µ0J/(2πa).  The ratio Bθ/Bθ0(1) is shown in 

Figure 6.7  as a function of x for α between 0 and 5. 

α = 0

1

2

3

4

5

x

Bθ____
Βθ1

 
Figure 6.7.  The normalized poloidal field distributions Bθ/Bθ0(1) 
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The “self inductance per unit length” is expressed as 

 li = 2 1 − 1 − x
2( )1+α( )

0

1

∫
2

dx

x
       6.36 

The solution is written in terms of PolyGamma and EulerGamma functions: 

 li = EulerGamma + 2 PolyGamma[0, 2 + α] - PolyGamma[0, 3 + 2 α] 

           6.37 

However, a polynomial fit in α can also be used: 

 li = 0.509619 + 0 .462798α − 0.0630876α 2 + 0. 00443746α3
  6.38 

Figure 6.8  shows the value of li as a function of α for both the exact solution (Equation 6.37) 

and the polynomial fit (Equation 6.38).  The fact that you cannot distinguish the two lines 

demonstrates that the fit is good.   

α

li

 
Figure 6.8.  The value of li as a function of α.   

We must determine how to choose the free parameter α.  Two ways are suggested.  First, if the 

safety factor (discussed later, but q = (rBφ)/(RBθ)) q(1) at x = 1, (i.e. at r = a) and q(0) at x = 0, 

(i.e. at r = 0) are known, then  

 α =
q(1)

q(0)
− 1         6.39 
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We must choose q(0).  Figure 6 .9 shows the resulting α as a function of q(1) for two assumed 

values of q(0): the long broken line is for q(0) = 0.8, and the short broken line is for q(0) = 1.0.  

An alternate prescription is to choose α so that the position x1 of the q = 1 surface is in 

approximately the correct position.  For example, suppose that x1 = 1/q(1).  Then the equation for 

local safety factor 

 q x( ) = q 1( )
x2

1− 1 − x2( )1+α( )
       6.40 

can be solved to give 

 α =

ln
1 − 1

q(1)

1 − 1
q(1)

2

 

 
 

 

 
 

ln 1 − 1
q(1)2

 
 

 
 

        6.41 

Figure 6 .9 (solid line) shows the resulting α as a function of q(1).    

 

α

q(1)  
Figure 6.9.  The parameter α as a function of q(1), chosen such that 1) solid line: 

x1 = 1/q(1), 2) long dashed line q(0) = 0.8, and 3) short dashed line q(0) = 1.0. 

We have now uniquely determined α in terms of q(1), and as such there is a unique value of q(0) 

for each q(a).  This is shown in Figure 6.10   
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q(0)

q(a)

 
Figure 6.10.  The value of q(0) as a function of q(1), with the constraint that x1 = 1/q(a). 

For completeness, Figure 6.11 shows the various normalized q(x)/q(1) profiles for various values 

of α.  

q/(q(1)

x

α = 0

1

2
3

45

 
Figure 6.11.  Normalized profiles of q for various values of α.   

The surface displacements: the Shafranov Shift 

If we want to obtain actual values of ∆1(r), we have to assume functional forms for the current 

and pressure distributions, and integrate equation 6.26.  We have already discussed a simple 

current distribution; we must add a simple pressure distribution.  Let the zero order pressure be 

given as 

 p x( ) = p0 0( ) 1− x
2( )γ

        6.32 

so that the poloidal beta value, by definition, is 
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 βI =
2µ0 p0 0( )

1+ γ( )Bθ 0

2
1( )

        6.42 

Now we can use the normalization x = r/a in equation 6.26 to obtain an expression for the surface 

displacement: 

 

d∆∆∆∆1

dx
= −

εa

2

2x

1 − 1− x2( )1+ α( )2

βI γ +1( )x 2
1− x

2( )γ
− βI 1 − 1 − x

2( )γ +1( )− 1 − 1 − x
2( )1+α( )

2 dx

x
0

x

∫
 

  
 

  

  6.43 

Where ε = a/Rg.  The Shafranov Shift is defined as the distance between the magnetic and 

geometric axis: ∆s = ∆1(1).  Using a power series expansion for ∆1(x) up to terms x6 a general 

expression can be derived: 

 ∆∆∆∆ s =
εa

2

1 + 2α
9

+ α 2

72

4
+

βI γ γ +1( )
4 1 + α( )2

2 +
11α

9
+

5α 2

18
+

γ − 1( ) γ − 6( )
6

−
4α γ −1( )

9

 
 
 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 6.44 

For the simple case of a flat current profile (α = 0, li = 0.5) and a parabolic pressure profile (γ = 

1) we obtain  

 ∆∆∆∆ s =
εa

2
βI +

li

2

 
 

 
         6.45 

Matching vacuum and plasma solutions 

Returning to the field outside the plasma, we must match the vacuum field to the solution for 

Bθ(a).  The vacuum field is given by the solution to (∇xB)φ = 0.  Expressing BR and Bz in terms 

of ψ (Equations 6.2 and 6.3), (∇xB)φ has the form of the LHS of Equation 6.18.  This has a 

solution of the form (for r << Rg); remember we are outside the plasma: 

 

Ψ = 2πψ r ,θ( ) = µ0RgIp ln
8Rg

r

 
 
  

 
− 2

 

 
  

 
 

+
µ0Ip

2
r ln

8Rg

r

 
 
  

 
−1

 

 
  

 
 +

C1

r
+ C2r

 

  
 

  
cos θ( )

     6.46 
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where the constants C1 and C2 are given by the boundary conditions (B.n) = 0 at the plasma 

surface (Br(a) = 0) and the continuity of tangential field at the plasma surface.  At infinity ψ takes 

the form C2rcos(θ), i.e. this represents the part of ψ from the external sources.  The first term on 

the RHS is the flux from a filament.  Substituting 6.46 into 6.24 gives an expression for Bθ(a), 

which is matched to the plasma solution equation 6.30 by taking  

 
C1

a
2 − C2 = ln

8Rg

a

 
 

 
 + 2ΛΛΛΛ        6.47 

Now since Br =
−1

rRg

∂ψ
∂θ

 the requirement Br(a) = 0 means that the coefficient of cos(θ) in 6.46 is 

zero at r = a.  Therefore we obtain 

 C1 = a
2 ΛΛΛΛ + 0.5( )        6.48 

 C2 = − ln
8Rg

2

 
 

 
 + ΛΛΛΛ − 0.5        6.49 

Thus we finally obtain an expression for the flux outside the plasma r > a: 

 

ψ =
µ0 RgI p

2π
ln

8Rg

r

 
 

 
 

− 2
 

 
  

 

−
µ 0rI p

4π
1 − a

2

r2

 
 
  

 
ΛΛΛΛ + 1

2

 
 

 
 + ln

r

a

 
 
 
 

 

  
 

  
cos θ( )

     6.50 

The field components are given by  

 Bθ =
1

R

∂ψ
∂r

, Br = −
1

Rgr

∂ψ
∂θ

        6.51 

i.e.  
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  6.52 

 Br r,θ( )= −
µ0Ip

4πRg

1 −
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 Λ +
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 + ln
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 sin θ( )   6.53 
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We can also separate the total flux ψ into external (ψe) and plasma (ψp) parts.  At large r, the 

expression (ln(8Rg/r) -2) really approximates an expression which goes to zero.  Therefore at 

large r we have  

 ψ e = −
µ 0I p

4π
ln

8Rg

a

 
 

 
 + ΛΛΛΛ −

1

2

 
 
  

 
r cos θ( )      6.54 

leaving 

 

ψ p =
µ0 RgIp

2π
ln

8Rg

r

 
 

 
 − 2

 
 
  

 

−
µ 0rI p

4π
− ln

8Rg

r

 
 

 
 

+1 − a

r

 
 
 
 

2

ΛΛΛΛ + 1

2

 
 

 
 

 

  
 

  
cos θ( )

    6.55 

i.e. the external field at the geometric center (R = Rg) has a component 

 Bz =
1

R

∂ψ e

∂R
= −

µ 0 Ip

4πRg

ln
8Rg

a

 
 

 
 + ΛΛΛΛ −

1

2

 
 
  

 
     6.56 

This is the component of the field which must be produced by external conductors to maintain a 

tokamak equilibrium.   

Figure 6.12 shows contours of the poloidal flux for a plasma with geometric center 0.06 m 

outside the coordinate center, minor radius ap = 0.265 m, and Λ = 2.  At the inner equator an X 

point appears, where ∂ψ/∂R = 0.  At this point the external vertical field and the poloidal field 

from the plasma cancel, so that Bz (= -Bθ) = 0.  The flux surface through this point is called the 

separatrix.  This X point approaches the plasma surface as βI increases.  As this happens the 

surfaces are strongly distorted from circular, and the above equations starts break down.  Figure 

6.13 shows the poloidal flux ψ =Ψ/(2π) in the plane z = 0 for a plasma with minor radius ap = 

0.2m, a major geometric radius Rg = 1m, current I = 1/µ0, and Λ = 2.  The external source 

(vertical field) and plasma components are shown separately.  Figure 6.14 shows the minor radial 

(Br) and poloidal (Bθ) field components for this plasma, on a circular contour concentric with the 

plasma minor radius. 
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 Figure 6.12.  Flux contours for a (badly drawn) circular plasma with geometric center 

0.06 m outside the coordinate center, minor radius 0.265m, Λ = 2.   

from external 
sources

total external 
flux

plasma 
contribution

plasma
edge

 
Figure 6.13.  The external poloidal flux ψ =Ψ/(2π) in the plane z = 0 for a plasma with minor 

radius ap = 0.2m, a major geometric radius Rg = 1m, current I = 1/µ0, and Λ = 2. 
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θ
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inside

 
 Figure 6.14. The field components Br and Bθ on a contour with minor radius 0.3m 

 placed outside and concentric with the plasma described in Figure 6.13.    

More complicated configurations. 

It is easy to make non circular cross sectioned plasmas.  Adding a quadrupole field produces an 

elliptic deformation.  Adding a hexapole field produces a triangular deformation.  There are some 

analytic expressions available for non circular cross sections, but in general numerical solutions 

to the basic Grad Shafranov equation must be used. 
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7.  Position and ββββI + li/2 for the circular equilibrium 

An ‘exact’ circular equilibrium 

Consider the pickup coils shown in Figure 7.1.  Two coils (Bω1, Bω2) measure the poloidal field 

at the inner and outer equator, each at a distance b from some center at R = Rl.  A saddle coil 

measures the difference in flux between the inner and outer equator.  Instead of the partial flux 

loops (i.e. the saddle coil) shown in Figure. 7.1, two complete flux loops could be used, as in the 

plan view of Figure 7.2.  We want to know what these coils tell us for our circular equilibrium. 

Saddle 
Coil

ω1

ω2

Fig 7.1.  Saddle and Bω coils

R-b

R+bΨ

Ψ

plasma

B

B

Fig 7.2. A plan view of poloidal flux loops

1

2

 

The original equilibrium was derived in a coordinate system (r,θ,φ) based on the plasma 

geometric center Rg.  We must translate the results to a coordinate system (ρ,ω,φ) based on for 

example the center of a circular contour centered at R = Rl, which might be the vacuum vessel 

center.  Details are seen in Figure 7.3.   
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ρ
ω

r
θ

contour with center R
l

plasma with geometric center R
g

∆g

z

R

 
 Figure 7.3.  The coordinate systems associated with the geometric center Rg,  

 and an external contour center Rl. 

Then R = Rl + ρcos(ω), z = ρsin(ω), and let ∆g = Rg - Rl be the displacement of the plasma 

geometric center from the contour center.  Remembering that we are only dealing with r > a, the 

plasma minor radius, and taking ∆g/ap << 1, we can rewrite Equation 6.50 as 

 
  

Ψ
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           7.1 

The tangential and normal field components on the circular contour are then 

 

  

Bω (ρ,ω ) = −
µ0 Ip

2πρ
−

µ0 Ip

4πRl

1 +
ap

2

ρ2

 

 
 

 

 
 Λ +

1

2

 
 
  

 
 + ln

ρ
ap

 

 
 

 

 
 −1 +

2Rl ∆g

ρ 2

 

 
 
 

 

 
 
 

cos ω( )   

         7.2 

 

  

Bρ (ρ,ω) = −
µ0 Ip

4πRl

1 −
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ρ 2
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 + ln

ρ
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 −

2Rl ∆g

ρ2

 

 
 
 

 

 
 
 

sin ω( )  7.3 

Now turning to the coil configurations of Figure 7.1 and 7.2, the outer coils at ρ = b, ω = 0 

measure Bω2, and the inner coils at ρ = b, ω = π measure Bω1.  The saddle or flux loops measure 

the difference in flux between the inner (Ψ1) and outer (Ψ2) equator.  Define  

  

B⊥ =
Ψ1 − Ψ2

4πRl b
=

ψ1 −ψ 2

2Rlb
       7.4 

then 
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Bω 2 − Bω1

2
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    7.5 

and 
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           7.6 

Therefore, assuming circular equilibrium, we can obtain the geometric displacement of the 

plasma from the vessel center, and the parameter Λ = βI + li/2-1 if we have an estimate of the 

plasma radius ap.  To get ap we must iterate our Equations 7.5 and 7.6, starting with an assumed 

value (say the limiter radius alim), and replacing it at step n by the maximum possible radius 

defined by ∆g and the specified limiter geometry at step (n-1).  Such a procedure is shown below 

  

3. Calculate plasma geometric center from  
estimated ap, 

4. Estimate new radius ap 
from plasma geometric center 
and limiter locations.

1. Set initial guess for plasma minor  
radius ap = limiter radius. Measure  
poloidal fields.

2.  Calculate    and   using 
estimated ap.

Λ ∆ 

∆ Λ, and .

Iterations to determine magnetic  
configuration from fields.

 

A more sophisticated method is to use a modified Rogowski coil (nA ∝ cos(ω)) to measure the 

part of Bω(ρ,ω) proportional to cos(ω), and a saddle coil (width ∝ sin(ω)) to measure that part of 

Bρ(ρ,ω) proportional to sin(ω).  Such coils were shown in Figures 3.2 and 3.3.  The coefficients 

measured (after time integration) will be, for a coil on a circular contour of radius ρ,  
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   7.7 
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From these two equations we obtain 

 
ρ
2

λ1 − µ1( )+
ρ2

4Rg

= ∆g +
ap

2

2Rl

Λ + 0.5( )     7.9 

 
Rl

ρ
λ1 + µ1( ) = Λ + log

ρ
ap

 

 
 

 

 
 = ΛT       7.10 

from which we can obtain the two unknowns Λ and ∆g, assuming ap (which must be determined, 

together with Λ and ∆g, by iteration).  Note that the term ln(r/a) represents that part of the 

inductance between the plasma surface and the coils. 

Extension of position measurement to non circular shapes 

The previous section showed how, for our circular equilibrium model, the geometric center could 

be measured.  We would like to generalize the method to allow non circular shapes.  In fact, the 

exact same diagnostics can do this, with certain important assumptions about the major radial 

dependence of the flux Ψ.   

• •

flux Ψ
1

field B ω1

plasma

external flux surface

R

Z

flux Ψ
2

field B ω2
∆2∆1

2b

 
 Figure 7.4.  Flux loops and poloidal field pick-up coils outside a plasma.  There is a 

 coordinate system based on the center R = Rl of the two measuring coils and flux loops 
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 (sensors).  The sensors are at a distance b from Rl.  The plasma geometric center is 

 displaced ∆g from Rl.   

Consider the situation in Figure 7.4.  The measurements of flux and field are supposed to be at 

the same location, either at point 1 (shown at the smaller major radius) or point 2 (larger major 

radius).  If the loops have the same value of flux, then they sit on a flux surface.  Using the saddle 

coil as shown in Figure 7.1, if the saddle coil output is zero then the inner and outer toroidal legs 

are on a flux surface.  We expand the flux as 

Ψplasma = Ψloop + ∆
∂Ψ
∂R

       7.11 

with ∆ the distance between the loop and the plasma surface.  This expansion goes badly wrong if 

there is an X point between the measuring loops and coils and the plasma surface, because in this 

case there is a point between the measuring loops and the plasma where ∂Ψ/dR = 0.  Since Bω = 

1/(2πR)∂Ψ/∂ρ, we can write  

Ψ1 = Ψloop + 2πR1∆1Bω1        7.12 

Ψ2 = Ψloop + 2πR2∆ 2Bω 2        7.13 

Now ∆2 = b-ap-∆g, ∆1 = b-ap+∆g, R1 = Rl-b, R2 = Rl+b, so that Equations 7.12 and 7.13 give 

  

∆ g =
Ψ1 − Ψ2

2π Bω1 Rl − b( ) + Bω 2 Rl + b( )[ ]− b − ap( )    7.14 

Therefore we can measure ∆g if we know the plasma minor radius ap.  In limiter geometry ap is 

determined by ∆g and the assumed known limiter geometry, so that as described before iterations 

are necessary to provide both ap and ∆g.  If necessary terms in ∂2Ψ/∂R2 can be measured using 

more Bω coils (two at the inner, and two at the outer, equator).  If the plasma is bounded by a 

separatrix, then the whole expansion is useless anyway, and we must turn to integral relationships 

discussed later.   

Extension of ββββI + li/2 measurement to non circular shapes 

From our simple circular equilibrium described in section 6, we know that the external field 

required to maintain a circular low beta plasma is given by Equation 6.49: 

BZ = −
µ0 Ip

4πRg

ln
8Rg

a p

 

 
 

 

 
 + Λ −

1

2

 

 
 
 

 

 
 
 

      7.15 
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Therefore if we know all the currents in the external conductors, the plasma current, minor radius 

and major radius, we can calculate BZ at the geometric axis R = Rg, and obtain a value for Λ = βI 

+ li/2 -1.  The result (Equation 7.15) has been found by numerical simulation to be accurate even 

for non circular discharges.  Therefore if we can calculate the maintaining field, and know the 

plasma minor radius and geometric center, we can calculate βI + li/2.  It becomes difficult to 

calculate the maintaining field if we have an iron core present; we will discuss this later.   

However, there are more general techniques which do not explicitly require this calculation of 

fields from currents, and we also discuss these later.   

Non-circular contours. 

So far we have only considered poloidal field measurements which can be made on a circular 

contour.  In many cases the simplest contour to use is that of the vacuum vessel, which is often 

non circular.  What do we do then?  In section 3 we discussed how fields on a rectangle can be 

characterized, and suggested that coils wound to measure “moments” might be useful.  

