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Global drift wave map equations that allow the integration of particle orbits on long time scales are
implemented to describe transport. Ensembles of test particles are tracked to simulate the
low-confinement mode/reversed shear/enhanced reversed shear plasmas in the Tokamak Fusion Test
Reactor~TFTR! tokamak and the Optimized Shear plasma in the Joint European Torus~JET!
tokamak. The simulations incorporate a radial electric field,Ēr , obtained from a neoclassical
calculation@Zhu et al., Phys. Plasmas6, 2503~1999!# and a model for drift wave fluctuations that
takes into account change in the mode structure due toĒr @Taylor et al., Plasma Phys. Controlled
Fusion38, 1999~1996!#. Steady state particle density profiles along with two different measures of
transport, the diffusion coefficient based on a running time average of the particle displacement and
that calculated from the mean exit time, are obtained. For either weak or reversed magnetic shear
and highly shearedĒr , particle transport barriers are observed to be established. In the presence of
such a transport barrier, it is shown that there is, in general, a difference between the two measures
of transport. The difference is explained by a simple model of the transport barrier. ©2000
American Institute of Physics.@S1070-664X~00!00404-3#
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I. INTRODUCTION

Recently, there have been experimental reports
strongly improved particle confinement in tokam
plasmas.1–3 These reports indicate that particle transport
haves as if a barrier exists in very weak or zero magn
shear regions, resulting in a transport level that is reduce
nearly the neoclassical prediction, or even lower, in the c
region of the tokamak. Also, the formation of strong equil
rium radial electric fields,Ēr , are observed. From these o
servations it is thought that the great improvement in part
confinement results from the suppression of drift wave t
bulence, which is now well established as the princi
mechanism for causing anomalous transport in tokam
plasmas.4

In Ref. 5, it was shown that very weak or zero magne
shear can reduce the particle transport substantially witho
significant change in the turbulence level, using newly
rived drift wave maps. These drift wave maps are area p
serving maps for the guiding center motion of particles
drift wave turbulence. Specific drift wave maps were sho
to have the form of the standard nontwist map for the
versed shear ~RS!/enchanced reversed shear~ERS!
plasmas.6–8 Such nontwist maps possess winding num
profiles that are nonmonotonic, and sturdy invariant tori
sociated with extrema of such profiles provide transport b
riers. Also in Ref. 5, it was shown that highly sheared rad
electric fields, ones withuv iu;cuĒr /Bqu, where uv iu is the
parallel ion thermal velocity andBq is poloidal magnetic
field, can reduce the transport level by phase decorrela
1161070-664X/2000/7(4)/1169/12/$17.00
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between particle guiding centers and drift wave fluctuatio
The demonstration of reduced transport was possible bec
the drift wave maps allow very long time integration of pa
ticle orbits in comparison to solving the exact guiding cen
orbit equations. However, it was not possible in Ref. 5
locate the transport barrier in detail because of the lack o
reliable global model for the drift wave mode structure a
because of the absence of a goodĒr model.

In the present work, we perform new test particle tran
port simulations that show clearly the formation of the tran
port barrier. We investigate the location of the particle tra
port barrier with the influence ofĒr on the drift wave mode
structure. For this purpose a global model for the drift wa
mode structure and a neoclassical model for the radial e
tric field Ēr are taken from well developed theories. For t
global drift wave structure we adopt the analytical model
Ref. 9, while forĒr we use the results from the neoclassic
calculation of Ref. 10.

A test particle simulation using the exact guiding cen
orbit equations for finding the location of transport barrier
computationally unfeasable because local transport pro
ties are needed. Generally, the calculation of such trans
properties from test particle simulations relies on the erg
icity property of an ensemble of particles evenly distribut
over the whole region of phase space, which inevitably le
to globally averaged quantities. However, if we can calcul
the particle density profile directly, this difficulty does n
occur. The drift wave maps make it possible to integrat
very large number of particles for the long transport tim
9 © 2000 American Institute of Physics
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1170 Phys. Plasmas, Vol. 7, No. 4, April 2000 Kwon et al.
scale under fairly complicated forms of the drift wave mo
structure. Thus, the drift wave map allows us to calculate
steady state particle density profiles directly.

Although it is generally hard to infer local transport in
formation from globally averaged quantities, we will sho
that in some special cases it is possible in an indirect wa
obtain this information by comparing two different measu
of a global transport quantity. Namely, we calculate the d
fusion coefficient based on a running time average of
square of the particle displacement and a second diffu
coefficient calculated from the mean exit time. In gene
these two quantities differ. We present a theory that expla
the relationship between these two measures of transpor
the formation of a transport barrier.