Specifically, we discussed modified Rogowski coils which would measure 

 s p ,τ = f p Bτdl
l

∫         7.16 

and saddle coils which would measure  

 s p ,n = f pBndl
l

∫          7.17 

where the  functions fp were taken to be the pth power of a vector radius on the contour l.  The 

geometry is re drawn in Figure 7.5.   
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η

ξ

Rl

z

R

Contour l

plasma

 

Figure 7.5.  Geometry used for a non-circular contour. 

An analogy with our cosinusoidally wound Rogowski coil and sinusoidally wound saddle coil 

would be a modified Rogowski coil measuring the first symmetric (in vertical position) moment 

 s1,τ = ξBτdl
l

∫          7.18 

and a saddle coil measuring the first asymmetric (in vertical position) moment 
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 −1 +
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   7.19 

To interpret what these coils will measure, we can write an equation for the components Bτ and 

Bn on our chosen contour (for a rectangular contour they will be either Bη or Bξ).  Because the 

only variables in the equations for an assumed circular equilibrium are the geometric 

displacement ∆g, Λ and minor radius ap, we must be able to derive expressions for the measured 

coil outputs s1,τ and s1,n in terms of these variables.  For example, if our contour is a square of 

half height and half width a, centered at R = Rl, we must find 

 s1,τ = s1, τ Ip ,ΛΛΛΛ,∆∆∆∆ g, ap , a, Rl( )       7.20 

 s1,n = s1,n Ip, ΛΛΛΛ,∆∆∆∆g , ap ,a, Rl( )       7.21 
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In principle we can then solve Equations 7.20 and 7.21 to give expressions for the required Λ 

and ∆g.  Iterations will be necessary because we will find ap entering the final results, which itself 

is only determined once ∆g is known.   

It may be that the particular geometry of the contour precludes performing the analytic integrals 

(Equations 7.18 and 7.19, using the analytical representation for the equilibrium fields outside a 

circular plasma).  In this case the problem must be solved numerically.  Equations 7.18 and 7.19 

are solved numerically for many different ∆g, Λ, and ap (we assume the contour geometry does 

not change!)  A regression analysis is then performed, in which  solutions of the form 

 ΛΛΛΛ = f
s1n

Ip

,
s1τ

Ip

,ap ,contourgeometry
 

 
 

 

 
      7.22 

 ∆∆∆∆ g = f
s1n

Ip

,
s1τ

Ip

,ap ,contourgeometry
 

 
 

 

 
      7.23 

are sought. 
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8.  SOME FUNDAMENTAL RELATIONS 

Geometry 

In  section 6 we derived an analytic expression for the flux outside a large aspect ratio (a/Rg << 

1) circular plasma, which we used in section 7 to interpret magnetic field measurements.  Here 

we want to derive some relationships which are of general use: we shall test them for the analytic 

equilibrium of section 6.  Use a right handed cylindrical coordinate system (R,φ,z), usually 

symmetric w.r.t. rotations around R = 0.  Referring to Figure 8.1, there is an axisymmetric region 

V, which completely encloses the plasma.  The cross section of V in the poloidal half plane (φ = 

0, R > 0) is Sφ, and the boundaries are Sn and l.  dV is the volume element on V, dSφ the area 

element on Sφ, dSn is the area element on Sn and dl the line element on l.  Therefore 

 dV = 2πRdSφ          8.1 

 dSn = 2πRdl          8.2 

dSφ

plasma

dSn

R

z

φ

contour l

 
Figure 8.1.  Geometry 

Normal and tangential derivatives on l are ∂/∂n and ∂/∂τ.  The positive orientation on l is that Sφ 

lies on the RHS.  Note this is DIFFERENT from what was assumed in section 6.  The general 

question is: "How can we derive information on the magnetic field and plasma in V (or Sφ) from 

the fields measured on l?" 
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Field representation 

We shall try and be as general as possible.  First we quickly re-derive the equilibrium equation.  

For the case of axisymmetry, we discussed in section 6 the description of the fields using the 

form 
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cos ω( )  

     8.3 

where   

 F = RBφ = µ f          8.4 

and ψ= RAφ 

From ∇xH = j, we can also write 

 j = −
1

µ
L

*ψ∇φ + ∇
F

µ
 
 
  

 
× ∇φ        8.5 

where the operator L* is defined for axisymmetric scalar fields as 

 L
*ψ = µR

2∇ •
∇ψ
µR

2

 
 
  

 
        8.6 

The operator L* satisfies the equation 

 L
*ψ = −µRjφ          8.7. 

For uniform permeability µ = µ0 we have L* reducing to the operator ∆*: 

 ∆∆∆∆*ψ = R
2∇ •

∇ψ
R

2

 
 

 
 = R

∂
∂R

1

R

∂ψ
∂R

 
 

 
 +

∂2ψ
∂z

2 ∆    8.8 

That is, ∆* is the operator on the LHS of the Grad Shafranov equation.  We also introduce the 

operator L: 

 Lψ =
1

µ
∇ • µ∇ψ( )         8.9 
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which reduces to the Laplacian ∆ for uniform permeability.  In a current free region we can use 

the representation H = ∇g, and ∇.B = 0 is then equivalent to Lg = 0. 

Identities 

Now we turn to some identities.  Green's first identity for L* is: 

 
1

µR
Sφ

∫ ψL
*ΘΘΘΘdSφ =

1

µR
l

∫ ψ
∂ΘΘΘΘ
∂n

dl −
1

µR
Sφ

∫ ∇ψ • ∇ΘΘΘΘdSφ     8.10 

Green's second identity (Green's theorem) is: 

 
1

µR
Sφ

∫ ψL
*ΘΘΘΘ − ΘΘΘΘL

*ψ( )dSφ =
1

µR
l

∫ ψ
∂ΘΘΘΘ
∂n

− ΘΘΘΘ
∂ψ
∂n

 
 

 
 

dl     8.11 

Both of these are derived by applying the divergence theorem to appropriate expression on V.  In 

particular see Smythe, static and dynamic electricity, page 53 eqn. 3.06(2) for a derivation of 

Green’s theorem, which is, for scalars A, B and E, 

 A∇ • E∇B( )− B∇ • E∇A( )[ ]
V

∫ dV = E A
∂B

∂n
− B

∂A

∂n

 
 

 
 

Sn

∫ dSn  .  8.11b 

Now let the function G(R,R') satisfy the equation L*G = µR'δ(R-R') in Sφ, where G is considered 

a function of R at fixed R'.  No boundary conditions mean that G is specified to within a constant.  

Then we obtain Green's third identity: 

 ψ R'( )= − Gjφ dSφ
Sφ

∫ +
1

µR
l

∫ ψ
∂G

∂n
− G

∂ψ
∂n

 
 

 
 

dl     8.12 
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plasma

coil region 3

region 1

vacuum region 2

contour l

τ

n

 
 Figure 8.2.  The boundaries between the plasma (Sφplasma) region 1, vacuum 

 (Sφvacuum) region 2 and coil (Sφcoil) region 3. 

Suppose Sφ can be split up into three regions, Sφplasma, Sφvacuum and Sφcoils, as shown in Figure 

8.2.  Assume µ = µ0 in the plasma and vacuum region.  The exterior region (the complement of 

Sφ in the right half plane) is called Sφext.  Then if this external region has only linear magnetic 

material, we can apply the last equation on the region Sφ+Sφext.  Choosing the Greens function 

G0 so that G0(R,R') = 0 as |R| goes to infinity, and as R goes to 0, we have 

  ψ R'( )= − G0 jφ dSφ
Sφ + Sφext

∫        8.13 

i.e. G0(R,R') equals the flux at R' caused by a negative current at position R.  Therefore we define 

 ψ int R'( )= − G0 jφdSφ
Sφ

∫         8.14 

 ψ ext R'( ) =
1

µR
l

∫ ψ
∂G0

∂n
− G0

∂ψ
∂n

 
 

 
 dl       8.15 

and ψ = ψext + ψint from Equation 8.12.  We understand ψext as the part of the flux caused by 

currents in the exterior region, and ψint is that part of the flux associated due to currents in Sφ.  

ψint is homogeneous in the exterior region, and ψext is homogeneous in the interior region. 

An analytic expression for G0 if µ = µ0 everywhere is: 
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 G0 R, R'( ) =
µ0

kπ
RR' E k

2( )− 1 −
k2

2

 
 
  

 
K k

2( ) 

  
 

  
    8.16 

where  

 k
2 =

4RR'

R + R'( )2 + z − z'( )2( )       8.17 

Ideal MHD 

Here we want to note only one important equation, which is a generalization of the “virial” 

equation.  We use Equations 6.1, 1.1 and 1.2.  Allow the total equilibrium field to be split up into 

two parts, 

 B = B1 + B2          8.18  

with ∇xB2 = 0.  We can choose the partitioning of B in a number of ways.  Multiplying jxB =∇p 

by an arbitrary vector Q, we can obtain 

  

p + B1

2

2µ 0

 

 
  

 
 ∇• Q − B1 • ∇Q • B1

µ0

 

  
 

  V

∫ dV

= p + B1

2

2µ0

 

 
  

 
 Q • n( ) −

B1 • Q( )• B1 • n( )
µ 0

 

  
 

  Sn

∫ dSn − Q • j × B2( )dV
V

∫

 8.19 

with n the normal to the surface Sn.  We have made use of the vector identity 

 Q ∇ × B • B[ ]= ∇ • Q • B( )B −
B2

2
Q

 

  
 

  
+

B2

2
∇ • Q − B B • ∇( )Q 

We shall use equation 8.19 later to derive important integral relationships. 

Boundary conditions 

Last in this section we turn to boundary conditions.  Suppose we have our three regions, as in 

Figure 8.2.  Region 1 (Sφplasma) contains all the plasma current.  Region 2 (Sφvacuum) contains no 

source, but contains a contour l on which we make measurements.  Region 3 (Sφcoils) is outside 

region 2, extends to infinity, and contains all external currents.  To find the plasma boundary we 

have to know ψ(R,z) in region 2 between the contour on which parameters are measured, and the 

plasma boundary itself.  In principle we can do this knowing either 
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a) ∂ψ/∂n (i.e. the tangential field) and either ∂ψ/∂τ (the normal field) or ψ on part of l (note 

specifying ∂ψ/∂τ is equivalent to specifying ψ to within an unimportant constant after integration.  

This is the Cauchy condition.  However, there are significant problems with stability to small 

errors in the measurements.  Therefore another useful set of boundary conditions is 

b) all currents in region 3, and either ∂ψ/∂n, ∂ψ/∂τ or ψ on l.  For example, suppose we know the 

currents and ψ on l. The total fields are then the superposition of the contributions from the 

external currents in region 3  and the plasma current in region 1: 

 ψ R, z( ) = ψ plasma + ψexternal        8.20 

ψexternal is already specified by specifying the external currents, so we must only determine 

ψplasma.  Since ψplasma is homogeneous outside l, it must be completely specified by the 

condition ∂ψplasma/∂n = 0 at infinity and either ψplasma (Dirichlet) or ∂ψplasma/∂n on l 

(Neumann).  But condition 2 tells us we already have one of these specified, so that ψplasma must 

be determined everywhere outside and on l.   

In fact we usually use an apparently over determined problem, for example knowing the external 

currents, ∂ψ/∂n  and ∂ψ/∂τ on l.  In fact this is not over determined because we only have the 

fields at discrete points, and usually the boundary conditions are only applied in a least squares 

sense. 
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9.  MOMENTS OF THE TOROIDAL CURRENT DENSITY 

Let Θ be an arbitrary function satisfying the homogeneous equilibrium equation L*Θ = 0 in Sφ, 

and let ψ be the poloidal flux function which satisfies L*ψ = -µRjφ.  Apply Green's second 

identity for the operator L* (Equation 8.11) to the pair (Θ,ψ):we obtain a fundamental integral 

equation: 

 ΘΘΘΘjφ dSφ
Sφ

∫ =
1

µR
ψ

∂ΘΘΘΘ
∂n

− ΘΘΘΘ
∂ψ
∂n

 
 

 
 

l

∫ dl       9.1 

The moments of the current density (i.e. the integral on the LHS) are expressed in terms of ψ and 

∂ψ/∂n on the boundary.  From L*Θ = 0 we have ∫
l
R-1µ-1(∂Θ/∂n)dl = 0 so there is no dependence 

upon the choice of the arbitrary constant in ψ.  We introduce together with Θ a conjugate function 

ξ according to the equation 

 ∇
ξ

µR

 
 
  

 
=

∇ΘΘΘΘ × ∇φ
µ

        9.2 

which admits a solution L*Θ = 0.  In cylindrical geometry, Equation 9.2 is 

 
∂

∂R

ξ
µR

 
 
  

 
= −

1

µR

∂ΘΘΘΘ
∂z

        9.3 

 
∂

∂z

ξ
µR

 
 
  

 
= −

1

µR

∂ΘΘΘΘ
∂R

        9.4 

The function ξ satisfies L(R-1µ-1ξ) = 0, (remember the operator L = µ−1∇.(µ∇ψ), which reduces 

to the Laplacian if µ is uniform).  Therefore the definition of ξ implies through Equations 9.3 and 

9.4 that −∂(R-1µ-1ξ)/∂τ = R-1µ-1∂Θ/∂n, where ∂/∂τ is the partial derivative along l (clockwise on 

the outer boundary).  Now by partial integration we can eliminate ψ from Equation 9.1 and write 

in terms of ∂ψ/∂τ: 

 ΘΘΘΘjφ dSφ
Sφ

∫ =
1

µR
ξ

∂ψ
∂τ

− ΘΘΘΘ
∂ψ
∂n

 
 

 
 

l

∫ dl =
1

µ
ξBn + ΘΘΘΘBτ( )

l

∫ dl    9.5 

i.e. the "moments" over the current density can be measured as line integrals of the normal (Bn = 

(1/R)∂ψ/∂τ) and tangential fields (Bτ = -(1/R)∂ψ/∂n) along the contour l. 
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An alternate derivation follows by letting fields q and g satisfy the equation 
1

µ
∇ × q( ) = ∇

g

µ
 
 
  

 
, 

so that ∇ × ∇ × q( ) = 0 .  Then 

 

q • jdV
V

∫ = q. ∇ × B

µ

 

 
  

 
V

∫ dV = ∇• B

µ
× q

 

 
  

 
+ B

µ
• ∇ × q( )

 

  
 

  V

∫ dV

= ∇ •
B

µ
× q

 
 
  

 
+ B• ∇

g

µ
 
 
  

 
 

  
 

  V

∫ dV =
B

µ
× q

 
 
  

 
• n +

g

µ
 
 
  

 
B • n

 

  
 

  Sn

∫ dSn

  9.6 

This has not invoked axisymmetry.  Letting q = Θ∇φ = and g = R-1ξ , and using Equations 8.1 

and 8.2 gives the previous result (Equation 9.5). 

To get the notation used by Shafranov, we let q = f∇φ (which has a component only in the f 

direction, q = f/R) and consider uniform permeability µ0.  Then we can write an expression for 

the "multipole moment" Ym of the toroidal current density 

 Ym =
1

Ip

fm jφ dSφ
Sφ

∫ =
1

µ0 Ip

fm Bτ + Rgm Bn( )
l

∫ dl     9.7 

where, from Equations 9.3 and 9.4, (i.e. 
1

µ
∇ × q( ) =

1

µ
∇ ×

f

R
eφ

 
 

 
 = ∇

g

µ
 
 
  

 
) fm and gm are 

various solutions of 

 
∂g

∂R
= −

1

R

∂f

∂z
         9.8 

 
∂g

∂z
=

1

R

∂f

∂R
         9.9 

Remember that  ∇x(∇xq) = 0, with q = f∇φ = eφf/R, so the equation for f is 

 
∂2 f

∂R
2 −

1

R

∂f

∂R
+

∂2 f

∂z
2 = 0        9.10 

That is, f is a solution of the homogeneous equilibrium equation and g is a solution of Laplace's 

equation.  Of course, the trick is to find useful expressions for fm (equivalent to Θm) and gm.   

An important point about the method of multipole moments is that the results obtained are 

sensitive only to currents flowing within the contour l (including vacuum vessel currents if the 

measurements are made outside this).  Thus either the total equilibrium fields, or just the plasma 
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fields, can be used.  The plasma fields can be calculated if external conductor currents are known.  

Using just the plasma fields alone may have advantages in terms of requiring fewer moments to 

accurately describe the data. 
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10.  PLASMA POSITION 

Position by multipole moments 

Let us apply the concept of multipole moments as described in section 9 to the geometry shown 

in Figure 10.1, using the notation of Shafranov, Equations 9.7 through 9.10.  Assume Sφ contains 

only the plasma and vacuum regions so that µ = µ0 and L* = ∆*.  The term ∫dSφ in Equation 9.7 

is over the plasma surface, in a coordinate system centered in the plasma, while the term ∫dl is 

evaluated in a laboratory frame.  The two coordinate systems are related by plasma position; 

therefore Equation 9.7 must provide information on the plasma position.   

 

Z

R
ω

ρ

1b

Z

R

1c

ηηηη

Rl

Z

1a

ξξξξ
R

φ

R
l

Rc

∆R

z∆

z

x

 
Figure 10.1.  The geometry used in section 10. 

There is a contour l, centered on R = Rl, with a local rectalinear system (η,ξ), and a second 

coordinate system based within the plasma, (z,x), centered at R = Rc, the plasma current center, 

defined later.  Note that ξ = x +∆R, η = z + ∆z, Rc = Rl + ∆R, and R = Rc+ x = Rl + ξ.  To be 

convenient, the moments (i.e. the choice of fm) should, in the large aspect ratio limit 

(x2+iz2)/Rp
2<<1, reduce to a form of the kind 

 x + iz( )m
         10.1 

with some denominator chosen to get convenient dimensions.  We look for solutions of f which 

are both even (symmetric) in z, and odd (asymmetric) in z.  Those suggested up to m = 2 are 



Magnetic fields and tokamak plasmas    Alan Wootton 

 88 

  

symmetric asymmetric

f0 = 1 f0 = 0

g0 = 0 g0 = −1

f1 = x 1 +
x

2Rc

 

 
 

 

 
 f1 = z 1+

x

Rc

 

 
 

 

 
 

2

g1 = z

Rc

g1 = − x

Rc

1 + x

2Rc

 

 
 

 

 
 +

z
2

Rc

2

f2 = x 2 1 +
x

2Rc

 

 
 

 

 
 

2

− z 2 1 +
x

Rc

 

 
 

 

 
 

2

f2 = 2xz 1+
x

2Rc

 

 
 

 

 
 −

4z
3

3Rc

 

 
 

 

 
 1+

x

Rc

 

 
 

 

 
 

2

g2 =
2xz

Rc

1+
x

2Rc

 

 
 

 

 
 −

2z3

3Rc

2 g2 = −
x 2

Rc

1 +
x

2Rc

 

 
 

 

 
 

2

−
z2

Rc

1+
4x

Rc

+
2x2

Rc

2

 

 
 

 

 
 −

2z 4

3Rc

3

 

           10.2 

Because the Ym are sensitive only to currents flowing within the contour l (including vacuum 

vessel currents if the measurements are made outside this), either the total equilibrium fields, or 

just the plasma fields, can be used.  The plasma fields can be calculated if external conductor 

currents are known.  Using just the plasma fields alone may have advantages in terms of requiring 

fewer moments to accurately describe the data. 

We define the current center by setting Y1 = 0.  Using the symmetric set we obtain 

  

ξ − ∆R +
ξ − ∆R( )2

2Rc

 

 
 

 

 
 Bτ +

Rl + ξ
Rc

ηBn

 

 
 
 

 

 
 
 
dl

l

∫ −
Rl + ξ

Rc

∆z Bn

 

 
 

 

 
 dl

l

∫ = 0 10.3 

i.e. the current channel displacement with respect to the center of the contour l is 

  

∆ R = ∆ R0 + ∆R1 −
∆ R0

2

2Rl

       10.4 

  

∆ R0 =
1

µ 0Ip

ξBτ +ηBn( )
l

∫ dl
 
  

 
  

      10.5 

  

∆ R1 =
1

µ0 I p

ξ 2

2Rl

Bτ +
ηξ
Rl

Bn

 

 
 

 

 
 

l

∫ dl
 

 
 

 

 
       10.6 

Ignoring the term ∆R0
2/(2Rl), then ∆R is constructed from two integrals, namely 

∫[ξ+(ξ2/2Rl)]Bτdl and ∫[η+(ηξ/Rl)]Bndl.  The first integral is measured with a modified Rogowski 

coil whose winding density times cross sectional area varies as ξ +ξ2/(2Rl).  The second integral 

is measured with a saddle coil whose width varies as η+ηξ/Rl.  Alternatively the integrals can be 

constructed from discrete local measurements. 
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Consider as an example a circular contour of radius al based on R = Rl.  Then ξ = al cos(ω) and η 

= al sin(ω).  These coils measure the fields in the coordinate system (ρ,ω,φ) based on the vessel 

center, and Bn = Bρ , Bτ = Bω.  Assuming a plasma with no vertical displacement, symmetric 

about z = 0, we can write 

  Bω = Bτ =
µ0I

2πal

1 + λ n cos nω( )
n

∑
 

  
 

  
      10.7 

 Bρ = Bn =
µ 0 I

2πal

µn sin(nω )
n

∑
 

  
 

  
      10.8 

Substituting these expressions into Equations 10.4 to 10.6 gives 

  

∆ R ≈
al

2
λ1 + µ1( )+

al

2

4Rl

1 +
λ2

2
+ µ2

 
 
  

 
 −

al

2

8Rl

λ1 + µ1( )2
   10.9 

i.e. for small displacements, (λ1+µ1) << 1, and a circular plasma (λn, µn, = 0 for n >1) we have, 

 ∆∆∆∆ R ≈
al

2
λ1 + µ1( )+

al

2

4Rl

       10.10 

i.e. all that is needed to measure the displacement of a nearly circular plasma within a circular 

contour (λn, µn, n ≥ 2 = 0) is a modified Rogowski coil whose winding density varies as cos(ω), 

and a saddle coil whose width varies as sin(ω).  This simple coil set gives the correct answer 

when the constant al
2/(4Rl) is allowed for.  We already knew this.  To allow for significant non-

circularity the more general expression (Equations 10.4, 10.5 and 10.6) should be used.  We can 

also derive equations to determine the vertical displacement of an arbitrarily shaped plasma, 

using the asymmetric components in Equation 10.2.   

Application to the large aspect ratio circular tokamak 

Let us apply these ideas to the circular equilibrium described in section 6, surrounded by a 

circular contour on which we have a sinusoidal area Rogowski coil and a cosinusoidal width 

saddle coil.  The equations given in section 6 were in a coordinate system (r,θ,φ) based on the 

plasma geometric center; they were transformed into the vacuum vessel coordinate system in 

section 7, Equations 7.1, 7.2 and 7.3, allowing for a geometric shift ∆g.   

The output from the integrated saddle coil with nw layers of width w(ω) = w0sin(ω) and integrator 

time constant τint is 
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 εµ 1 =
nww0al

τ int

Bρ ω( )sin ω( )
0

2π

∫ dω =
nw w0µ0 I p

τ int 2
µ1    10.11 

Using the expression for Bρ from Equation 7.3 we get 

 µ1 =
∆∆∆∆ g

al

−
al

2Rl

ln
al

a p

 

 
  

 
 + ΛΛΛΛ +

1

2

 
 

 
 1−

ap

2

al

2

 

 
  

 
 

 

 
 

 

 
      10.12 

The output from the integrated 'modified Rogowski coil each turn of area A, with n0cos(ω) turns 

per unit length, is. 

 ελ 1 =
n0 Aal

τ int

Bω ω( )cos ω( )
0

2 π

∫ dω =
n0 Aµ 0I p

τ int 2
λ1     10.13 

Using the expression for Bω from Equation 7.2 we obtain 

 

λ1 = −
∆∆∆∆g

al

−
al

2Rl

ln
al

ap

 

 
 

 

 
 + ΛΛΛΛ +

1

2

 
 

 
 1 +

ap

2

al

2

 

 
  

 
 −1

 

 
 

 

 
 

= −
a

l

Rl

ΛΛΛΛ + ln
a

l

ap

 

 
 

 

 
 

 

 
 

 

 
 − µ1

    10.14 

Before we can substitute these expressions (Equations 10.13 and 10.14) into Equation 10.10, we 

must recognize that our equilibrium fields were evaluated in a left handed coordinate system, 

while this section we have worked in a right handed system.  Sorting this out we find λ1 ⇒ -λ1, 

and µ1 ⇒ µ1, so that 

 ∆∆∆∆ R − ∆∆∆∆g =
ap

2

2Rl

ΛΛΛΛ +
1

2

 
 

 
        10.15 

This is the difference between the geometric center ∆g and the current center ∆R of a circular 

plasma, under the present  approximations.   We also note that, after sorting out the coordinates, 

subtracting the outputs from our coils gives 

 λ1 − µ1 =
al

Rl

ΛΛΛΛ + ln
al

ap

 

 
  

 
 

 

 
 

 

 
        10.16 

that is, we can measure  
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 βI +
li

2
= ΛΛΛΛ +1 = 1+

Rl

al

λ1 − µ1( )− ln
al

ap

 

 
 

 

 
      10.17 

Combining Equations 10.15 and 10.16, we see that we can measure the current center, the 

geometric center, and Λ, using our modified Rogowski and saddle coils. 
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11.  PLASMA SHAPE 

Using higher order moments we can obtain information on the plasma shape.  Y2 determines 

ellipticity and Y3 determines triangularity.  Using equations 9.7 and 10.2, we obtain: 

  

Y2 = 1 −
2∆R

Rl

 

 
 

 

 
 

s3

τ + s4

n( )
s0

τ + ∆z

2 − 1 −
∆ R

Rl

 

 
 

 

 
 ∆ R

2
     11.1 

where 

  

s3

τ = ξ2
1 +

ξ
Rl

 

 
 

 

 
 −η2

1+
2ξ
Rl

 

 
 

 

 
 

 

 
 

 

 
 Bτ dl

l

∫      11.2 

  

s4

n = 2ξη 1 +
3ξ

2Rl

−
η2

3Rl ξ

 

 
 

 

 
 

 

 
 

 

 
 Bndl

l

∫       11.3 

  

s0

τ = Bτdl
l

∫ = µ0Ip         11.4 

That is, with the Rogowski coil measuring Ip (i.e. s0
τ) and either modified Rogowski and saddle 

coils, or single point measurements of Bn and Bτ suitably combined, we can construct Y2.  If we 

want to use modified Rogowski and saddle coils, then to obtain Ip, ∆R and Y2 takes a total of 5 

coils.  For a circular contour, and ignoring toroidal effects, Equation 11.1 is written as 

  
Y2 = −∆ R

2 + ∆z

2 +
al

2

2
λ2 + µ2( )       11.5 

That is, neglecting toroidal effects we need only λ2 and µ2, in addition to ∆R and Ip. 

To interpret the moments it is necessary to assume a plasma current distribution; because the 

moment is an integral of the current density over the surface Sφ there is no unique solution for the 

boundary shape.  As an example, consider a uniform current density and a surface described by an 

ellipse with minor and major half width and half height a and b, so that 
x

a

 
 
 
 

2

+
z

b

 
 
 
 

2

=1 .  Then 

for k =
b

a
−1, k << 1, and ignoring toroidal effects, we have  

 Y2 ≈ −
ka2

2
         11.6 

In a similar manner, if the surface is described by a function which includes both elongation and 

triangularity, namely  
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x

a

 
 
 
 

2

+
z

b

 
 
 
 

2

+
2γx

a

x

a

 
 
 
 

2

−3
z

b

 
 
 
 

2 

 
  

 
 =1     11.7 

then ignoring toroidicity (i.e. x/Rl and z/Rl <<1, we have for a flat current distribution 

 Y3 ≈ −a
3γ          11.8 
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12.  MOMENTS OF PLASMA PRESSURE 

The Virial Equation 

Here we consider certain integral relations which allow us to determine information on the energy 

density within Sφ.  The techniques described to determine plasma position, and more generally 

plasma shape, needed only Maxwell's equations.  Now we add the constraint of equilibrium.  

Generally we apply these results to Sφ = Sφplasma + Sφvacuum: even simpler relations are obtained 

by identifying Sφ with Sφplasma.   

From a previously derived integral equation (Equation 8.19), we can obtain some very useful 

relationships.  First, take B2 = 0 (i.e. all the fields are described by B = B1), and let the arbitrary 

vector Q be the polar vector (r = ReR + zeZ.).  Then Equation 8.19 becomes the “virial theorem”: 

 3p +
B2

2µ 0

 

 
  

 
 

V

∫ dV = p +
B2

2µ 0

 

 
  

 
 r • n( ) −

r • B( ) B •n( )
µ 0

 

  
 

  Sn

∫ dSn    12.1 

Note that if B were the self plasma field, and there was no other field, then the surface integral on 

the RHS approaches zero as the surface (where p = 0) approaches infinity, because B(self) ∝ R-3.  

This contradicts the positive definiteness of the LHS volume integral, showing that equilibrium 

by self fields alone is impossible.  

Now restricting to toroidal symmetry, ∂/∂φ = 0.  Therefore the poloidal (subscript p) and toroidal 

(subscript φ) fields satisfy 

 
B = Bp + Bφ

Bp •Bφ = 0
         12.2 

Next assume that the surface Sn is outside the plasma, where ∇xB = 0, and that the vectors Q and 

B2 are purely poloidal (i.e. there is no toroidal component of B2); 

 
Q = QReR + Qz ez

B2 = B2ReR + B2 zez

        12.3 

Noting that the toroidal field outside the plasma is given by Bφe = const/R, then we have 

 Bφe

2

Sn

∫ Q • n( )dSn = Bφe

2

V

∫ ∇ • Q −
2Q • eR

R

 
 

 
 dV     12.4 
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and 

  B1 • B1 • ∇Q = Bp1 •Bp1 •∇Q +
Bφe

2
Q • eR

R
     12.5 

Using these, we can express Equation 8.19 so that the toroidal field enters only as Bφ2-Bφe
2 on 

the LHS: 

 

p +
Bp1

2

2µ 0

 

 
  

 
 ∇• Q +

Bφ
2 − Bφe

2

2µ0

∇ • Q − 2
Q •eR

R

 
 

 
 −

Bp1 •∇Q • Bp1

µ 0

 

  
 

  V

∫ dV

= p +
Bp1

2

2µ0

 

 
  

 
 Q • n( ) −

Bp1 • Q( )Bp1 •n( )
µ0

 

 
 

 

 
 

Sn

∫ dSn − j • Bp2 × Q( )[ ]
V

∫ dV

 12.6 

Now let  

 P = p +
Bφ

2 − Bφe

2

2µ 0

        12.7 

 T = p +
Bp1

2 + Bφe

2 − Bφ
2

2µ 0

 

 
  

 
        12.8 

(Remember B1 is the poloidal field).  Then the integrand on the LHS of Equation 12.6 can be 

written as (from now on drop the subscript p for poloidal) 

 . ..[ ]= P
∂QR

∂R
+

∂Qz

∂z

 
 

 
 

+
T

R
QR +

B1R

2 − B1z

2

2µ 0

∂Qz

∂z
−

∂QR

∂R

 
 

 
 

−
B1R B1z

µ 0

∂QR

∂z
+

∂Qz

∂R

 
 

 
 

  

           12.9 

Now we have to chose something for Q.  Let 

 u = R − Rch + iz = ρe
iω

       12.10 

with Rch some characteristic radius, a fixed point within the plasma cross section.  Then 

 ρ2 = R − Rch( )2

+ z
2

        12.11 

Now with this notation let 

 
QR = F u( )
Qz = −iF u( )

         12.12 
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so that the last two terms in Equation 12.9 are zero.  Next take 

 F u( ) = u
m +1

         12.13  

Finally we can rewrite Equation 12.6 in the form 

 

2 m +1( )Pu
m +

T

R
u

m+1 
 

 
 

V

∫ dV

= p +
B1

2

2µ0

 

 
  

 
 n R − inz( )−

B
1R

− B
1z( ) B

1
•n( )

µ 0

 

  
 

  Sn

∫ um+1dSn − j • B2 × Q( )[ ]
V

∫ dV

 

           12.14 

Surprisingly, this is useful.  We now consider the results when we take different values of m. 

m = -1, B2 = Bext 

Take B2 as the externally supplied maintaining field and B1 the plasma self field.  For large 

volumes the surface integral approached zero, and we have 

 −
T

R
V

∫ dV = jφ Bz, extdV
V

∫         12.15 

or equivalently 

 jφ Bz ,ext RdSφ
Sφ

∫ = − p +
Bp1

2 + Bφe

2 − Bφ
2

2µ0

 

 
  

 
 

 

  
 

  
dSφ

Sφ

∫     12.16 

Suppose (low toroidicity) that ρ/Rch <<1.  Then the R dependence of T appears in the form R - 

Rch, so that dT/dR = -dT/dRch.  Now because T/R = ∇.TeR - dT/dR (if ρ/Rch <<1) we have, with 

T = 0 at infinity: 

 
T

R
V

∫ dV = −
∂T

∂R
V

∫ dV ≈
∂

∂Rch

TdV∫( )      12.17 

Now introduce some definitions: 

 B⊥ = −
1

2πRch I p

jφ Bz,extdV
V

∫        12.18 
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 RT =

TRdSφ
Sφ

∫

TdSφ
Sφ

∫
        12.19 

 Lpt =
8π

µ0 Ip

2

Bp1

2

2µ 0V

∫ dV         12.20 

 βI =
8π

µ0Ip

2 pdSφ
Sφ

∫         12.21 

 µ I = −
8π

µ0Ip

2

Bφ
2 − Bφe

2

2µ0

 

 
  

 
 dSφ

Sφ

∫       12.22 

Note that µ0Lpt/(4π) is a total inductance, and the usual "inductance per unit length times 4π/µ0" 

is given as  

 Lp =
4

µ 0Rch Ip

2

Bp

2

2µ 0V

∫ dV        12.23 

Now we can write Equation 12.16 as 

 B⊥ =
µ0 I p

8πRch

β I + µ I +
∂

∂Rch

Rch Lp( ) 

  
 

  
      12.24 

This is a generalization of the external vertical field needed to maintain a plasma, allowing for 

non circularity. 

m = 0, B2 = 0 

Now Equation 12.14 gives an integral expression along the minor radius: 

 

PdV +
RT − Rch( )

2RTV

∫ TdV
V

∫

= 0.5
Bτ1

2 − Bn1
2( )

2µ
0

n •eρ − Bτ 1Bn1

µ
0

τ •eρ

 

 
 

 

 
 

Sn

∫ ρdSn − 0.5 jφ
V

∫ Bz2 R − Rch( )− BR2z[ ]dV

  

         12.25 
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If we assume that |R-Rch| << Rch, then the term with (RT-Rch)/(2RT) can be omitted, and the LHS 

is independent of the choice of Sn.  Therefore the RHS must also be independent of Sn.  Then we 

can write (with |R-Rch| << Rch) 

 PdV
V

∫ =
µ 0 Rch Ip

2

4
s1         12.26 

where s1 must be independent of the choice of B2.  In particular, taking B2 = 0, Equation 12.25 

can be written, using the definitions above, as 

 βI = µ I + s1          12.27 

where 

 s1 =
1

µ0

2
RchIp

2 Bτ
2 − Bn

2( )ρn • eρ − 2Bτ Bnρττττ •eρ[ ]dSn

Sn

∫    12.28 

The difference between s1 and 1 is due to non circularity.   

In fact, the constraint  R-Rch| << Rch, but not (RT-Rch)/(2RT), can be relaxed by redefining βIv 

and µIv as volume integrals: see Equations 12.31 and 12.32 below. 

m = -1, B2 = 0 

Now we obtain another important integral relationship, assuming |R-Rch| << Rch, namely 

 βI +
Lp

2
=

s1

2
+ s2         12.29 

where 

 s2 =
1

µ 0

2
I p

2 Bτ
2 − Bn

2( )n • eς − 2Bτ Bnττττ • eς[ ]dSn

Sn

∫     12.30 

and ζ = R - Rch. 