This paper is organized as follows: In Sec. II the dr
wave map equations and assumptions for their derivat
are briefly reviewed. In Sec. III the drift wave model that
used in the simulations is described. In Sec. IV the pro
dures for the test particle simulations are described, inc
ing a Monte Carlo map for pitch angle scattering that is u
in conjunction with a drift wave map. Here the particle d
fusion coefficients and the steady state particle density
files are obtained. In Sec. V we present a simple theory
explain the results in Sec. IV. Finally, we summarize a
conclude in Sec. VI.

II. DRIFT WAVE MAP

The justification for extracting maps, such as the st
dard map, from differential equations that describe part
dynamics is based on the assumption that the force is c
posed of waves with a broadband spectrum. Such fo
phase mix to zero except for temporally localized impuls
jumps, between which the differential equations can be e
ily integrated to yield the map. The physical motivation a
justification given in Ref. 5 for introducing drift wave map
in place of the differential equations was based on elec
magnetic ~laser and microwave! scattering experiments
which show a wide frequency spectrum for a fixed scatter
wave vectork.11,12 Indeed many experiments show a bro
drift wave frequency spectrum with substantial amplitud
for frequenciesnv with n51,2,...,K for K large.

Two kinds of drift wave maps were introduced in Ref.
local and global. Local drift wave map equations were d
rived by idealizing the finite mode drift wave spectrum,

f̃~x,t !5 (
n52K

K

fM ,L cos~Mq2Lw2nvt !, ~1!

by taking the limitK→`. In this way one obtains the im
pulsive jumps that lead to the mapping equations,

I N115I N1
4pc

a2B0

MfM ,L

v
sin~cN!, ~2!

cN115cN1R1~ I N11!1R2~ I N11!, ~3!

R1~ I !5
v i~ I !

vq~ I !R0
@M2Lq~ I !#, ~4!
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R2~ I !52
cM

vaB0

Ēr~ I !

AI
, ~5!

v i~ I !5A2

m
@E2eF0~ I !#@12lB0#, ~6!

for advancing the guiding centers over successive correla
times 2p/v. Here,a and R0 are the minor and major radii
respectively, q is the safety factor,I 5(r /a)2, c5Mq
2Lw, B0 is the magnitude of the magnetic field at the ma
netic axis,m and e are the mass and the charge of the p
ticle, respectively,E is the total energy, the equilibrium ra
dial electric field is related to the electrostatic potent
according toĒr(I )52]F0 /]r ur 5aAI , andl5m/Ek , where
Ek is the kinetic energy of the particle andm is the magnetic
moment. The poloidal and toroidal mode numbers of
localized drift wave fluctuation are denoted byM and L,
respectively. The map equations~2! and~3! are area preserv
ing and the Hamiltonian map structure of these equati
was investigated for various forms for the radial electric fie
andq-profile.

For a reversed shear magnetic field configuration, t
local map reduces to the standard nontwist map~SNM! when
expanded aroundr min , whereq8(r min)50. For the SNM, the
relative rareness of low order resonant rational surfaces
the small size of high order resonances cause a robustne
the tori nearr min . The presence of these robust or sturdy t
was shown to produce a strongly reduced transport r
without a significant change in the drift wave fluctuatio
level at each mode rational surface. This suppression of
transport level by weak shear was suggested as the reaso
the formation of the transport barrier in the ER
experiment.5

Although the local map equations are useful for study
local transport, after many iterations particles eventua
leave a neighborhood of the drift wave, and thus one m
extend the drift wave model to include global radial var
tion. An appropriate global model is that of Connor a
Taylor13 for drift wave fluctuations of frequencyv and an
infinite frequency spectrumnv, n561,62,...,

f̃5f̃0 (
n52`

`

(
L

(
m5m1

m2

exp@s I~x2m!2/2#

3cos@2sR~x2m!2/22~m1M !q1Lw2nvt#.

~7!

Here f̃0 is the mode amplitude,s5sR1 is I depends upon
the diamagnetic frequency, the density scale length,
other plasma parameters~see Refs. 5 or 13 and Sec. III!, x
5krs, wherer5r 02r with r 0 defined byM /L5q(r 0), k
5Lq/r , and s(r )5(r /q)(dq/dr). In Ref. 5, Eq.~7! was
used to obtain the global map equations given by

I N115I N1
4pc

va2B0

]f̃

]q
~ I N11 ,qN ,wN!, ~8!
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1171Phys. Plasmas, Vol. 7, No. 4, April 2000 Global drift wave map test particle simulations
qN115qN1
2p

R0v F v i

q~ I N11!
1

2cR0

B0a2

3S ]f̃

]I
~ I N11 ,qN ,wN!2Ēr~ I N11! D G , ~9!

wN115wN1
2pv i

R0v
. ~10!