In fact, the approximation |R-Rch| << Rch is not necessary if β and µ are redefined as volume 

integrals, namely 

 2πRchβIV =
8π

µ 0 Ip

2 pdV
V

∫        12.31 
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 2πRchµ IV = −
8π

µ 0 I p

2

Bφ
2 − Bφe

2( )
2µ 0

dV
V

∫        12.32 
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13.  ββββI + li/2 

Solution 

In the previous section, Equation 12.29, we showed that we could express the parameter βI + Lp/2 

through the integral equation  

 βI +
Lp

2
=

s1

2
+ s2         13.1 

where s1 and s2 are two integrals of the fields over dSn, which we will be able to measure as 

contour integrals, namely 

 

s
1

= 1

µ0

2
RchIp

2
Bτ

2 − Bn

2( )ρn • eρ − 2Bτ Bnρττττ •eρ[ ]dSn

Sn

∫

=
2π

µ 0

2
RchI p

2
Bτ

2 − Bn

2( )ρn • eρ − 2BτBnρττττ •eρ[ ]Rdl
l

∫
    13.2 

 

s
2

= 1

µ 0

2
I p

2
Bτ

2 − Bn

2( )n • eς − 2Bτ Bnττττ • eς[ ]dSn

Sn

∫

=
2π

µ 0

2
I p

2
Bτ

2 − Bn

2( )n • eς − 2Bτ Bnττττ • eς[ ]Rdl
l

∫
    13.3 

Equation 13.1 was good for toroidal geometry if volume definitions βIV and µIV were used.  Note 

that dSn = 2πRdl, so that s1 and s2 can be written as contour integrals around l.  Unfortunately 

they involve the squares of fields, and so we cannot design simple modified Rogowski and saddle 

coils to make the measurements.  Instead we must measure Bn and Bτ at discrete points along the 

contour, and then construct the required integrals.  All we have to do is construct the integrals s1 

and s2 from measured Bn and Bτ. 

Suppose we are measuring fields on a circular contour of radius al, centered at R = Rl = Rch; that 

is we identify our characteristic radius with the center of the contour l.  Then in the vessel 

coordinates we have ττττ.eρ = 0, n.eρ = 1, n.eζ = cos(ω), ττττ.eζ = -sin(ω), and dSn = 

2πRl[1+(al/Rl)cos(ω)]aldω.  If the fields can be expanded as in Equations 10.7 and 10.8, and 

keeping only the terms λ1 and µ1 (i.e. a circular plasma), we obtain 
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s1 = 1

s2 = Rl

al

λ1 + µ1( )        13.4 

i.e., substituting 13.4 into 13.1: 

 βI +
Lp

2
= 1+

Rl

al

λ1 + µ1( )       13.5 

Let us apply this equation to the displaced analytic equilibrium discussed in sections 6 and 9.  

The Rogowski coil with cosinusoidal varying winding density, and the saddle coil with sinusoidal 

varying width, tell us λ1 and µ1.  First there is a mess with right and left handed coordinate 

systems to unravel.  Doing this then µ ⇒ -µ in Equation 13.5.  Now Equation. 10.16 already tells 

us that 

 λ1 − µ1 =
al

Rl

ln
al

ap

 

 
  

 
 + β I +

li

2
−1

 

 
 

 

 
       13.6 

Therefore comparing Equations 13.5 and 13.6 we must have (allowing µ ⇒ -µ in Equation 13.5) 

that  

 
li

2
+ ln

al

ap

 

 
 

 

 
 =

Lp

2
        13.7 

This is exactly what we expect, because the total inductance to a radius al is given by: 

 Ltotal = 2πR
µ 0

4π
 
 

 
 Lp = µ0 R ln

al

ap

 

 
  

 
 +

li

2

 

 
 

 

 
      13.8 

Separation of ββββI and li 

If we have βI + li/2 from the poloidal field measurements just described, and βI from diamagnetic 

measurements (see later) then obviously we can separate βI and li  If no diamagnetic 

measurement is available, two possibilities exist.  For non circular plasmas, there is a third 

integral relationship, which I have not derived, which gives in terms of a measurable line integral 

the parameter ∫
V

(2p+Bz
2/µ0)dV.  When V is the plasma volume, this is related to 2βI + Lp.  If the 

volume averages <Bz
2> and <Bp2> are different, as is the case for non circular discharges, then 

this measurement allows the separation. 
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For near circular plasmas, we must estimate Lp separately.  For example, for the simple circular 

low beta equilibrium of section 6, we can take a model current distribution jφ0(r) = j0(1-(r/a)2)α.  

Then li = Lp-ln(al/ap), with li given as a function of α  = (qa/q0 -1).  By assuming q0 = 1 we can 

then estimate li, and make the separation.  

Comments on the definition of poloidal beta 

We must be careful with the definition of "poloidal beta".  So far we have used Equation 12.21, 

namely 

 βI =
8π

µ0Ip

2 pSφ
Sφ

∫         13.9 

We could replace βI by βp (the poloidal beta), which characterizes the ratio of plasma pressure to 

the pressure of the magnetic field for an arbitrary shaped cross section.  It should be introduced so 

that the pressure balance, Equation 12.27, is replaced by 

 β p = 1 + µp          13.10 

so that βp = 1 for µp = 0.   
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14.  DIAMAGNETISM 

Comments 

Next we turn to the toroidal flux and its measurement.  Before plasma initiation this is simply 

given by Bφdl
l

∫ = µ0 jzdS
S

∫ , i.e. 2πRBφ = µ0 Iz , where we have applied Amperes law to a contour 

in the toroidal direction, encircling the inner vertical legs of the toroidal field coils (i.e. Iz = 

izntnc, with iz the current from the generator, nc the number of assumed series coils, and nt the 

assumed series number of turns in each coil). 

Microscopic picture for a square profile plasma in a cylinder 

During formation inside a magnetic field the plasma particles acquire a magnetic moment m: 

 m = Areaorbit Iorbit = π
v

ω
 
 

 
 

2
qω
2π

 
 

 
       14.1 

Since ω = qB/me, we have 

 m =
mev

2

2B
         14.2 

adding up to a total magnetic moment   

 M = nmSφ          14.3 

per unit length of column with cross section Sφ and a number density of n   Supposing cylindrical 

geometry the elementary currents cancel within the homogeneous column, leaving only an 

azimuthal surface "magnetization' current density js: 

 js = nm =
nkbT

B
=

p⊥

B
        14.4 

where p⊥ = nkb(Te + Ti)⊥, kb is Boltzmann’s constant.  The toroidal field will be modified. 

The associated flux from this surface current can be calculated: 
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∆Φ∆Φ∆Φ∆Φ = πap

2 ∆∆∆∆Bφ = πap

2 µ 0

2πR
I = πa p

2 µ0

2πR
2πRjs

= πap

2 µ 0

2πR
2πR

p⊥

Bφ

= πap

2µ0

p⊥

Bφ

 

Using the definition of βI, discussed much more a little later, we then have 

 ∆Φ∆Φ∆Φ∆Φ =
µ0

2
Ip

2β I

8πBφ
 

 

Macroscopic picture 

Let us consider a toroidal device with no toroidal current plasma current, i.e. a stellarator, in 

which the necessary rotational transform is produced only by external conductors.  Starting with 

the radial pressure balance, with p⊥= 0 at the plasma edge, and approximating the torus by a long 

cylinder, then 

 
dp⊥

dr
= jθ Bφ          14.5 

integrating over the minor radius (r = 0 to ap) gives 

 p⊥ = −Bφ jθ r'( )dr'
r

ap

∫         14.6 

and  

 

p⊥ = 1

πa p

2
2π

0

ap

∫ p⊥ rdr = −
Bφ

πap

2
2π

0

ap

∫ rdr jθ r'( )
r

ap

∫ dr'

= −
Bφ

πap

2
π

0

ap

∫ r 2 jθ r( )dr = −Bφ

S r( )
πap

2

0

ap

∫ jθ r( )dr

    14.7 

Then jse = ∫
0

ap
S(r)/(πap

2)jθ(r)dr is the effective surface current density at the plasma edge as a 

consequence of the finite plasma pressure.  
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Paramagnetic and diamagnetic flux 

Outside the plasma the toroidal field has the form Bφe = Bφ0(R0/R), with Bφ0 the value at a fixed 

radius R0.  This toroidal field, together with the poloidal field, takes part in balancing the plasma 

pressure.   

We need an equation relating fields to pressure.  Substituting ∇ × B = µ 0 j  into ∇p = j × B  yields 

(using B × ∇ × B( ) =
∇B2

2
− B • ∇( )B ) 

 ∇ p +
B2

2µ 0

 

 
  

 
 = B• ∇( ) B

µ0

 

For a straight axially symmetric system (∂/∂z = 0) we obtain 

 
∂

∂r
p +

Bz

2 + Bθ
2

2µ0

 

 
  

 
 = −

Bθ
2

rµ 0

 

Multiplying each side by r2, letting u = r2, du = 2rdr, dv = ∂/∂r(.), v = (..), we obtain by 

integrating by parts (∫udv = uv - ∫vdu) 

 r
2

p +
Bz

2 + Bθ
2

2µ0

 

 
  

 
 

0

a

− p +
Bz

2 + Bθ
2

2µ0

 

 
  

 
 

0

a

∫ 2rdr = −
Bθ

2

µ 00

a

∫ rdr  

i.e.,  

 p +
Bz

2 + Bθ
2

2µ 0

 

 
  

 
 

r = a

=
1

πa
2 p +

Bz

2

2µ0

 

 
  

 
 

0

a

∫ 2πrdr  

That is, ignoring curvature and equating Bz with Bφ, the pressure balance constraint is 

 2µ 0 p = B
θa

2 + B
φe

2 − Bφ
2

       14.8 

where Bφ is the toroidal field inside the plasma, Bφe is the toroidal field outside the plasma,  <..> 

means an average over the plasma radius, and we have assumed p = 0 at the boundary (i.e. at r = 

a).  That is, for a given plasma current Ip and pressure <p>, the difference (Bφe
2 - <Bφ2>) adjusts 

itself to ensure pressure balance.  This happens because of a poloidally flowing current, either 

diamagnetic or paramagnetic, in the plasma, as we derived in equations 14.4 and 14.17.  In a 

tokamak we have Bφe
2 >> Bφe

2 - <Bφ2>, so that if the cross section is circular with radius ap, 
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 Bφe

2 − Bφ
2 ≈ 2Bφe Bφe − Bφ =

2BφeδΦΦΦΦ

πa p

2      14.9 

where  

 δΦΦΦΦ = πap

2
Bφe − Bφ         14.10 

is the diamagnetic flux of the longitudinal (toroidal) field.  We will discus its measurement later; 

it is the difference in toroidal flux in the plasma column when the plasma is initiated.  Defining 

 βI =
8π

µ0Ip

2 pdSφ
Sφ

∫  

i.e. βI =
2µ0 p

B
θa

2   for a circular cross section    14.11  

with Bθa =
µ0I p

2πap

 the poloidal field at the plasma edge, we can write 

 βI = 1+
8πBφeδΦΦΦΦ

µ 0

2
I p

2         14.12 

From this equation we write the net flux difference δΦ = (µ0Ip)2/(8πBφe).(βI - 1) as the sum of 

the paramagnetic flux δΦp: 

 δΦΦΦΦp = −
µ0

2
I p

2

8πBφe

        14.13 

due to the poloidal component of the force free plasma current, and the diamagnetic flux δΦd: 

 δΦΦΦΦd = −δΦΦΦΦpβ I         14.14 

due to the poloidal currents providing pressure balance for the finite pressure. 

Toroidal, non circular geometry 

In a torus curvature must be accounted for:  Corrections with coefficients (a/R) appear in the RHS 

of the equation for βI.  For  βI << R/a the corrections are small, and it should be noted only that 

for Bφe the value on a line R = Rg, the plasma center, should be used.  We will derive that below.  

Also, we must now be rather careful with definitions. 
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We derived, in section 13, a general expression relating βI to poloidal field measurements and the 

diamagnetic measurements.  This derivation allowed for both toroidicity and non circularity, and 

gave in terms of volume integrals (equations. 12.31, 12.32, 12.27, 12.28) 

 βIV = µ I + s1           14.15 

 µ IV = −
4

µ 0 Rch I p

2

Bφ
2 − Bφe

2( )
2µ0V

∫ dV        14.16 

 βIV =
4

µ 0 Rch I p

2 p
V

∫ dV         14.17 

The measurable integral s1 = 1 for a circular discharge.  Remember that Rch was a characteristic 

major radius of the plasma.  Because we can write |Bφe-Bφ| << Bφ0, the diamagnetic parameter 

can be expressed through the experimentally determined flux (the measurement is discussed later) 

 δΦΦΦΦ = Bφe − Bφ( )dSφ
Sφ

∫         14.18 

By substituting (Bφe
2-Bφ2) ≈ 2Bφ(Bφe-Bφ), and writing  

 Bφe =
Bφ 0 Rch

R
         14.19 

then we have 

 µ IV =
8πBφ 0δΦΦΦΦ

µ0

2
Ip

2         14.20 

That is, in toroidal geometry and for an arbitrary shaped cross section, measuring δΦ and the 

integral s1 gives us a good measure of βIV, the volume defined current beta.  Note that the field 

Bφ0 is the external field at the characteristic plasma major radius, which we can take as Rch ≈ Rg.. 

The meaning of ββββI 

We can understand βI by integrating by parts Equation 14.11 to give (for a circular cross section), 

and assuming p at r = ap = 0, we have 
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βI =
8π

µ0Ip

2
prdrdθ

0

ap

∫
0

2 π

∫ =
8π

µ0 I p

2
2 prdr

0

a p

∫

= 8π 2

µ 0I p

2
pr 2

0

a p − r 2 dp

dr
dr

0

ap

∫
 

 
 

 

 
 = − 8π 2

µ0 I p

2
r 2 dp

dr
dr

0

ap

∫

    14.21 

Here we have integrated by parts, with u = p, du = (dp/dr)dr, v = r2, dv = 2rdr.  Next we use the 

approximate pressure balance equation (dp/dr = jθBφ - jφBθ, we will work in a RH coordinate 

system).  We substitute for jθ and jφ in terms of Bφ and Bθ (from µ 0 j = ∇ × B), i.e.  

µ 0 jθ = −
∂Bφ

∂r
, µ 0 jφ =

1

r

∂ rBθ( )
∂r

, we obtain 

 
dp

dr
+

d

dr

Bφ
2

2µ0

 

 
  

 
 +

Bθ

µ0r

d

dr
rBθ( )= 0       14.22 

Substituting for dp/dr from equation. 14.22 into equation. 14.21 gives 

 

βI =
4π 2

µ0

2 Ip

2

d Bφ
2( )

dr
r 2dr

0

ap

∫ + 2Bθr
d rBθ( )

dr
dr

0

ap

∫
 

 
 

 

 
 

=
1

ap

2
Bθa

2

d Bφ
2( )

dr
r

2
dr

0

ap

∫ + rBθ( )2

0

ap
 

 
 

 

 
 

= 1 +
1

ap

2 Bθa

2

d Bφ
2( )

dr
r2 dr

0

ap

∫

     14.23 

If (dBφ2/dr) > 0 then βI > 1, and if (dBφ2/dr) < 0 then βI < 1.  Figure 14.1 shows this 

schematically.  A reduced Bφ (diamagnetic) inside the plasma is associated with βI > 1.  The 

normal ohmic heating case, with βI ≈ 0.3 has an increased Bφ inside the plasma (paramagnetic).  

The figures are not well drawn, because we must have that BφR is constant on a flux surface.  
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> 1 β
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< 1

 
Figure 14.1.  The toroidal field with different values of βI. 

Measurements 

coil output  
Figure 14.2.  A simple loop to measure toroidal flux. 

To measure δΦ it is usual to use a wire wrapped around the vacuum vessel, as in Figure 14.2.  

The voltage output from the coil is integrated to give a signal proportional to the enclosed flux.  

For most cases δΦ is small, typically ~ 1mWb, which must be compared to a typical vacuum flux 

Φv = 1Wb enclosed by the same loop.  Therefore we have to use techniques which allow 

measurements to better than 1 part in 104 to get 10% accuracy in values of βI.  This is done using 

compensating coils. 
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Toroidal Field Coil
Vessel

loop

Compensating
coil

Fig 14.3. Diamagnetic loop  
and compensating coil

Fig 14.4. Two concentric diamagnetic loops

loop 1
loop 2Diamagnetic

plasma

  

Figure 14.3 shows a typical set up for the 'diamagnetic loop', a single turn coil around the vessel, 

and a compensating coil.  The idea is to make the vacuum signal from the two coils as near 

identical as possible, so that a simple summing (or subtraction) circuit can be employed.  A 

compensating and balancing circuit is then employed, as for example is shown in Figure 14.5.  

The vacuum common mode flux is canceled using the summing integrator, so that the balance is 

determined only by the effective areas and the resistors.  The product of resistance and 

capacitance (RC) is adjusted using 'toroidal field only' shots (no plasma).  By opening the switch 

after the toroidal field (TF) has 'flat topped' much of the common mode is also rejected.  Of 

course, to balance the system during the toroidal field only shots the switch is opened to consider 

toroidal field ramp up.  The circuit shown also allows for phase difference between the two 

signals to be compensated. 
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diamagnetic loop

compensating coil

 

_

plasma

Ω

C
Ωi

i

C

integrator gate

balance resistor

•
•

 
Figure 14.5.  A diamagnetic coil compensating system 

An alternative technique is to wrap two simple toroidal flux loops around the vessel, but at 

different minor radii.  Such a configuration is shown in Figure 14.4.  Let two concentric loops 

have radii b1 and b2, and let Rl be the major radius of the loops.  Then, remembering that Bφe = 

Bφ0Rl/R, we have after time integration 

  

Φ(bi) = 2πRl Bφ0 Rl − Rl

2 − bi

2( )
1

2
 

  
 

  
+δΦ      14.24 

  

Φ(bi) = 2πRl Bφ0 Rl − Rl

2 − bi

2( )
1

2
 

  
 

  
+δΦ      14.25 

  

δΦ = Φ(b1) − k Φ(b2 ) − Φ(b1 )( ); k =
b1

2

b2

2 − b1

2

R
l

2 − b1
2 + R

l

2 − b2
2

Rl + R
l

2 + b1
2

 14.26 
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From these two signals we can calculate δΦ.  The subtractions are performed electronically (i.e. 

analog); the constant k is determined experimentally so that δΦ is zero without plasma (toroidal 

field only). 

In reality there are problems.  One in particular is caused by the discreteness of the toroidal field 

system, and the current redistribution in the toroidal field coils during a shot.  When the toroidal 

field current is initiated, the current flows at the inner edge of the conductors to minimize the 

linked flux.  As the pulse proceeds, the current redistributes and approximates a uniform 

distribution (not exactly because of repulsion of current channels).  The time for this 

redistribution to occur is approximately the radial penetration time of the poloidal current into the 

conductor of radial extent w: τ ≈ πµ0σw2/16, typically 200 ms.  If the toroidal field system was a 

perfect toroidal solenoid this redistribution would leave the fields unaffected.  However, because 

of the discrete number of toroidal fields, there is now a time varying toroidal field ripple.  The 

size of the changing field ripple depends on where a pickup coil is placed: therefore two coils 

linking the same steady state flux can link different transient fluxes.  It is best to place the coils 

between the toroidal field coils, where the redistribution effect is smallest. 

Another problem is due to poloidal eddy currents in any conducting vacuum vessel.  This 

produces a non zero change in the toroidally averaged Bφ, not just a local ripple.  Therefore it 

couples strongly to the pickup loops.  Compensation for both the effects discussed has been 

performed successfully using software, by simulating redistribution and eddy currents as simple 

circuits, coupled to both the primary Bφ coil current and a secondary pickup coil.   

Further problems occur if the loops are not exactly positioned, so that they couple to the poloidal 

fields produced by the primary, vertical field and shaping windings.  That any such effects exist 

can be checked for by firing discharges with positive (+) and negative (-) Bφ.  Let ∆Φp be the 

signal caused by poloidal field coupling, ∆Φ(+) the signal obtained with positive Bφ, and ∆Φ(-) 

the signal obtained with negative Bφ.  While the toroidal field coupling effects will change sign 

with reversing Bφ, any poloidal field effects will not.  Therefore 

 ∆Φ∆Φ∆Φ∆Φ +( ) − ∆Φ∆Φ∆Φ∆Φ −( ) = 2 δΦΦΦΦ + ∆Φ∆Φ∆Φ∆Φ p( )      14.27 

 ∆Φ∆Φ∆Φ∆Φ +( ) + ∆Φ∆Φ∆Φ∆Φ −( ) = 2∆Φ∆Φ∆Φ∆Φ p        14.28 

Any finite ∆Φp can be correct for using a circuit model again, with the coupling between any 

winding (including vacuum vessel) and the pickup coil written in terms of mutual inductances. 
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15.  FULL EQUILIBRIUM RECONSTRUCTION 

The problem under discussion is how to reconstruct as much as is possible about the equilibrium 

from external measurements.  In particular, if we knew everything about the fields outside the 

plasma, what could we uniquely determine?  Could we separate βI and li? (In principle yes for 

toroidal systems).  Could we go further and actually uniquely determine the plasma current 

distribution of a toroidal plasma (I don't know)?   

If we want to allow measurements of dp(ψ)/dψ and FdF(ψ)/dψ we must have redundancy beyond 

that required to solve the equilibrium equation with a known current density profile.  We see 

immediately a problem in straight geometry, because with straight circular cross sections the 

magnetic measurements must be consistent with a solution that has concentric circular surfaces.  

In this case the measurements are consistent with any profile function which gives the correct 

total plasma current, so there is an infinite degeneracy.   

In practice the mathematical subtleties of what can and cannot in principle be determined are not 

discussed.  Instead the usual technique for equilibrium reconstruction is to choose a 

parameterization for jφ, with a restricted number of free parameters.  These free parameters are 

chosen to minimize the chi squared error or cost function between some measured and computed 

parameter, for example the poloidal field component on some contour.  Obviously we need some 

boundary conditions, as discussed in section 8.  Information available might consist of the flux ψ 

on a contour, the fields Bn and Bτ on a contour, and currents in conductors, the total current, and 

if lucky the diamagnetism.  Typical parameterizations are 

 jφ = aβ
R

R0

+ 1− β( ) R0

R

 

  
 

  
g δψ( )      15.1 

 jφ = α1δψ + α2δψ 2 +α 3δψ 3( )R + b1δψ( )R
−1

    15.2 

with δψ = (ψ-ψboundary)(ψmag axis-ψboundary).  In each case the term proportional to R represent 

the part of jφ proportional to dp/dψ, and the part of jφ proportional to R-1 is proportional to 

FdF/dψ.  Ro is some characteristic radius.  The assumed function g might be of the form g(δψ,γ) 

= exp(-γ2(1-δψ)2, dψγ or δψ + γδψ2.  If in equation 15.1 the function g(δψ) is 1, then the 

description of jφ is called quasi uniform: for a circular outer boundary there is an exact analytic 

solution of the equilibrium equation. 
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The general results show that, given only poloidal field magnetic measurements (i.e. no 

diamagnetic signal), then βI and li can only be separated for significantly non circular equilibria.  

From our discussions of βI+li/2, we know we can measure βI+Li/2 exactly anyway.  If we have 

reconstructed the plasma surface then we can evaluate the integrals s1 and s2 on that plasma 

surface, and then Li = li.  For circular equilibria it is found that only the sum βI + li/2 can be 

found.  Of course, adding a diamagnetic measurement allows the separation for any shape, as we 

have seen.  Also adding a pressure profile form, or the pressure on axis, is enough to allow 

separation even for circular discharges.  It is generally found that a distortion of the shape to b/a ~ 

1.3 is needed to make the separation. 

A significant problem is that, having made specific assumptions about the form of the current 

density profile, we do not know how general our results are.  
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16.  FAST SURFACE RECONSTRUCTION 

Here we want to investigate 'fast' methods of determining the plasma boundary, and fields on that 

boundary.  If we can do this, then we can exactly derive parameters such as βI + li/2, and q, on the 

boundary, as well as parameterizing the boundary shape itself.  Here we specifically do not want 

to obtain any information on fields and fluxes inside the plasma boundary.   

In the vacuum region Sφvacuum bounded by the contour lplasma and l, the flux function satisfies 

the homogeneous equation L*ψ = 0.  A solution for this equation which agrees with boundary 

conditions on l, and that is valid in a region containing Sφvacuum, must then be valid on the 

plasma boundary itself. 

In general we choose to approximate ψ by a series solution  

 ψ ≈ ψest = ψ 0 + c jχ j

j =1

N

∑        16.1 

With ψ0 any known terms, and the basis functions all satisfy the homogeneous equilibrium 

equation on some region Sφ0 which includes the vacuum region Sφvacuum.  Following the 

discussion in section 8 we can write ψ = ψext + ψint from Equations 8.12 through 8.15.  Usually 

we take an interior solution ψint associated with current distributions inside Sφ, and an exterior 

part ψext associated with currents in the exterior region Sφext.  For example ψext may be known 

from measured currents in external conductors, or calculated directly from the measurements 

using Green's functions.  Various representations for the plasma current have been used;  

 an expansion in toroidal eigenfunctions,  

 discrete current filaments,  

 single layer potential on a control surface,  

To date no purely analytic answers are available; generally the coefficients in an expansion, of 

position or currents in filaments, are altered numerically to provide a minimum "chi squared" 

between some measured and computed fields or fluxes.  For example, suppose the actual 

measurements are represented by qi, with i running from 1 to M.  There is a response matrix Q 

such that 

 qest ,i = qest,i

0 + c jQijj =1

N

∑        16.2 
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where qest,i is the value expected for qi when Equation 15.1 holds.  qest
0

,i is associated with ψo, 

and the known Qij is associated with χj.  Then the usual least squares approach will determine the 

coefficients cj to minimize the function 

 
qi − qest ,i( )2

σ i

2

i =1

M

∑         16.3 

With σi the standard error of the ith measurement.  This procedure may not be stable, in which 

case some numerical damping is added  

One technique which avoids the iterations necessary to match the measured and predicted field 

components is as follows.  From the measured fields construct the multipole moments Ym using 

the techniques outlined in sections 9 and 10.  Then m toroidal filaments with current (Ip/m) can 

be positioned to give the same moments Ym as those measured.  Because we have analytic forms 

for the Ym produced by discrete current filaments (the integral Ym = ∫jφfmdSφ only takes a finite 

value at the filament location) we can derive analytic expressions for the filament positions in 

terms of the measured Ym's, thus avoiding the need for the iterative procedure.  Just as discussed 

above, we then use toroidal filaments with known currents for external windings, the m filaments 

for the plasma, and plot the flux contours immediately.  Solutions up to the plasma boundary are 

as exact as our set of moments allows.  I am not sure how unique the solution is, or to what extent 

I should consider taking more than m filaments.  We have still to ask if our solution is unique: 

that is, do the m moments uniquely specify the fields on the contour l? 

An example of such a procedure is shown in Figure 16.1a.  Figure 16.1b shows a full 

equilibrium reconstruction with jφ(r) iterated until a good fit between measured and computed 

moments was obtained.  Clearly the 3 filament approximation, with the filaments chosen to give 

the measured moments Y1,Y2 and Y3, gives a good description of the outer surface.  

In principle we should be able to extend the "moments with filaments" method of finding the 

plasma shape to the use of an analytic representation for the current density.  Indeed, we did this 

in section 11 to find a relationship between the second moment Y2 and ellipticity.  However, 

there we made an arbitrary choice that the current density be flat.  In fact we should specify that jφ 

satisfy the Grad Shafranov equation: this problem is considerably more complicated.  However, if 

solved, we should be able to obtain analytic relationships between the measured moments and the 

plasma shape.  We would still have to parameterize the form for jφ: this would be restricted by, 

for example, a knowledge of the ratio of q on axis to q at the edge. 
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Fi

gure 16.1a.  External surface reconstruction Figure 16.1b.  External and internal    

     surface reconstruction 
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17.  FLUCTUATING FIELDS  

(MIRNOV OSCILLATIONS and TURBULENCE) 

Mirnov Oscillations 

In tokamaks it is expected that magnetic islands play a role in determining transport.  Their 

structure is approximately of the form exp(i(mθ+nφ)), and they are located at surfaces where q = 

m/n, a ratio of integers.  This is illustrated in Figure 17.0. 

resonance 1

resonance 2

q =
m1
n1

m1
n1

q = m 2
n 2

w
2

w1

w
s

 
Figure 17.0.  The envelopes of two adjacent magnetic islands. 

In terms of the Fourier coefficients of the radial component of perturbing field br,mn at the 

resonant surface rmn (where q = m/m), the island full width w is given by: 

 wi = 2
4q2 brmn R

mBφ
∂q

∂r

       17.1 

Note that if the current distribution is uniform, (so ∂q/∂r=0) and a resonance exists, this predicts 

that an infinitesimally small perturbing field will destroy the circular flux surfaces completely.  

Mirnov first studied their presence using bθ loops, actually measuring ∂bθ/∂t outside the plasma 

(B denotes total fields, while b denotes just the oscillating part).  Because the coils are outside the 

plasma they do not measure the field strength at the integer q surface where the perturbation is 
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resonant, so that we cannot immediately calculate the magnetic island width using Equation 17.1.  

Other problems to cope with include how to determine the poloidal (m) mode number from a set 

of coils measuring bθ if they are not on a circular contour, so that a simple Fourier analysis is not 

possible, and toroidal effects. 

If the field perturbation is b, then outside the circular plasma at some radius r > ap we have 

 ∇ •b =
∂b

r

∂r
+

im

r
bθ +

in

R
bφ = 0       17.2 

 ∇ × b( )• er =
im

r
bφ −

in

R
bθ        17.3 

Form the second equation we have 

 
bθ

bφ

=
mR

nr
         17.4 

which for low m, n is >>1, i.e. bθ >> bφ.  Therefore with Equation 17.2 we determine that the 

most important contributions to measure are br and bθ, not bφ.  If we are measuring just inside a 

conducting wall (e.g. the vessel) then br ≈ 0, so that only bθ should be monitored (but note the 

conducting wall also affects the value of bθ: it can also affect the instability which produces bθ 

itself). 

•

coil at r

filament at r = a

plasma

•

θ
θ = θ0,

 

ξ

η
r

θ

 
  Figure 17.1a      Figure 17.1b 

A common representation of the fluctuations is as current filaments aligned along the field lines.  

Initially let us consider the fields produced in a straight cylinder by a current filament (current I) 

aligned along the cylinder, located at poloidal angle θ = θ0, at r = a (see Figure 17.1).  Then. 

 bθ =
µ0 I

2π

r − a cos θ − θ0( )( )
a2 + r2 − 2ar cos θ − θ0( )( )      17.5 
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 br = −
µ0 I

2π
asin θ − θ0( )

a2 + r2 − 2ar cos θ − θ0( )( )     17.6 

These can be rewritten by expanding the denominator into [r - a exp(i(θ−θ0))].[r - a.exp(-

i(θ−θ0))]. For example: 

 bθ =
µ0 I

4π
1

r − ae
i θ −θ0( )( )+

1

r − ae
− i θ −θ 0( )( )

 

 
 

 

 
      17.7 

These new expressions can be expanded in powers of (r/a), so that  

  r < a      r > a 

  inside filament    outside filament  

bθθθθ  −
µ0 I

2πr

r

a

 
 

 
 

n=1

∞

∑
n

cos n θ − θ0( )( )  
µ 0I

2πr

a

r

 
 
 
 

n =0

∞

∑
n

cos n θ − θ0( )( ) 

br −
µ0 I

2πr

r

a

 
 

 
 

n=1

∞

∑
n

sin n θ −θ0( )( )  −
µ0 I

2πr

a

r

 
 

 
 

n=0

∞

∑
n

sin n θ −θ0( )( ) 

           17.8 

i.e. we have the fields as a Fourier series.  A certain sum of the coefficients allows us to look only 

at the current inside the cylinder, while ignoring external currents: 

 r bθ θ( )cos mθ( )dθ −
0

2π

∫ r br θ( )sin mθ( )dθ = µ0I
0

2π

∫
a

r

 
 
 
 

m

cos mθ0( ) if a < r (outside) 

 r bθ θ( )cos mθ( )dθ −
0

2π

∫ r br θ( )sin mθ( )dθ = 0
0

2π

∫  if a > r (inside) 

 r bθ θ( )sin mθ( )dθ +
0

2π

∫ r br θ( )cos mθ( )dθ = µ 0I
0

2π

∫
a

r

 
 
 
 

m

sin mθ0( ) if a < r (outside) 

 r bθ θ( )sin mθ( )dθ +
0

2π

∫ r br θ( )cos mθ( )dθ = 0
0

2π

∫  if a > r (inside) 

           17.9 

Consider just the m = 1 component .  These equations tell us that, in straight geometry the sum of 

a modified Rogowski coil with winding density proportional to cos(θ), and saddle coil with width 

proportional to sin(θ), tells us the horizontal position.  A modified Rogowski coil with winding 
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density proportional to sin(θ), and saddle coil with width proportional to cos(θ), tells us the 

vertical position.  Actually we already new this; section 9 tells us how to do better and correct for 

toroidal effects as well.  Note if the Mirnov coils are mounted just inside a conducting vessel then 

br = 0, and the second terms are zero.   

Now we must consider a general distribution j(r,θ) instead of the line current at r = a.  Then using 

complex notation, and assuming a conducting vessel where br = 0: 

 r bθ θ( )
0

2π

∫ e
imθ

dθ = µ 0 dr'
0

r

∫
r'

r

 
 

 
 

m

r' dθj r' ,θ( )
0

2π

∫ e
imθ

    17.10 

thus relating moments of the external field to moments of the current density.  Rogowski coils 

with winding density cos(mθ) and sin(mθ) would directly measure the LHS of this equation 

(again we knew this from section 9).  Now we see a problem: the LHS is an integral over θ while 

the RHS is an integral over r’ and θ.  Without some assumptions we cannot work back from the 

externally measured fields to the currents at the surface.  This is exactly the same problem that 

we came across in dealing with reconstructing the plasma shape from the multipole moments 

without invoking equilibrium: varying the assumed jφ distribution gives different plasma shapes. 

A typical assumption is 

 j r,θ( )= j0 r( ) + jmne
m ,n

∑
i mθ +nφ −ω mn t( )

δ r − rmn( )     17.11 

with j0(r) the equilibrium current, rmn the radius of the resonant surface, δ(r-rmn) the delta 

function restricting the currents to r = rmn.  The perturbed field measured at r, produced by the 

current perturbation jmn at rmn, is  

 bθ r ,θ,φ( ) = µ 0 jmnrmn

rmn

r

 
 

 
 

m +1

e
i mθ +nφ −ω mn t( )

 for r > rmn   17.12 

Here we have introduced a frequency f = ω/(2π) into the problem: the filaments are rotating.  If 

we want to consider br and bθ, and work in real space, then  

 bθ =
µ0 jmnrmn

2

rmn

r

 
 

 
 

m +1

cos mθ + nφ − ωmnt( )     17.13 

 br = −
µ0 jmnrmn

2

rmn

r

 
 

 
 

m +1

sin mθ + nφ − ωmnt( )    17.14 
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Often we will write an expression for the Fourier coefficients of the field at the resonant surface, 

bmn r = rmn( )= µ0 jmnrmn

2 .  Note if we were working on a rectangular vessel we would measure 

for example bη (see Figure 10.1): 

 bη = bθ cos θ( )+ br sin θ( ) = bmn

rmn

r

 
 

 
 

m +1

cos m +1( )θ + nφ − ωmnt( )  17.15 

i.e. we see that working with a rectangular contour the phase varies as (m+1)θ, instead of mθ 

when working with a circular contour. 

Now in toroidal geometry there are complications.  We must consider that  

 a) jmn produces a stronger field at the inner equator 

 b) the perturbation are displaced because of a Shafranov shift 

 c) the pitch of the field lines is no longer constant 

We will now derive the toroidal corrections for a case where we are considering surface current 

perturbations for our model equilibrium of section 6.  We start with the field line equation for the 

total equilibrium fields, evaluated at a radius r = ap, the plasma minor radius: 

 
adθ
Bθ

=
Rdφ
Bφ

         17.16 

With  

 R = Rg + acos θ( )        17.17 

 Bφ =
Bφ 0(R = Rg )

1 + a

Rg

cos θ( )
 

 
  

 
 

        17.18 

 Bθa =
µ 0 I

p

2πa
1 +

a

Rg

ΛΛΛΛcos θ( )
 

 
 

 

 
        17.19 

 ΛΛΛΛ = β I +
li

2
−1         17.20 
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Figure 17.2. Field lines around a torus, for the case q = 2. 