The map defined by Eqs.~8!–~10! can be viewed as a
four-dimensional symplectic map associated with a t
degree-of-freedom Hamiltonian system, where the fou
map variable, the momentum conjugate tow, is ignorable.
Alternatively, Eqs.~8!–~10! can be viewed as a time depe
dent two-dimensional symplectic or area preserving m
This is seen by solving ~10!, which gives wN

52pNv i /(R0v) whenv i is constant, and inserting this re
sult into Eqs.~8! and ~9!. The resulting two equations ar
area preserving because they can be derived from a m
variable generating function according toI N5]F/]qN and
qN115]F/]I N11 , whereF5F(I N11 ,qN ,N). We leave the
map in the form of Eqs.~8!–~10! because in Sec. IV we
allow v i to change by collisions.

In order to identify the location of the particle transpo
barrier an even more reliable global drift wave model, o
that takes into account the density of rational surfaces
the modification of the mode structure due toĒr , is needed.
In the next section, we describe the global model of d
wave fluctuations that is used here in our test particle sim
lations.

III. DRIFT WAVE MODEL

Early work on drift wave fluctuations dealt with radiall
localized modes that arise at special radial points of the e
librium profiles; for example, in the case of electron-dr
modes these special points occur at the position of the m
mum diamagnetic frequencyv* e .14,15 Recently, another
drift wave branch, composed of the so-called generali
modes, has been discovered and, in contrast to the loca
modes, proposed as the principal cause of anoma
transport.16–18 These new modes have a higher magne
shear damping rate than the localized modes and can ari
any rational surface. As explained in our study of the lo
map, the relative rareness of resonant rational surfaces,
the low density of rational surfaces in the weak shear reg
is believed to be one of the reasons for transport reduction
weak shear,19 which also underscores the importance of t
generalized modes since they can arise at arbitrary rati
surfaces. In this work, we study the particle transport p
duced by these generalized modes.

For determination of the drift wave mode structure, a
other important element that must be considered is
Ēr-generated poloidal flow. As mentioned in Sec. I, in ER
and other high confinement experiments, there are ind
tions that large equilibrium radial electric fields exist. The
have been many studies of the role ofĒr on the drift wave
mode structure,9,20 and these studies show that the dep
dence of the mode width on the ion Larmor radius is redu
Downloaded 22 May 2006 to 128.83.179.53. Redistribution subject to AIP
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1/2 to r i , which also implies a reduction of the tran

port level. Recently, the radial electric field for revers
magnetic shear discharges has been calculated using neo
sical theory with the impurity rotational velocity.10 These
calculations show that a reduced analytic formula forĒr ob-
tained in Ref. 21 over estimates its magnitude and gradi
For this reason, we use the result of Ref. 10 and the s
Tokamak Fusion Test Reactor~TFTR! database for the
present problem.

To determine the parameters for the mode structure
the drift wave fluctuations, we proceed in the same way
that of Ref. 9. We start from the model equation for sho
wavelength plasma fluctuations with large toroidal eige
mode numberL@1 in a large aspect ratio torus,

F 1

~Lq8!2

]2

]r2 2s2S ]

]q
1 iLq8r D 2

2aS cosq1
is

Lq8
sinq

]

]r D2LG f̃~r,q!50, ~11!

where

s5
rq8

q
, s5

Ln

bqsRV
, a5

2Ln

bs2RV
, t5

Te

Ti
, ~12!

b5
1

2
kq

2 r i
2, kq5

M

r 0
, V5

v

v* e
, h i5

Ln

LT
, ~13!

L5
1

bs2 F t~V21!

t1h i11
1bG . ~14!

As in Sec. II, r5r 2r 0 is the distance from the rationa
surface where the mode is centered whereq(r 0)5M /L. The
quantity a measures the strength of the toroidicity induc
mode coupling. Inclusion of poloidal plasma rotation,vE ,
due to the radial electric field introduces a Doppler shift inv,

v2k•vE5v2kqvE'v2kq~vE01vE8r!, ~15!

wherevE(r ) is expanded aroundr50. Also, we assume a
linear variation ofv* e(r ) for the modeling of the general
ized mode,

v* e'v* e01
dv* e

dr U
r 5r 0

r5v* e0S 11
r

L*
D , ~16!

where 1/L* [v
* e0
21 dv* e /drur 5r 0

. With this assumption Eq
~11! becomes

F ]2

]x2 2s2S ]

]q
1 ix D 2

2aS cosq1 is sinq
]

]xD
2L1kxG f̃~x,q!50, ~17!

wherex5Lq8r, k5k11k2 , and

k15
tVs

Lq8bs2L* ~t1h i11!
, k25

t

Lq8bs2LE~t1h i11!
.