We can derive what is sometimes called qmhd, sometimes qI.  This is the number of toroidal field 

revolutions a field line must be followed to make one poloidal revolution.  Figure 17.2 shows the 

field lines for the case where q = 2.  Generally we have 

 qMHD =
1

2π
aBφ

RBθ

dθ
0

2π

∫          17.21 

Keeping (a/R)2 terms gives 

 

qMHD =
2πa2 Bφ 0

µ 0I p Rg

1 + a

Rg

 

 
 

 

 
 

2

1+ 0 .5 βI + li

2

 
 

 
 

2 

 
  

 
 

 

 
 

 

 
 

= qcirc 1 +
a

Rg

 

 
  

 
 

2

1 + 0.5 β I +
li

2

 
 

 
 

2 

 
  

 
 

 

 
 

 

 
 

    17.22 

The toroidal angle covered when a field line is followed around a poloidal angle of θ is 

 

φ =
aBφ

RBθ

dθ∫ = qcirc 1+ a

Rg

 

 
 

 

 
 cos θ( )

 

 
 

 

 
 

−2

1+ a

Rg

 

 
 

 

 
 ΛΛΛΛ cos θ( )

 

 
 

 

 
 

−1 

 
 

 

 
 dθ∫

= qcirc θ −
a

Rg

2 + ΛΛΛΛ( )sin θ( )
 

  
 

  

 17.23 

where we have written qcirc for the value in a straight cylinder.  In this straight cylinder we would 

have the toroidal angle φ covered in following a field line a given poloidal angle θ given by 

Equation 17.23 with a/Rg = 0, i.e. φ = qcircθ.  Now we see that, in transferring to toroidal 

geometry, we must replace the poloidal angle θ by θ*, where  
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 θ * =
φ

qMHD

= θ −
a

Rg

βI +
li

2
+ 1

 
 

 
 sin θ( )     17.24 

i.e. the perturbing fields must have the form (for rmn ≈ a) 

 bθ = bmn

rmn

r

 
 

 
 

m +1

cos mθ * + nφ − ωmnt( )     17.25 

Figure 17.3 illustrates the field line trajectories in (φ,θ) space.  Here we have assumed that  

qMHD r( ) = q0 + qa − q0( ) r

a

 
 
 
 

α

, with q0 the value at r = 0, qa the value at r = a (the plasma edge).  

This allows us to express r = a
qMHD (r) − q0

qa − q0

 

 
  

 
 

1

α

.  In the figure we show examples for a = 0.25 m, 

Rg = 1 m, q0 = 0.9, qa = 3.2, βI = 0.5, li = 0.9.  The solid lines are for qMHD = 3.2 (the plasma 

edge), and the broken lines for qMHD = 2.  The shear in the q profile is apparent. 

φ

θ

outside
inside

 
  Figure 17.3.  The trajectory of field lines in φ, θ space for q = 2  

  (broken lines) and q = 3.2 (solid lines). 

Analysis techniques 

With a set of Mirnov coils spanning a poloidal cross section of a low beta, circular cross section 

tokamak, we can take a Fourier transform in θ to obtain the amplitude of each component 

cos(mθ+nφ-ωmnt).  If we have a rectangular vessel, then we have shown that the relevant 

expression is cos(mθ+θ+nφ-ωmnt).  This has been done both computationally, and using analog 

multiplexing.  We should allow for the toroidal corrections discussed above when performing 

this Fourier analysis; so that θ is replaced by θ*.  Figure 17.4 shows the placement of the coils 
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around a circular vessel.  Both poloidal and toroidal arrays are required to determine poloidal (m) 

and toroidal (n) mode numbers. 

 
Figure 17.4.  The placement of Mirnov coils (magnetic pick-up coils) around a vessel 

Figure 17.5 shows an example of data obtained from PBX, a machine with a non circular vessel 

but operated with a circular plasma.  Coils 1 through 5 are located on a vertical line at the outer 

equator, with coil 1 the lowest.  Coils 6 through 10 are located on a vertical line at the inner 

equator, with coil 6 the highest.  Coils 11 through 14 are elsewhere; but in particular coil 12 is at 

the outer equator (θ = 0) while coil 13 is at the inner equator (θ = π).  Data is shown for a period 

of 10 ms.  The scale in volts is shown on the right hand side.  A peak first appears on coil 1, and 

then progresses to coil 5.  An outside to inside asymmetry (coil 12 to coil 13) is evident. 
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Figure 17.5.  Data from PBX. 

Another technique is to look in the frequency domain.  Suppose we have coils placed both 

poloidally and toroidally around the plasma.  Then the relationship between the phases of 

different signals identifies m and n without the amplitudes being known.  By looking in the 

frequency domain we can reject noise, and other modes at frequencies other than ωmn.  Taking a 

rectangular vessel as an example (we measure bη), then the fundamental component of the ith coil 

signal will be of the form 

 Si = Ai cos ωmnt − δ i( )        17.26 

with ωmn identified from power spectra.  The relative phase shift δi will be, for the m,n mode,  

 δ i = m θi −
rmn

Rg

1 +β I +
li

2

 
 

 
 sin θ i( )

 

  
 

  
+θ i + nφ i + δ0 + 2πki    17.27 

where (θi,φi) locates the ith coil, δ0+2pki expresses the multi-valued phase property.  If we were 

in a circular vessel, then the phase shift would be 
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 δ i = m θi −
rmn

Rg

1 +β I +
li

2

 
 

 
 sin θ i( )

 

  
 

  
+ nφi + δ0 + 2πki    17.28 

By performing a best fit of the measured phase with this expression gives m and n.  For example 

plotting δi-nφi against θi (to remove the toroidal effects) should give a line of slope m+1.  An 

example is shown in Figure 17.6, data from PBX.  The best fit to the data was obtained using m 

= 2, n = 1. 

 
  Figure 17.6.  The phase of the experimental data shown in  

  Figure 17.5, together with the phase given by equation 17.28. 

  with m = 2, n = 1   

Turbulence 

Magnetic coils outside the plasma measure not only the low m,n “Mirnov” oscillations (tearing 

modes), but also higher frequency, higher mode number fluctuations.  Many m, n modes are 

possible; Figure 17.7 shows an example where 1 ≤  m ≤  40, and 1 ≤  n ≤  12 are considered.  

Each point represents a possible mode combination, the dark area shows those possible when qa 

= 3.2 , q0 = 1, and constraints to m are applied (in this case 6 ≤  m ≤  12). 
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  Figure 17.7.  The (m,n) space, with the limits imposed by q0 = 1  

  and qa = 3.2.  The darker shaded area represents the space  

  considered in the analytic model described in the text. 

The measurements of the fluctuating fields are usually restricted to root means square (rms) 

fields, brrms and bθrms, at r > a, the limiter radius.  We would like to know how this is related to 

the field components at the resonant surface, so that we can calculate associated island widths.  

Typically we want to determine brmn from a measured bθrms outside rmn.  There is no unique 

transformation from bθrms to brmn, so a model must be invoked. 

We proceed by assuming the fluctuating self generated field bθrms measured with magnetic 

probes at r > a is proportional to the required brmn at rmn ≈ a.  Evidence for such a model comes 

from correlation measurements between Langmuir probes and magnetic probes; the measured 

bθrms at r > a is apparently determined by plasma current fluctuations at r ≈ a, i.e. at the plasma 

edge.  Outside the fluctuating current filaments (r > rmn) the magnetic fields can be approximated 

by 

br = brmn( )
m ,n

∑
r= rmn

r

rmn

 

 
 

 

 
 

−(m +1)

cos(mθ + nφ +δmn )     17.29 

with φ the toroidal angle, θ the poloidal angle, and δmn a random phase.  This ignores toroidal 

effects, which introduce terms proportional to (m±1), and is strictly valid only for small n.  If a 

conducting wall is present at r = b then the expression is modified by the factor [1-(r/b)2m].  For 

stationary ergodic turbulence the time and spatial averages are the same, so that the root mean 

square is found as a spatial average.  Outside the singular surface we measure 



Magnetic fields and tokamak plasmas    Alan Wootton 

 129 

brms = br ,rms = bθ ,rms = 0.5 brmn r= rmn

2 r

rmn

 

 
 

 

 
 

−2(m +1)

m ,n

∑     17.30 

To go further and obtain a relationship between bθrms at r > a in terms of brmn at r = rmn we must 

specify  

 a given current density or safety factor profile q(r),  

 the dependence of brmn on m and n,  

 locate all possible m and n pairs where q = m/n,  

 specify upper and lower limits to either m or n.  

In general this must be done computationally.  However, some progress can be made analytically.  

We can approximately solve Equation 17.30 for bθrms at r > a in terms of brmn at r = rmn if we 

take brmn independent of m and n over some range to be specified, and a q profile relevant to the 

plasma edge, for example q = qa

r

a

 
 
 
 

2

.  Then we can relate the resonance location rmn to a given 

q, 

rmn

a
=

q

qa

 

 
 

 

 
 

1

2

=
m

nqa

 

 
 

 

 
 

1

2

       17.31 

With ρ = r/a defining the measurement position and q = m/n, Equation 17.30 is written as 

brms

brmn

 

 
 

 

 
 

ρ ≥1

2

= 0.5
1

ρ

 

 
 

 

 
 

2(m+1)

m

nqa

 

 
 

 

 
 

(m +1)

m ,n

∑      17.32 

ρ ≥ 1 is a constant, namely the location of the magnetic pick-up coils used to measure brms. 

We now replace the summation by integrals.  The space we are considering is shown in Figure 

17.4.  The first integral, ∫dn, is from m/qa to m, allowing all n values in between.  The second 

integral, ∫dm, is from m1 to m2, with m2 >> m1.  In Figure 17.4 m1 = 6 and m2 = 12.  

Unfortunately our chosen profile allows q ≤ 1 (when rmn/a ≤ 1/√qa).  To restrict n ≥ 1 we should 

choose m1 ≥ qa ≈ 3.  The result of the integration is 

brms

brmn

=

1

4qa ln ρ( )
1

ρ2 m1 +1( ) −
1

ρ 2 m2 +1( )
 

 
 

 

 
 

−
1

2 ln qa( )+ 2 ln ρ( )( )
1

qa

m1 +1( )ρ 2 m1+1( ) −
1

qa

m 2+1( )ρ2 m 2+1( )

 

 
 

 

 
 

 

 

 
 
 
 
 

 

 

 
 
 
 
 

1

2
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           17.33 

This expression can be further simplified for ρ > 1 by noting m2 >> 1 (so all terms involving m2 

disappear) and m1 > 1 (so the term involving qa
(m1+1) disappears) to give 

brms

brmn

=
1

2ρ m1 +1( ) qa ln ρ( )
        17.34 

This is the required result, giving us brmn at the plasma edge in terms of the measured brms 

outside the plasma.  Because the terms involving m2 have been ignored in deriving Equation 

17.34 it predicts (brms/|brmn|)ρ⇒1
 ⇒ ∞.  The more complete expression, remains finite, and 

brms

brmn

 

 
 

 

 
 

r= a

≈
m2 − m1( )

2qa

       17.35 

We conclude that the measured rms field outside the plasma (ρ > 1) is determined only by the 

lowest m number (m1); the higher m numbers fall off too rapidly to contribute.  Indeed, if 

Equation 17.34 is taken to represent the results, then a fit of the form brms ∝ r-γ gives the result 

γ = m1 + 1+
1

2 ln ρ( )
        17.36   

We can also measure the frequency of the fluctuations.  We assume that the observed frequency 

is described by an expression of the form 

f =
ω
2π

=
m

2πrmn Bφ

κ
Te

e ne

∂ne

∂r
− Er

 

 
 

 

 
       17.37 

This is consistent with experimental results, with κ a factor of order 1.  We also know 

experimentally that the term involving Er dominates the term involving κ, and that we can 

approximate the expression by 

f ≈
−cmEr

2πrmnBφ

         17.38 

with χ a factor ≈ 1.5.  Er is approximately constant for ρ < 1.  We now relate rmn to q = m/n by 

assuming a specific q profile.  For the simple q profile used in deriving the analytic results the 

transformation from rmn to m and n is given by Equation 17.31.  A more realistic q profile  gives  
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rmn

a
=

q − q0

qa − q0

 

 
 

 

 
 

1

2

=

m

n
− q0

qa − q0

 

 

 
 
 

 

 

 
 
 

1

2

≈

m

n
−1

qa −1

 

 

 
 
 

 

 

 
 
 

1

2

     17.39 

Substituting either Equation 17.31 (edge model, f = f1) or Equation 17.39 (f = f2) for rmn into 

Equation 17.38 gives an expression for the frequency of a mode of given m and n; 

f1 ≈
−cEr qa

2πaBφ

mn         17.40 

f2 ≈
−cEr qa −1( )

2πaBφ

m2

m

n
−1

 
 
  

 
 

,      17.41 

These can be normalized to the frequency fm/n=2/1 of the m = 2, n = 1 mode, which is often 

measured, to give from Equation 17.40 

f1 ≈
mn

2
fm / n= 2 / 1        17.42a 

and from Equation 17.41 

f2 ≈
m2

4
m

n
−1

 
 
  

 
 

fm / n= 2/ 1        17.42b 

 
Figure 17.8  The values of m and n included and excluded by restricting f > 50 kHz, 

when fm/n=2/1 = 6.5 kHz.  The excluded area is to the left side of each filter line.  The 

dashed straight lines represent the limits imposed by 1 < q< 3.2.  The dotted curve 
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represents the limits imposed by the frequency filter from Equation 17.42a and 

Equation 17.42b. 

If only modes with f > fmin are considered, we can derive mlim, a function of fmin/fm/n=2/1 and n, 

which separates modes which are and are not included in any subsequent analysis.  The results 

are shown in Figure 17.8 for fmin = 50kHz, fm/n=2/1 = 6.5 kHz.  In general, frequency filtering 

should be considered more a restriction on n than on m.   
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18.  INTERNAL PLASMA MEASUREMENTS 

So far we have been concerned with measurements of fields taken outside the plasma.  In 

comparatively low temperature plasmas (say Te < 50 to 100 ev), we can design pickup coils to 

make internal measurements.  There is always the worry that the insertion of such a coil changes 

the very plasma characteristics we would like to determine.  This fear is usually allayed by 

monitoring certain characteristic plasma features (sawtooth activity, Mirnov activity, loop 

voltage) to make sure they do not change significantly during probe insertion.  Figure 18.1 and 

Figure 18.2 show a possible coil set up which might be used.  The coil itself must be protected 

from the plasma, typically by a stainless steel case, possibly surrounded by a carbon shield.  The 

geometry of the surrounding materials must be carefully chosen if we are looking at high 

frequencies so as not to cut off the very signals we want to measure. 

 
Figure 18.1.  A possible internal coil   Figure 18.2.  A typical coil placement, 

construction.      showing the flexible belows. 
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Equilibrium 

We first discuss the equilibrium.  From the basic field measurements themselves we can, 

assuming circular straight geometry, reconstruct the current from the equations  

 jφ =
1

µ 0r

d

dr
rBθ( )        18.1 

 jθ = −
1

µ 0

d

dr
Bφ( )        18.2 

i.e. to obtain jφ(r) we only need the radial dependence of Bθ.  Unfortunately we have to contend 

with non circularity and toroidicity.  One technique which has been applied is illustrated by the 

results shown in Figure 18.3, where small pick-up coils were used to measure the poloidal 

magnetic field at current peak in a small tokamak (TNT inJapan).  

 
Figure 18.3.  Equilibrium poloidal fields measured in TNT 

We move to the coordinate system of Figure 1.7.  The radial component BR(R0,z) is measured 

along a vertical line R = R0, and the vertical component Bz(R,0) is measured along a line z = 0.  

The results are fitted to expressions of the form 
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 BR R0, z( )= an

n= 0

N

∑ z
n         18.3 

 Bz R,0( ) = bnR
n

n= 0

N

∑         18.4 

The magnetic axis is found where from the zero crossing of the resulting polynomials.  The flux 

function is found by integration: 

 ψ R0, z( ) = −R0 an z
n( )dz

n=0

N

∑∫ + const       18.5 

 ψ R ,0( )= bn R
n+1( )dR

n= 0

N

∑∫ + const       18.6 

The current density is then obtained as 

 µ 0 j =
∂B

R

∂z
−

∂B
z

∂R
        18.7 

The constants (giving ∂BR/∂z at z = 0 and ∂Bz/∂R at R = R0) must be determined by making 

some assumptions concerning the plasma shape, say that it is mostly elliptic.  Some examples of 

the results of this analysis, where N = 5, are shown in Figure 18.4 for the fluxes and Figure 18.5 

for the current density. 
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Figure 18.4.  Flux surfaces reconstructed for TNT.  
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Figure 18.5.  Current density profiles for TNT 

Given the current density we can also attempt to deduce the safety factor q.   

Internal magnetic measurements are also used to determine the internal electric field.  From 

Faraday's law 

 E • dl = −
d

dt
l

∫ B •ndS
S

∫
 

 
 

 

 
        18.8 

we have, applying this to the geometry of Figure 18.6, 

 Eφ r( ) = Eφ a( ) −
d

dt
r

a

∫ Bθ dr        18.9 

E

Eφ

φ

-

-Eθ

   
  Figure 18.6.  The geometry used to describe the  

  measurements of internal electric field 
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Figure 18.7.  The internal electric field prior to a disruption (from Hutchinson) 

Figure 18.7 shows some spatial profiles of Eφ from this analysis just before and at a disruption.  

Although the edge electric field goes negative (the negative voltage spike) the internal electric 

field strongly positive.  In principle, having measured j and E we could derive the local 

conductivity. 

Mirnov Oscillations 

The same probes used to measure the internal equilibrium properties can be used to look at the 

Mirnov fluctuations (as long as the coils have a sufficiently high frequency response).  Data from 

such experiments has isolated the radial dependence of the fluctuating br, bθ fields, as shown in 

Figure 18.8.  It agrees with our discussion in section 17, namely b ∝ (rmn/r)m+1 for r > rmn 

without a vacuum vessel.  In the presence of a conducting vessel at r = rw we must account for 

the image currents which flow, so for example we would expect  
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  Figure 18.8.  The measured radial dependence of the fluctuating poloidal fields  

 (Mirnov oscilations) from and m = 2 tearing mode (measurements in TOSCA). 
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19 .  THE CONDUCTING VACUUM VESSEL 

Skin depths 

There is a vacuum vessel surrounding the plasma.  Early experiments used insulating vessels (e.g. 

quartz or ceramic), which were later replaced by metal (stainless steel).  In order to introduce the 

toroidal electric field necessary to initiate the discharge, this vessel must be highly resistive.  This 

is ensured either by making a thin vessel, using convolutions, or adding at least one insulating 

break. 