~18!
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In Eq. ~18! we define 1/LE[kqvE08 /v* e0 and Vs[(v
2kqvE0)/v* e0'1. The quantityk1 measures the shearin
due to the gradient ofv* e , while k2 measures the shearin
due to theEÃB Doppler shift.

Upon Fourier expanding the potentialf̃ in the poloidal
angleq,

f̃~x,q!5(
m

cmfm~x!e2 imq, ~19!

and projecting Eq.~17! onto themth harmonic, we obtain

cm~Lm2L!fm2
a

2 (
6

Fcm61S fm617s
]fm61

]x D G50,

~20!

where the operatorLm is defined by

Lm[F ]2

]x2 1s2~x2m!21kxG . ~21!

As in Ref. 9, we assumea;k!1 and writefm5fm
0 1fm

1 ,
where an ordering ina is assumed. WritingLm5Lm

0 1L1,
whereLm

0 []x
21s2(x2m)2 andL1[kx, we obtain the fol-

lowing zeroth order solution of Eq.~20!,

fm
0 ~x!5expF2 i

s

2
~x2m!2G , ~22!

l052 is'
1

bs2 Ft~Vs21!

t1h i11
1b2 idG , ~23!

whereLm
0 fm

0 5l0fm
0 . Here id is included so thats2 has a

small negative imaginary part,4 which physically represent
the destabilizing effect of electron Landau resonance
trapped electrons.13

To zeroth order, all the modes of Eqs.~22!–~23! are
degenerate, and we must proceed to first order to remove
degeneracy and obtain the relationship betweencm’s. The
first order equation is

cm~Lm
0 2L!fm

1 1cm~l01L12L!fm
0

2
a

2 (
6

Fcm61S fm61
0 7s

]fm61
0

]x D G50. ~24!

The solvability condition for~24! is obtained by multi-
plying by fm

0 and integrating overx, which gives

~l01mk2L!cm5
aV

2
~cm111cm21!, ~25!

where

V[F E fm
0 S fm11

0 2s
]fm11

0

]x DdxG F E ~fm
0 !2dxG21

.

~26!

The solution to Eq.~25! can be obtained easily by usin
the generating functiong(u)5(mcm exp(2imu). Upon mul-
tiplying ~25! by exp(2imu), summing overm, and manipu-
lating, the equation forg(u) is seen to be

ik
d

du
g~u!1@l02L2aV cos~u!#g~u!50, ~27!
Downloaded 22 May 2006 to 128.83.179.53. Redistribution subject to AIP
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which has the solution

g~u!5expS i F ~l02L!u

k
2

aV

k
sinuG D . ~28!

This expression forg(u) can be easily inverted to obtaincm

by using the generating function for the Bessel functionJm .
This gives

cm5Jm~aV/k!, ~29!

usingl05L, which is valid to lowest order.
If k is large, only a few neighboring modes will be e

cited. For weak shear invE8 and v* e , the parameterk is
small, and the number of modes that are significan
coupled to mode-m becomes large. Asymptotically, the num
ber of coupled modes is given by

Dm;uaV/ku1/2. ~30!

Summarizing, the model drift wave spectrum is given

f̃5f̃0 (
n52`

`

(
L

(
m5m1

m2

expFs I

2
~x2m!2G

~31!

3cosF2
sR

2
~x2m!22~m1M !q1Lw2nvt G ,

where f̃0 is the mode amplitude,s is determined by Eq.
~23!, and um1u;um2u;uaV/ku1/2. Here, the limit of an infi-
nite frequency spectrumnv, n561,62,... is assumed for
the derivation of map equations and multiple toroidal mo
numbers~sum overL! are also included. This form repre
sents a ballooning mode centered atr 5r 0 with m22m111
sidebands. The radial width is approximately given by t
distance between the two outer most rational surfaces for
sidebands with mode numbers (M1m1 ,N) and (M
1m2 ,N).

The drift wave amplitudef̃0 is determined by

f̃05C
l c

LTi

Te , ~32!

wherel c is the mixing length andLTi
is the ion temperature

gradient length scale. Here we use the Ottaviani–Horto
Erba ~OHE! model, which givesl c5qrsR/LTi

.22 Each bal-
looning mode hasm22m111 sidebands, and therefore a
effective fluctuation amplitude for the ballooning mode
approximately given byNT3(m22m111)3f̃0 , whereNT

is the number of different toroidal modes. The constant f
tor C is introduced to place this value in the appropria
range, and is chosen to beC;1/(NT3(m22m1)).

Within the ordering used for the derivation of the dr
wave model,b;Ln /R;d!1 ands is given approximately
by

s'
Ln

bqsRF11 i S d2
t1h i11

t

sLn

qRD G21

'
Ln

bqsRF12 i S d2
Lns

qRD G . ~33!
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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1173Phys. Plasmas, Vol. 7, No. 4, April 2000 Global drift wave map test particle simulations
If we consider only the shear damping term,Lns/qR, then
the absolute value of the imaginary part ofs becomes

us I u'
Ln

2

bq2R2 5
2Ln

2

q2R2kq
2 r i

2 , ~34!

by the definition ofs and Eq.~23!. Since the radial variation
of a single sideband is approximately exp@2usIukq

2s2(r
2rm)2/2#, where q(r m)5(M1m)/L, its radial width is
given by

Dr w5A 2

us I ukq
2 s25

qRr i

Lnusu
. ~35!

Note that this expression fails as one approachesr min , since
s→0. This divergence is caused by the fact thats in all of the
above formulas is set to a constant value at the rational
face throughr 0 where the modes are centered. To remo
this divergence, one must allow a radial variation ofs, but a
detailed consideration is beyond the scope of the pre
work. Here we give an estimate of the minimum allowab
distance betweenr min and the nearest sideband within whic
our model is plausible. Upon expandings aroundr min , using
s5smin8 Dr, and settingDr w5Dr , we obtain

~Dr !min'A r iqR

Lnusmin8 u
. ~36!

The estimate of~36! is used for determining the drift wav
mode structure nearr min .

For global modeling of the drift wave, particularly fo
the generalized mode, one must, in principle, assign mo
to all of the rational surfaces. However, this procedure
impossible in practice, so here we choose rational surface
a manner based on the density of rational surfaces of
given q-profile. In particular, modes are placed on ration
surfaces so thatq-values are nearly equally spaced.

We carry out our simulations for three different cas
that correspond to the TFTR and Joint European Torus~JET!
discharges. We useR05260 cm, a594 cm, andB054.6 T
for the TFTR, and R05307.6 cm, a594 cm, and B0

53.57 T for JET. According to the ordering in the drift wav
model, b and V satisfy b5kq

2 r i
2/2;e!1 and V5v/v* e

;1. We can determine the parametersL and v using these
relations. Although, these parameters are different for
following three cases, their order of magnitude are sim
and approximately given byL;40 andv;2.53104 s21 for
Case I andL;20 andv;53104 s21 for Case II and Case
III. In the following simulations, multiple toroidal mode
numbers ofL540, 43, 46 are chosen for Case I andL
520, 22, 25 for Case II and Case III.v is set to 2.5
3104 s21 for Case I and 5.03104 s21 for Case II and Case
III.

~1! Case I: This is the case of a low-confinement mode~L-
mode! plasma on the TFTR~shot number 50911!, which
has a monotonically increasingq-profile and dose no
have an appreciableĒr . These data are taken from
U-files in an Iternational Thermonuclear Experimen
Reactor~ITER! database.
Downloaded 22 May 2006 to 128.83.179.53. Redistribution subject to AIP
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~2! Case II: This is the case of an ERS plasma on the TF
~shot number 88299!. This plasma has a reversed she
q-profile and largeĒr . The qmin is located atr 50.35a
and the region whereĒr is highly sheared is mostly in
side r 50.4a. These data are obtained from Budny
PPPL.

~3! Case III: This is the case of optimized shear plasma
periment on the JET~shot number 40542!.3 In this case,
theq-profile is not reversely sheared. But it is nearly fl
in r ,0.45a. Also the plasma has large positiveĒr

which is highly sheared inr ,0.6a. All neutral beams
are coinjected parallel to the plasma current. These d
are also taken from U-files in an ITER database.

In Fig. 1, plasma profiles are plotted for each case. In
figure, triangular and circular dots represent experimen
data and solid curves are fitted profiles used in the sim
tions. These profiles determine the drift wave paramet
Square points on theq-curves represent the selected ration
surfaces on which drift wave modes are assigned. Figur
contains plots ofĒr for Case II and Case III. Figures 3–
show plots of the parameteruaV/ku for the three cases. From
the figures it can be seen that the decrease of the m
widths caused byĒr is appreciable forr ,0.35a in Case II,
and for r ,0.55a in Case III.

IV. TEST PARTICLE SIMULATION

In our test particle simulations, a Monte Carlo Coulom
collisional pitch angle scattering map is used in conjunct
with the map equations of Sec. II. Assuming that small an
Coulomb scattering changes the direction, but not the m
nitude, of the velocity, the collisional scattering map for t
change of velocity was derived in Ref. 23 and is given by
following:

FIG. 1. Radial profiles ofq, Ti , Te , and ni for three confinement cases
Case I models an L-mode TFTR plasma, Case II models the ERS T
plasma, and Case III models the JET optimized shear plasma.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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~r i! f5~r i! i cosg11A2m i

Bi
sing1 cosg2 , ~37!