 
Figure 19.1.  The currents flowing in a vessel or shell with a poloidal (or  

transverse) gap or insulating break. 
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Figure 19.2.  The currents flowing in a vessel or shell with toroidal  

(i.e. longitudinal) and poloidal (i.e. transverse) gaps. 

There are two types of insulating breaks, as shown in Figure 19.1 and Figure 19.2, (taken from 

Mukhovatov and Shafranov).  For transverse gaps (Figure 19.1) any symmetric component of 

current must flow on the vessel surfaces.  However, non symmetric components, introduced for 

example by axisymmetric plasma motion, will produce volume currents.  At the gap the non 

symmetric currents flow in opposite directions. They will produce a local vertical field, which 

must affect the plasma position, as well as the interpretation of magnetic coil signals.  The two 

(surface and bulk) currents have different decay times, as discussed later.   

If both a transverse and a longitudinal gap exists, Figure 19.2 shows that for the non symmetric 

components the placing of the break in poloidal angle is important.  A longitudinal gap at the 

outer equator does not distort the field, while a gap at the top or bottom does. 

z

b
a

d

x

 
Figure 19.3.  The geometry of a conducting shell or vessel. 

We are concerned with the currents induced in a resistive vacuum vessel lying outside the 

plasma, and their effects on all the measurements we have discussed.  As a characteristic 

example, consider a homogeneous field B = B0sin(ωt) parallel to the plane of a conducting plate; 

the inner and outer boundaries of the plate are at a distance b and a from the symmetry plane (see 

Figure 19.3).  Maxwell's equations reduce to 

 ∇ × ∇ × B( ) = −µ0σ
∂B

∂t
       19.1 

When the ratio of the plate thickness to the layer thickness is much less than unity, i.e. d/b << 1, 

the penetration of the field is characterized by a time constant   

 τ =
µ 0σbd

2
          19.2 

Now we can consider two cases, depending on the ratio of plate to skin depth, d/dskin, where dskin 

= (2/(µσω))1/2.  If d >> dskin, (i.e. at high frequency) we have a thick plate, and we can consider 
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the plate to be perfectly conducting.  If d << dskin we have a thin plate, and then the characteristic 

penetration time is given by equation 19.2, namely τ = µσbd/2. 

The result is the same for the penetration of a longitudinal field into a hollow cylinder, i.e. 

(approximately) a toroidal field into the toroidal  vacuum vessel.  τ is the L/Ω time for the decay 

of the poloidal current, with Lθ = πµ0a2 the inductance per unit length, and Ωθ = 2πa/(σd) the 

resistance per unit length.  The same result applies for the penetration of a transverse field into a 

cylindrical shell, i.e. a vertical field into a toroidal vacuum vessel.  

When we first initiate some perturbing field, the vessel will first appear as a thick plate, then 

change over to a thin plate after some time τσ.  This time τσ is just the time it takes any dipole 

currents to become homogeneous, and is obtained from τσ ~ π/(2ω), where ω is the value for 

which dskin = d/2.  We take (d/2) to allowing for penetration from both inside and outside the 

plate (from gaps in the plate), and obtain. 

 τσ =
πµ0σd 2

16
        19.3 

Application to a diamagnetic loop 

Here we are considering poloidally flowing currents.  Consider an N turn loop wrapped around a 

vessel with minor radius av, used to measure the plasma diamagnetic current Is = <p⊥>/Bφ.  After 

a time t > τσ we can consider the vessel as thin, and need correct only for the long time inductive 

time constant L/Ω.  The voltage around the loop is  

 
ε
N

= M
dIs

dt
+ L

dIv

dt
        19.4 

with Is the diamagnetic current, Iv the vessel current, M = πµ0ap
2 and L = πµoav

2.  The vessel 

current is given by 

 0 = ΩΩΩΩIv + M
dIs

dt
+ L

dIv

dt
       19.5 

where Ω = 2πav/(σd).  From 19.4 and 19.5, we have 

 Is =
1

NM
εdt +

L

ΩΩΩΩ
ε

0

t

∫
 

  
 

  
       19.6 

Therefore we can correct the measured voltage ε to obtain the required diamagnetic current Is. 
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Application to position measurement 

Here we are considering toroidally flowing currents.  If we are using the moment coil method to 

measure the plasma position, then the coils measure the current center of any currents within the 

contour on which the modified Rogowski and saddle coils are wound.  Therefore, if these coils 

are outside the vacuum vessel, they will be sensitive to any currents induced in the vacuum vessel 

itself.  If we consider times t  > τs, then we need only worry about the homogeneous vessel 

currents, driven by any non symmetric part of the flux function, Ψa.  A vessel current with 

equivalent surface current density 

 iv = σvEφ dv =
σ

v
d

v

2πRv

∂ΨΨΨΨa

∂t
i       19.7 

will appear, where subscript v refers to the vessel.  This asymmetric part of the flux function can 

be taken, for example, from the analytic expressions given in section 6. 

Another method of calculating the induced vessel (toroidal) currents is to represent the vessel as a 

number of filaments, as discussed in section 1.  Induced currents are then calculated through a 

mutual inductance matrix.  The plasma might be specified analytically or as a single, or number 

of, filaments.  Each vessel filament must be given a minor radius, which might be taken as dv/2, 

half the vessel thickness, so that the self inductance is finite.  Even the non homogeneous current 

components can be calculated in this way, if enough filaments suitably spaced and connected are 

included. 
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20 .  THE IRON CORE 

Many tokamaks have an iron core to ensure good coupling between the primary winding and the 

plasma.  This iron core has the additional advantage of keeping 'stray' fields away from 

diagnostic apparatus.  However, it complicates the study of the plasma equilibrium, because the 

free space expressions for the fields produced by circular conductors are no longer applicable.  

Here all I want to do is to point out that iron is a pain to deal with. 

X

iron

poloidal field

 

iron

I

 
 Figure 20.1. A straight iron cylinder  Figure 20.2.  An iron core with an air 

 surrounding a plasma    gap, with a linked plasma (current I). 

The iron core introduces a new boundary condition.  It is often stated incorrectly that the lines of 

force enter a medium of infinite permeability (the iron) perpendicularly, but this is not always 

true.  A simple example of a straight iron cylinder surrounding a straight wire with current shows 

this not to always be the case: in Figure 20.1 the field lines are tangential to the iron boundary.  

A correct boundary condition, for the normal component of the induction, is  

 Bn air( ) = µ 0 Hn air( ) = µHn iron( ) = Bn iron( )     20.1 

For permeability u very large we can take Hn approaching 0 just inside the iron, so that 

 Hn iron( ) = 0         20.2 

(from the continuity of Bn) and add the boundary condition 

 Hτ  is continuous         20.3 
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In reality µ is not infinite, but the limit works well.  

First consider an air gap inductor, as shown in Figure 20.2.  We assume that inside the iron there 

are laminations which ensure no current, so that  

 ∇ × H = 0          20.4 

Then H is derived from a single valued potential given by Laplace's equation  

 ∇2ψ = 0          20.5 

and the boundary condition on Bn (Equation 20.2) is equivalent to 

 
∂ψ
∂n

= 0  in the iron.        20.6 

The only possible solution of equation 20.5 and equation 20.6 is ψ = constant .  Therefore H (but 

not B) must be zero inside the iron.  Continuity of the tangential component of H then shows that 

the lines of force in the air must be perpendicular to the iron.  Therefore in air the magnetic fields 

are given by the usual equations, together with the boundary condition  

 en × H = 0  on the iron surface.      20.7 

In the iron H = 0, but B is finite.  Since ∇xB = 0 in the iron, B(iron) = ∇Φ, and Φ satisfies 

 ∇2ΦΦΦΦ = 0          20.8 

 
∂ΦΦΦΦ
∂n

= Bn air( )          20.9 

which is known.   

contour l

iron

I
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   Figure 20.3.  The geometry of an iron core and  

   a linked plasma of current I.  The contour l  

   considered in the text is shown. 

Now consider the case shown in Figure 20.3, an iron core with a central limb as on TEXT.  If the 

total number of turns linking the center core is 0, and there is no current in the iron (Equation 

20.4) then ∫H.dl = 0 for any contour l inside the iron.  Then H derives still from a single 

potential, and all our previous steps are valid.  However, if a finite number of amp turns I links 

the iron, then ∫H.dl = I.  This means that we can still write the field in the iron as ∇Φ, but now Φ 

is multi valued, increasing by ±I once around the contour l.  That is, in this case, Equations 20.8 

and 20.9 apply in the iron, but with the additional constraint 

 ∇ΦΦΦΦ • dl = I
l

∫          20.10  

In this case, had we assumed perpendicularity, we would have obtained ∫H.dl = 0, while in reality 

∫H.dl = I.  Thus the field lines only enter the iron core perpendicularly if no current flows in the 

iron, and the net ampere turns is zero. 

The only place that the iron really affects magnetic diagnostics is in the equilibrium 

reconstruction.  No longer can we use the free space expressions for a circular current filament, 

but they must be modified to satisfy the boundary condition.  In toroidal plasma devices we 

almost always satisfy the conditions necessary for the boundary condition Equation 20.7.  One 

way to model the effect of iron is by placing additional circular filaments inside the iron itself, 

with currents chosen to satisfy Equation 20.7 at a given number of locations.  This is illustrated 

in Figure 20.4: the 'image" filaments must have a current flowing in the same direction as the 

filament in air, so that there is an attraction between the filament in air and the iron itself.  As the 

filament in air gets closer to the iron, the "image" current must increase, and so the attraction 

must increase.  This means that an iron core can lead to an axisymmetric, or n = 0, instability. 



Magnetic fields and tokamak plasmas    Alan Wootton 

 147 

z

R

I

filament in air

iron

image filament in iron

iron boundary 
where exHn = 0

 
  Figure 20.4.  An iron core and plasma current (filament), together  

  with the image currents necessary to ensure the boundary condition  

  are satisfied. 

In principle the method of images can model a true three dimensional iron core, although it 

would not help much because most of our equilibrium work involves two dimensions only.  

Therefore we often assume a two dimensional iron core which is produced by the toroidal 

revolution of the actual core.  In this case there are analytic expressions for the additional field 

components produced by the iron. 

Because the iron core is really three dimensional, it introduces a perturbation with a toroidal 

mode number n equal to the number of outside return limbs, Nl.  As such any fields, such as the 

vertical maintaining field, will have an n = Nl component.  Calculations show that this 

perturbation can be as much as 10%, which might be thought to introduce a toroidally dependent 

plasma position.  It does, but only by a very small amount.  Suppose the toroidally symmetric 

vertical field Bz has an additional perturbing component bzcos(Nlφ).  From the field line equation 

this variable field component will displace lines of force according to 

 
dz

bz cos N1φ( )
=

Rdφ
Bφ

        20.11 

or 

 dz =
R

Bφ

bz∫ cos N1φ( )dφ        20.12 
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Therefore the maximum displacement is 

 ∆∆∆∆zmax =
Rbz

N1Bφ

        20.13 

which is typically a few mm. 
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21.  TOKAMAK POSITION CONTROL 

The axisymmetric instability 

We first calculate the growth rate of an axisymmetric instability in a tokamak.  We only consider 

vertical motion, because it is easier than the calculation for horizontal motion.  The driving force 

is written in terms of the decay index n = -(R/Bz)(dBz/dR).  We consider a tokamak surrounded 

by a conducting vacuum vessel.  There is assumed to be a transverse (poloidal) insulating gap in 

this vessel, so that only dipole currents can flow.  The equation determining the vacuum vessel 

current Is is 

 
d

dt
Ls Is( )+

d

dt
MspI p( )+ ΩsI s= 0       21.1 

Here Ip is the plasma current, Ls is the vessel inductance, Ωs the vessel resistance, Msp the 

mutual inductance between plasma and vessel.  We introduce the vessel time constant τs = Ls/Ωs.  

We can approximate the vessel as a circular shell, so that 

 Ls =
µ0π

2 Rs

4
         21.2 

 τs =
µ0σδ

s
r
s

2
         21.3 

where Rs, rs, δs are the vessel major radius, minor radius, thickness, and σ is the conductivity.  

Approximating the plasma as a filament initially centered within the vessel (R = R0 = Rs, z = zs = 

0), the mutual inductance and its spatial derivative are given by 

 Msp =
µ0πRs z

2rs

         21.4 

 
∂Msp

∂z
=

µ0πRs

2rs

         21.5 

From equations 22.1, 22.2 and 2.5 we can derive the relationship between the dipole current in 

the vessel and the plasma displacement z: 

 
dI

s

dt
+

I
s

τs

= −2
Ip

πrs

dz

dt
        21.6 
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The equation determining the plasma displacement z is 

 m
d 2z

dt
2 ≈ 0 = −2πRpIp BR + Bs + ∆B[ ]      21.7 

with BR the equilibrium major radial field, Bs the major radial field from the vessel currents, and 

∆B a perturbation to BR.  We can take the mass m of the plasma to be zero in the presence of the 

vessel; we will find the vessel slows the motion sufficiently for the m(d2z/dt2) term to be 

vanishingly small.  Using 

 BR =
nBz z

R
         21.8 

 Bz =
Γµ 0I p

4πRp

         21.9 

 Γ = ln
8R

p

rp

 

 
 

 

 
 +

li

2
+ β I −

3

2
       21.10 

 Ks =
Bs

I
s

=
−µ0

4rs

        21.11 

where rp is the plasma minor radius, and we assume Rs = Rp = R.  Taking ∆B = 0, equation 22.7 

can be written 

 0 = −
nΓµ 0I pz

4πR
2 +

µ0 I
s

4rs

        21.12 

Equations 22.12 and 22.6 define the problem; they have solutions 

 z = z0e
γt

         21.13 

 Is = Is 0e
γt

         21.14 

The growth rate is 

 γ = −
1

τ s

n

n + ns

        21.15 

 ns =
2R2

rs

2Γ
         21.16 
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From equation 22.15 we see the plasma is unstable if n < 0. 

Consideration of in-out motion is more complicated, because we must conserve poloidal 

magnetic flux.  This is ensured by using the equation 

 
d

dt
LpI p + πRp

2
Bz + M psI s[ ]= 0       21.17 

where the plasma inductance is 

 Lp = µ0Rp ln
8Rp

rp

 

 
 

 

 
 − 2 +

li

2

 

 
  

 

 
         21.18 

The unstable motion we nave derived for a plasma with decay index n < 0 must be controlled by 

feedback.  Figure 21.1 shows such a system.  Sensing coils might be the multipole moment coils 

discussed in an earlier chapter, or single coils.  Sensors can be placed inside or outside the vessel. 

Z

R

conducting vesel

feedback winding

feedback winding

rf

 coil 1

 coil 2

z

r

rs

c

φ θ
plasma

 
Figure 21.1.  Geometry of a feedback system 
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Analysis of sensor coils allowing for vessel currents 

If single coils were used, the analysis used to determine plasma displacement z is to take the 

difference signal, and divide by the sum signal.  For a positive plasma current (into the plane) 

and a positive vertical plasma displacement z, the upper coil signal is Bθ1 = µ0Ip/(2π(rc-z)) and 

the lower signal is Bθ2 = µ0Ip/(2π(rc+z)), so that for z << rc: 

Bθ1 − Bθ 2

Bθ1 + Bθ 2

=

1

rc − z
−

1

rc + z

1

rc − z
+

1

rc + z

 

 

 
 
 

 

 

 
 
 

≈
z

rc

      21.19 

We now consider what happens when we allow for the presence of vacuum vessel currents Is and 

feedback currents If, both of which produce fields seen by the sensing coils.  

The dipole model 

The feedback windings are represented by a shell of radius rf and thickness δf with a dipole 

current distribution, with current (area) density jφf = jφf0sin(θ).  Then  

I f = jφf rfδ f dθ = 2rf

0

π

∫ δ f jφf 0        21.20 

If is positive when the upper winding current is into the plane.  This feedback circuit produces a 

major radial field for vertical position control, and (rc < rf):  

Bf = K f I f , K f = −
µ0

4rf

       21.21 

That is, a positive If produces a signal Bθ1,f = Bf (which will be negative for positive If) in the 

upper sensing coil and a signal Bθ2,f = -Bf (which will be positive for positive If) in the lower 

sensing coil. 

The vacuum vessel is also assumed to be a shell, of radius rs and thickness δs, carrying a dipole 

current jφs = jφs0sin(θ).  Then  

Is = jφsrsδ sdθ = 2rs

0

π

∫ δ s jφs0        21.22 

This produces a major radial field for sensors inside the vessel (rc < rs) 
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Bs, i = Ks,iI s, Ks,i = −
µ0

4rs

      21.23 

Therefore the signals seen by the sensing coil are Bθ1,s,i = Bs,i in the upper coil and Bθ2,s,i = -Bs,i 

in the lower coil.  If the sensing coils are outside the vacuum vessel (rc > rs), then the major 

radial field is  

Bs,e = Ks,eIs , Ks,e =
µ0rs

4rc

2       21.24 

Therefore the upper coil sees a signal Bθ1,s,e = Bs,i, and the lower sensing coil a signal Bθ2,s,e = -

Bs,e.  These results are summarized in table 1. 

 

Table 1.  Fields seen by the Bθθθθ sensing coils,  

dipole current model. 

  

Bθ1 Bθ 2

outside (rc ≥ rs )

plasma
µ0 I p

2π (rc − z)

µ0 I p

2π (rc + z)

feedback −
µ0 I f

4rf

µ0I f

4rf

vessel
µ0I srs

4rc

2 −
µ0 Isrs

4rc

2

inside (rs ≥ rc )

plasma
µ0 I p

2π (rc − z)

µ0 I p

2π (rc + z)

feedback −
µ0 I f

4rf

µ0I f

4rf

vessel − µ0 Is

4rs

µ0I s

4rs

 

The apparent displacement zapp is derived using the equation 

 
zapp

rc

=
Bθ 1 − Bθ 2∑∑
Bθ 1 + Bθ 2∑∑

=
z

rc

+ α s

Is

I p

+ α f

I f

Ip

      21.25 
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where the values of αs and αf, derived from the expressions in table 1, are given in table 2.  