2m f

Bf
5S ~r i! i

21
2m i

Bi
D sin2 g1 sin2 g2

1SA2m i

Bi
cosg12~r i! i sing1 cosg2D 2

, ~38!

where the subscriptsi and f refer to values before and afte
the collision, respectively. Herer i[v i /V i , V i is the ion
gyrofrequency on the magnetic axis, andm[mv'

2 /2B is the
magnetic moment. The two anglesg1 andg2 are determined
from

g15@2ndt ln~12h1!#1/2, g252ph2 , ~39!

whereh1 andh2 are two random numbers that are assum
to be uniformly distributed on@0,1#. Heren is the collision
rate,dt is the simulation time step, andndt!1 is required.
Because of the randomness associated with the param
h1 andh2 , the collision map is an example of a dynamic
system with extrinsic chaos or stochasticity.

The particle simulation is carried out as follows. F
each time step, the collision map is applied to the velocity
each particle. Then, the changed velocity is used in the n
iteration of the drift wave map equations of~8!–~10!. The
process is repeated. Initially, we locate 32768D1 ions atr
50.05a, and the initial pitch parameter is set tol50.0. The
initial kinetic energy is set to 4.5 keV for Case I and 22 ke
for Case II and Case III according to the core ion tempe
tures of the experimental data. However, this choice of ini

FIG. 2. Radial profiles of the equilibrium radial electric field,Ēr , for Case
II and Case III.
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kinetic energy does not much affect the final results in th
map simulations, because local diffusion coefficient is ind
pendent ofv i after the onset of diffusion~see Ref. 5! and the
extrinsic stochasticity by the collision map satisfies the c
dition for onset of diffusion. Particle positions are advanc
in time using the alternation of the drift wave and collisio
maps until they reach the limiter atr 50.95a. Once a particle
reaches the limiter, it is treated as lost and a new particl
born again at the core in the same way. This procedur
continued in anticipation of a steady state. To determ
whether our particle ensemble has reached a steady stat
check to see if the particle fluxes at two positions,r 50.4a
and r 50.95a, are the same. In Figs. 6, 8, and 10, partic
fluxes at these positions are plotted for our three cases.
dently, the fluxes have saturated, since the fluxes measur
the two different positions are nearly same.

The two diffusion coefficients are calculated as follow
First, we calculate the usual diffusion coefficient using

D~ t !5
1

2t

1

N (
j 51

N

@r j~ t !2r j~0!#2 ~40!

for the ensemble ofD1 ions. In Figs. 7~a!, 9~a!, and 11~a!
the time series ofD(t) is plotted for the three cases. Th

FIG. 3. The coupling elementuaV/ku1/2 of Eq. ~29! for different toroidal
modes,L520, 22, 25, for Case I, the L-mode plasma.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



es
ro
m

se

te

s
t
n
h

t

nd
por-
ed
x-

les
0
ar-
as
this

ing
of
re
Fig.
.
in
or

the
se

im-

th
the

1175Phys. Plasmas, Vol. 7, No. 4, April 2000 Global drift wave map test particle simulations
quantity D(t) converges to a well-defined constant valu
indicating that the radial transport is indeed a diffusion p
cess. Specifically, we obtain the diffusion coefficient fro
the time series ofD(t) by using

D̄5
1

T2T0
E

T0

T

D~ t !dt, ~41!

whereT0 is the time at which convergence is observed to
in.

To obtain the second diffusion coefficient, we calcula
the average confinement~mean exit! time ^text& and then use
it to obtain a diffusion coefficient defined byDext

5a2/2^text&. In Figs. 7~b!, 9~b!, and 11~b!, ^text& is plotted
vs time. ForDext calculations, we use the values of^text& at
the final time.

Table I showsD̄ andDext for our three cases. The value
in parentheses are cases whereĒr is included. We see tha
both D̄ and Dext for Case II and Case III are smaller tha
those for Case I. Also, for Case II and Case III, we see t
the transport is reduced by the inclusion ofĒr . Note that the
difference betweenD̄ and Dext varies for each case, bu

FIG. 4. The coupling elementuaV/ku1/2 of Eq. ~29! for different toroidal
modes,L520, 22, 25, for Case II, the ERS plasma. Triangles represent
case withĒr and squares represent the case withoutĒr .
Downloaded 22 May 2006 to 128.83.179.53. Redistribution subject to AIP
,
-

t

at

Dext.D̄ for all cases. The difference is small in Case I a
becomes larger in the other two cases where there is im
tant confinement. We will show that the difference is relat
to the formation of internal transport barriers. A detailed e
planation will be given in the next section.