Without the correction factors αs and αf, zapp = z.  Moving the sensors from inside to outside 

changes the sign of αs.  When the plasma (Ip > 0, into plane) moves upwards (z > 0) it will 

induce a negative Is.  For sensors outside the vessel, the vessel currents then produce an apparent 

displacement smaller than the real displacement (i.e the vacuum vessel shields the sensing coils).  

For sensors inside the vessel, the apparent displacement is larger than the true displacement.  The 

feedback windings complicate this simple process.  If we wanted to, the effects of the feedback 

coupling to the sensors (i.e. finite αf) can be removed by adding to each signal a term 

proportional to If itself.  This cannot be done for the coupling from the vessel to the sensors, 

because we do not measure the vessel dipole currents. 
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Table 2.  Correction coefficients ααααs and ααααf  

for Bθθθθ sensors. 

  

correction

factor

outside (rc ≥ rs )

αs

πrs

2rc

,≥ 0

α f −
πrc

2rf

≤ 0

inside (rs ≥ rc )

αs − πrs

2rc

,≤ 0

α f −
πrc

2rf

≤ 0,

 

For comparison, table 2 shows the coefficients αs and αf for the multipole moment coil system 

[1], with coils either inside or outside the vessel.  Note that the multipole moment sensing coils 

are only sensitive to currents inside the contour on which they are wound, and thus αf = 0. 

Table 3.  Correction coefficients ααααs and ααααf  

for multipole moment sensors. 

  

correction

factor

outside (rc ≥ rs )

αs

πrs

2rc

,≥ 0

α f 0

inside (rs ≥ rc )

αs 0

α f 0

 

Numerical values applicable to TEXT are given in table 4, for rc = 30 cm (inside) or 34 cm 

(outside), rs = 32 cm, rf = 50 cm.  We see that, as far as pickup from the shell currents (αs) is 

concerned, the Bθ coils outside the vessel are no worse than the moment coils. 
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Table 4.  Numerical values of the correction factors ααααs and ααααf. 

 R = 100 cm, rc = 30 (inside) or 34 (outside) cm, rs = 32 cm, rf = 50 cm   

       ααααs  ααααf 

 dipole model, multipole coils outside  1.48  0 

 dipole model, multipole coils inside  0  0 

 dipole model, Bθ coils outside  1.48  -1.07 

 dipole model, Bθ coils inside   -1.67  -0.94 

The feedback model 

Here I want to illustrate how a feedback system is analyzed.  We take the mass-less plasma 

model, in which the plasma is always in equilibrium due to currents in the vacuum vessel and the 

feedback windings, and the (unstable) driving term BR.  The vacuum vessel (i.e. conducting 

shell), feedback windings and plasma all having the same major radius R.  The equations 

describing the plasma motion z, shell current Is, feedback current If and feedback voltage Vf are : 

m
d2z

dt
2 = 0 = −2πRIp BR + Bs + B f( )

d

dt
MpsIp( )+ Ls

dIs

dt
+ ΩsI s + Msf

dI f

dt
= 0

d

dt
Mpf I f( )+ Msf

dI s

dt
+ Lf

dI f

dt
+ Ω f I f = Vf

ta

dVf

dt
+ Vf = −g

Ω f Bz

K f R
Z − td

dZ

dt

 
 
  

 
 

Z = z0 − zapp

     21.26 

That is, in open loop the plasma displacement induces a dipole shell current as well as a dipole 

feedback current.  The dipole currents in the shell and feedback circuits are themselves coupled.  

In closed loop a proportional (g) and derivative (gtd) gain term are considered The mutual 

inductances Mij and self inductances Li between the various circuits (i,j = p for plasma, s for 

shell, i.e. vacuum vessel, and f for feedback) are: 
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Msf = µ0π
2
Rrs

4rf

Mpf =
µ0πRz

2rf

Mps = µ0πRz

2rs

Lf =
µ0π

2R

4

Ls =
µ0π

2 R

4

Lp = µ 0R ln
8R

ap

+
li

2
− 2

 

 
 

 

 
 

       21.27 

g is the linear gain in the feedback circuit, ta is the time constant of the servo system, td is the 

time constant of the derivative gain, Ωi is the resistance of the circuit i, z0 is the required 

position.  The equilibrium major radial field BR is given in terms of the equilibrium vertical field 

(-Bz) and the decay index n =-(R/Bz)(∂Bz/∂R) as 

BR =
nBz z

R

Bz =
Γµ 0I p

4πRp

Γ = ln
8R

a p

 

 
 

 

 
 +

li

2
+ βI − 3

2

        21.28 

For vertical (up/down) instability without feedback control n < 0; following a vertical  

displacement the plasma then experiences a major radial field BR in a direction to cause further 

plasma displacement.  We can model any unstable motion through the choice of n: without 

feedback but with vacuum vessel n should be chosen such that the measured growth rate is: 

γ =
1

ts

n

n + ns

ns = 2
R2

rs

2 Γ

         21.29 

Note that the vertical field required for major radial equilibrium is -Bz as defined above.  We 

normalize the equations, letting 
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ζ = z

R
, t f =

Lf

Ω f

, ts = Ls

Ω s

, τ = t

ts

, is = Is

I p

i f =
I f

Ip

, v f =
Vf

Ω f I p

, msf =
Msf

Ls

=
rs

rf

, m fs =
M fs

Lf

= msf

ks =
−Ks I p

Bz

=
πR

Γrs

, k f =
−K f I p

Bz

=
πR

Γrf

, µs =
R

Ls

∂Mps

∂z
=

2R

πrs

µ f =
R

Lf

∂Mpf

∂z
=

2R

πrf

xs =
α src

R
, x f =

α f rc

R

   21.30 

Values of xs and xf are derived from the values of αs and αf in table 4.  Representative values for 

TEXT are given in table 5. 

TABLE 5.  values of xs and xf used in the modeling   

     xs  xf 

   multipole outside 0.5  0 

   multipole inside 0  0 

   Bθ outside  0.5  -0.3 

   Bθ inside  -0.5  -0.3 

 

The normalized equations are: 

−nζ + ksis + k f i f = 0

µs

dζ
dτ

+
dis

dτ
+ is + msf

di f

dτ
= 0

µ f

dζ
dτ

+ m fs

dis

dτ
+

di f

dτ
+

i f

τ f

=
v f

τ f

v f + τ a

dv f

dτ
=

g

k f

ζ0 −ζ − xsis − x f i f( )−τ d

d

dτ
ζ0 −ζ − xsis − x f i f( ) 

  
 
  

  21.31 

These can be solved either numerically or by Laplace transforming.  These equations are then 

Laplace transformed (a superscript "~" denotes a Laplace transform, s is the Laplace variable) to 

give 
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−n ˜ ζ (s) + ks
˜ i s (s) + k f

˜ i f (s) = 0

µss
˜ ζ (s) + (s +1)˜ i s (s) + msf s˜ i f (s) = 0

µ f s
˜ ζ (s) + sm fs

˜ i s (s) + s +
1

τ f

 

 
 

 

 
 ̃  i f (s) −

˜ v f (s)

τ f

= 0

˜ v f (s) =
g

k f

˜ ζ 0 (s) − 1− τΣs( ) ˜ ζ (s) + xs
˜ i s (s) + x f

˜ i f (s)( )[ ]

    21.32 

where τΣ = τa + τd.  Solutions for the displacement ζ, vessel current is, feedback current if and 

feedback voltage vf can be obtained; for the displacement ζ is given by: 

˜ ζ (s)

˜ ζ 0 (s)
=

A + Bs

D + Es + Fs
2         21.33 

where 

  

A = gk f

B = −g ksmsf − k f( )= 0

D = k f n + g( )+ ngx
f

E = −gxsmsf n + ks µs( ) + k f n + ksµs + n + k f µ f( )τ f[ ]− gk fτ Σ + gx
f
n + k

s
m

s
− ntS( )

F = msf gxsτ Σ +τ fks 1− msf m fs( )[ ]n + ksµ s[ ]− tSxfg n + k
s
m

s( )

 

           21.34 

The term appearing due to the coupling between sensors and feedback windings are in bold.  The 

remaining terms are identical to those previously derived, except that the values of xs to be 

considered are different (negative values are now permitted). 

For stability, the Routh criteria can be applied, which requires 1) D > 0, 2) E > 0, and 3) F > 0.  

These three criteria define the available operating space in (g,τΣ) space for a given instability (i.e. 

for a given decay index n).   

Application of stability criteria. 

Values relevant to TEXT Upgrade are ts = 7ms, tf = 137ms, τf = 20, msf = mfs = 0.67, ks = 2.26, 

kf = 1.5, µs = 1.59, µf = 1.06, and the pairs of values for xs and xf given in table 5.  Experimental 

observations of open loop vertical motion show τinstability = 1/γ ~ 100 ms, so that  a suitable 
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value for the decay index in the modeling is n = -0.2.  We now compute the stable regions in 

(g,τΣ space), the results of which are shown in Figures 21.2 through 21.5.  For the values 

considered the best system is that of multipole sensing coils inside the vessel (Figure 21.2), 

closely followed by the single Bθ coils inside the vessel (Figure 21.4).  For sensing coils outside 

the vessel the operational space is restricted, more so in the case of single Bθ sensors than for 

multipole sensors.  This is seen by comparing Figures 21.3 and 21.5.   

  
Figure 22.2.  Moment coils, inside vessel. Figure 22.3.  Moment coils outside vessel. 

  
Figure 22.4.  Single Bθ coils inside vessel. Figure 22.5.  Single Bθ coils outside vessel. 
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22. MAGNETIC ISLANDS 

We consider the effect of a helical perturbation on a tokamak equilibrium.  We will not consider 

anything other than vacuum fields, i.e. we will not allow the plasma to respond to the applied 

fields in any way.  I have adapted the work of S. Matsuda and M. Yoshikawa, in Japanese 

Journal of Applied Phys. 14 (1975) 87. 

The field line equation is 

 
dl

B
= const.          22.1 

i.e. working in a quasi cylindrical system based on the plasma center 

 
dθ
dφ

=
R

r

Bθ

Bφ

=
1

q(r)
= ι(r)        22.2 

q is the safety factor, ι the rotational transform.  Expanding ι(r) near r = r0, the radius of the 

resonant surface, we obtain 

 
dθ
dφ

≈ ι(r0 ) +
dι(r)

dr
r − r0( ) = ι0 + ι'

x       22.3 

where x = r - r0, i0 = i (r0), and ι ' =
dι(r)

dr r =r0

.  To lowest order in the perturbing field we also 

have 

 
dr

rdθ
=

dx

rdθ
=

br (r,θ,φ)

Bθ (r)
       22.4 

where br(r,θ,φ) is the radial component of the error field.  We ignore the θ component because it 

is small compared to the equilibrium field Bθ.  Assuming small islands, we also ignore any radial 

dependencies of br and Bθ.  br is expanded as a Fourier series 

 br (r0 ,θ,φ) =
am,n sin(mθ − nφ) + a

'
m ,n sin(mθ + nφ)

+cm, n cos(mθ − nφ) + c '
m ,n cos(mθ + nφ)

 

 
 
 

 

 
 
 m ,n

∑    22.5 

Because we shall see that only resonant components matter near r = r0, we keep only the first and 

third terms which satisfy 
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m

n
≈

1

ι0

= q0          22.6 

Then 

 br r0 ,θ,φ( )= bm,n sin mθ − nφ + β( )      22.7 

with bm,n = am, n

2 + cm, n

2
 and tan β( ) =

bm ,n

am,n

 

Next we define a new variable 

 η = mθ − nφ + β         22.8 

so that equation 22.4 becomes 

 
dx

r0dθ
=

bm ,n sin η( )
Bθ (r0 )

        22.9 

We also obtain from equations 22.3 and 22.8 

 
dη
dθ

= −
n

ι0 + ι'
x

+ m         22.10 

Substituting equation 22.9 into equation 2.10 gives us a non linear equation 

 
d2η
dθ 2 = −n

d

dθ
1

ι0

1−
ι '

ι0

x
 

 
 

 

 
 

 

 
 

 

 
 = n

r0ι
'

ι0

2

bm,n sin η( )
Bθ r0( )

= −Asin η( )   22.11 

where 

 A = −n
r0ι

'

ι0

2

bm ,n

Bθ r0( )
        22.12 

We can take A > 0 for convenience.  We see the behavior of the field lines is analogous to the 

motion of a particle in a periodic potential U = A (1-cos(η)), when we regard η and θ as position 

and time.  Multiplying equation 22.11 by dη/dθ and integrating over θ gives 

 
1

2

dη
dθ
 
 
  

 
 

2

= E − A(1 − cos η( ))        22.13 
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with E =
1

2

dη
dθ
 
 
  

 
 

η= 0

2

 a constant of integration analogous to a kinetic energy.  Let k
2 =

E

2A
, so 

that 

 
dη
dθ
 
 
  

 
 

2

= 4A k
2 − sin

2 η
2

 
 
  

 
  

 
 

 
 
        22.14 

Two types of solution are possible, as shown in Figure 22.1.  If E < 2A the field lines move 

periodically within a limit of η.  Field lines with E > 2A are “passing”. 

 

η

dη
θd

E=2A

E>2A

E<2A

η

η
π

_

 
Figure 22.1.  Behavior of field lines in phase space.   

The maximum excursion is found when E = 2A, or k = 1.  Then from equation 22.9 we have 

 w = dx∫ =
r0bm, n sin η( )dx

Bθ r0( )dη
dθ

∫        22.15 

Using equation 22.14 the integral in equation 22.15 is found to be 
4

A
, so that we finally obtain 

 w = 4r0

bm,n

mBθ r0( )
ι

−r0ι
' = 4

bm ,nr0q
2

mBφ
dq

dr

     22.16 



Magnetic fields and tokamak plasmas    Alan Wootton 

 164 

23. SOME EXPERIMENTAL TECHNIQUES 

Coils winding 

The rogowski coil is simply made by obtaining a delay cable, and returning the wire down the 

center of the delay line (to ensure no net single turn is left).  More complicated coils must be 

made by using variable winding densities (i.e. changing the pitch) or varying the cross sectional 

area of the former on which the coil is wound.   

Interference suppression 

Electrical equipment designed to produced RF energy such as generators, and switching 

phenomena in electrical circuits, create RF spectra which must be contended with. 

interference

propagationlines 

dc coupled

radiation 

capacitive coupling 

(inductive coupling)

suppression

line 

attenuation

components 

capacitiors 

inductors 

filters

decoupling  

attenuation

screening 

screen devices 

screen lines 

line arrangement

sensor 

coil  
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Figure 23.1.  An illustration of interference paths and suppression techniques. 

The sources of interference are illustrated in Figure 23.1.  The interference propagates either 

down lines (cables) or by direct radiation.  If the wavelength is large compared to the dimensions 

of the interference source only minor radiation will result, which is mostly found along the lines.  

This is the case for frequencies up to 30 MHz.  When the dimension of the interference source is 

about that of the wavelength the interference energy will travel by radiation.  The dominant 

frequencies are those where the interference source are l/4 or multiples of it.  Favorable radiation 

conditions imply reduced line propagation (because of increased line attenuation) . Therefore the 

two propagation paths, comprising direct and capacitive or inductive coupling, suggest two 

means of suppression, either line attenuation or de-coupling attenuation.  Line attenuation is 

effected by filters.  De-coupling attenuation is effected by the construction of the sensor coil and 

the associated connecting lines.   

A common problem with probes is capacitive pick-up.  To test for this pick up on simple sensor 

coils, two identical and adjacent coils can be connected in series.  Depending on the orientation, 

the signal obtained should be twice that measured with a single coil, or zero.  If the coils 

connected in opposition do not give a zero signal, then capacitive coupling effects should be 

considered as a possible source of error.  Capacitive coupling can be over using a grounded 

screen or can around the sensor. 

Screened rooms 

The requirement is to screen a room in which a sensitive measurement is being performed from 

external interference, or to accommodate apparatus which radiate interference in a screened room 

to keep the surroundings free from interference.  The basic method is to use cages of wire mesh, 

or metal sheet.  Both electric and magnetic field components must be considered.  Units used for 

effectiveness are the decibel : 

 s = 20log
E, Bnoscreen

E, Bwithscreen

 

 
 

 

 
  

and the Napier 

 s = ln
E, Bnoscreen

E, Bwithscreen

 

 
 

 

 
  



Magnetic fields and tokamak plasmas    Alan Wootton 

 166 

The wire mesh works to screen electric fields because the external flux lines mainly end on the 

mesh.  The effectiveness depends primarily on the size and type of the mesh.  Magnetic screening 

is effected by induced currents; DC magnetic fields are not screened, and low frequency AC 

magnetic fields are only poorly screened by non magnetic materials.  With increasing frequency 

the magnetic shielding improves and approaches a finite value.  Double screens, insulated from 

each other except at one point, improve the screening.  These rooms work well to 20 MHz.  

Above this the screen room size can equal the cage dimension, causing resonances. 

Sheet metal rooms have better screening properties than double walled wire mesh, but breathing 

is a problem.  The screening against electric fields is ideal since no flux can penetrate.  The 

screening of the magnetic component improves with increasing frequency due to the skin effect.   

Honeycomb inserts are also used.  The grids are wave guides (with the frequencies considered 

below cut-off), the screening effectiveness of which depends on the ratio of depth to width of the 

honeycomb up to cm wavelengths.  They are used for 100 kHz < f < 1000 MHz.  

Misaligned sensor coils 

Typical tokamak requirements include the measurement of poloidal fields in the presence of a 

much larger toroidal field.  A small misalignment of the coil will then introduce unwanted field 

components.  There are a number of solution to overcoming this problem 

 a) subtract data obtained with only the (unwanted) field component by energizing only the 

offending windings 

 b) make use of the differential nature of a pick-up coil signal.  For example, consider the 

toroidal field to be the offending field, so that the pick-up coil measures 
dB

dt
=

dBpoloidal

dt
+

dBtoroidal

dt
.  If the toroidal field is almost steady state (d/dt ≈ 0) during the times of 

interest, then the differential signal during this time is approximately that required (i.e. from the 

poloidal field component only).  Therefore the temporal integration should be started as late as 

possible.   

 