Finally, we calculate steady state particle density profi
in the following way. The minor radius is divided into 12
radial bins with equal radial widths, and the number of p
ticles in each radial bin is counted after the particle flux h
reached the saturated value. The bin numbers obtained in
way are then divided by the volume of the correspond
radial bin and finally normalized so that the total number
particles is unity. In Fig. 12, the particle density profiles a
plotted for the three cases. We see that the density in
12~b! and Fig. 12~c! drops abruptly compared to that of Fig
12~a!, which indicates the existence of transport barriers
the former two cases. The former two cases have zero
very weak magnetic shear regions and the points where
density profiles drop coincide with the boundaries of the
regions. If we includeĒr , the transport barrier for the JET
case moves outward and particle confinement is further

eFIG. 5. The coupling elementuaV/ku1/2 of Eq. ~29! for different toroidal
modes,L520, 22, 25, for Case III, the OS plasma. Triangles represent
case withĒr and squares represent the case withoutĒr .
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FIG. 6. Particle fluxes at two different positionsr 50.4a and r 50.95a for
Case I.

FIG. 7. Time series of the running diffusion coefficientD(t) and the mean
exit time ^text& for Case I.
Downloaded 22 May 2006 to 128.83.179.53. Redistribution subject to AIP
proved. But, the transport barrier for the TFTR is mos
unchanged. This is because the region whereĒr is highly
sheared is nearly the same as the region where the mag
shear reverses. However, as we have mentioned above,
ticle transport is reduced.

V. TRANSPORT BARRIER AND INHOMOGENEITY IN
THE LOCAL DIFFUSION COEFFICIENT

In general, the anomalous diffusion caused by elec
static drift waves is highly inhomogeneous because of
radial variation of the drift wave fluctuation amplitude an
correlation length. However, if there exists a transport b
rier, small inhomogeneities of the ambient fluctuations m
not be noticeable, and only a big difference between the lo
transport properties inside and outside of the transport ba
will matter. Here, we model such a situation using a on
dimensional diffusion equation with a spatially varying d
fusion coefficient,

]n

]t
5

]2

]r 2 @D~r !n#, ~42!

where

D~r !5H D1 if ur u,r b

D2 if r b<ur u,a
. ~43!

Equation~43! is a Fokker–Planck equation in the absence
drag, which is further discussed in the Appendix. In Sec.

FIG. 8. Particle fluxes at two different positionsr 50.4a and r 50.95a for
Case II. The solid line represents the case withĒr and the square dotted line
represents the case withoutĒr .
 license or copyright, see http://pop.aip.org/pop/copyright.jsp



a

b

he
e

ien

1177Phys. Plasmas, Vol. 7, No. 4, April 2000 Global drift wave map test particle simulations
D̄ was calculated by using a constant source at the center
a sink at the edge. This situation can be represented by
cluding ad-function source term located at the core and
imposing a vanishing boundary condition atr 56a,

]n

]t
5

]2

]r 2 @D~r !n#1pd~r !. ~44!

Here p is the particle production rate at the core. With t
boundary conditionn(6a)50, a steady state solution can b
obtained readily,

n~r !5H 2
p

2D1
ur u1S p

2D1
2

p

2D2
D r b1

pa

2D2
if ur u,r b

2
p

2D2
ur u1

pa

2D2
if r b<ur u,a

.

~45!

The total number of particlesN is given by

N5E
2a

a

n~r !dr5
p@D1a21~D22D1!r b

2#

2D1D2
, ~46!

and the ensemble average of the local diffusion coeffic
D(r ) is given by

FIG. 9. Time series of the running diffusion coefficientD(t) and the mean
exit time^text& for Case II. The solid line represents the case withĒr and the
square dotted line represents the case withoutĒr .
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FIG. 10. Particle fluxes at two different positionsr 50.4a andr 50.95a for
Case III. The solid line represents the case withĒr and the square dotted line
represents the case withoutĒr .

FIG. 11. Time series of the running diffusion coefficientD(t) and the mean
exit time ^text& for Case III. The solid line represents the case withĒr and
the square dotted line represents the case withoutĒr .
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D̄5
1

N E
2a

a

D~r !n~r !dr

5
D1@D2a212~D12D2!arb12~D22D1!r b

2#

D1a21~D22D1!r b
2 . ~47!

It is clear that in the steady state, this ensemble average
give the same result forD̄ as that obtained from Eq.~41!.

Our next job is the calculation oftext and, hence,Dext.
The mean exit time of the particles undergoing random m
tion is given by the solution of Dynkin’s equation, whic
involves the adjoint of the operator of Eq.~42!. In the Ap-
pendix, the theory is explained in greater detail. For o
problem, Dynkin’s equation takes a very simple form,

D~r !
]2u

]r 2 521, ur u,a, ~48!

whereu, a variable that can be related to the mean exit tim
satisfies the boundary conditionu(6a)50. The solution of
Eq. ~48! is given by

u~r !5H 2
r 2

2D1
1

~a22r b
2!

2D2
1

r b
2

2D1
if ur u,r b

~a22r 2!

2D2
if r b<ur u,a

~49!

and we have

^text&5u~0!5
~a22r b

2!

2D2
1

r b
2

2D1
, ~50!

and

Dext5
a2

2^text&
5

D1D2a2

D1a21~D22D1!r b
2 . ~51!

The difference betweenDext and D̄ is given by

Dext2D̄52D1

~d21!~xb2xb
2!

11~d21!xb
2 , ~52!

where d[D2 /D1 and xb[r b /a,1. Note that this expres
sion is always positive ifD2.D1 . Generally, the local dif-
fusion coefficient increases as one approaches the toka
edge.24 In particular, if there exists a transport barrier, this
the case that we actually meet. Note also that ifD25D1 ,
i.e., the diffusion is nearly homogeneous, then the differe
vanishes. In Sec. IV, the difference betweenDext and D̄ for
Case I is the smallest, so we can interpret this as an ind
tion of a more homogeneous radial diffusion as compare
the other two cases.

TABLE I. Dext andD̄ for three confinement cases. The values in parent
ses are cases whereĒr is included.

D (cm2/s) Dext ~cm2/s)

Case I 8.353104 1.523105

Case II 2.753104 (1.813104) 1.923105 (1.363105)
Case III 1.393105 (5.943104) 4.813105 (1.303105)
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VI. CONCLUSION

We have carried out global test particle simulations
three tokamak confinement regimes. The simulations inc
porate drift wave fluctuations derived from a linear superp
sition of the generalized toroidal mode,18 with the modifica-
tion due toĒr ~Ref. 9! taken into account. UsingĒr obtained
from neoclassical theory with the measured impurity ro
tional velocity,10 rotational invariance was removed, and w
have demonstrated the suppression of drift wave trans
for weak and reversed magnetic shear.

To study the formation and location of particle transp
barriers, knowledge of local particle transport is require
and we chose to calculate the particle density profile direc
A direct density profile calculation was facilitated by em
ploying drift wave and collision maps.5 Two diffusion coef-
ficients were calculated. One based on the running time
erage of the particle displacement,D̄, and the other based o
the mean exit time,Dext5a2/2^text&. The simulations dem-
onstrated that reversed or very weak magnetic shear ca
duce the particle transport by establishing a transport bar

FIG. 12. Radial profiles of the steady state particle density for three dif
ent cases. The profiles are normalized so that total particle number is
same. In~b! and ~c!, solid lines represent cases withĒr and the square
dotted lines represent cases withoutĒr .
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They also showed thatĒr can move the transport barrie
outward and that the resulting particle confinement is furt
improved. The two diffusion coefficients,Dext and D̄, were
found to always differ and, in the presence of the transp
barrier, the difference became large. This difference was
plained by using a one-dimensional diffusion equation a
Dynkin’s equation with a simple profile for the local diffu
sion coefficient, i.e., one in the form of a step function w
a low value inside the transport barrier and a high va
outside the barrier.
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APPENDIX: MEAN EXIT TIME AND DYNKIN’S
EQUATION

Dynkin’s equation and its relationship to the mean e
time is well explained in several books on probability theo
and stochastic differential equation.25,26Here we briefly sum-
marize the salient points, which are needed for our probl

The equation governing particles undergoing Brown
motion in a domainV is given by

dx

dt
5b~x!1s~x!j~ t !, ~A1!

where j(t) is a random function of time that causes t
Brownian motion and satisfieŝj i(t)j j (t8)&5d i j d(t2t8).
The quantityb is deterministic. The particle density,n, obeys

]n~x!

]t
52(

i

]

]xi
@bi~x!n~x!#

1
1

2 (
i , j

]2

]xi]xj
@~ssT! i j n~x!#, ~A2!

which in our case whereb~x!50, becomes a simple diffusio
equation. We denote the first exit time of the particle th
starts atx0PV at time t5t0 as tx0 ,t0

, and consider the so
lution of the following problem:

]u~x,t !

]t
1Mu~x,t !521, t>t0 , xPV, ~A3!

whereM is the adjoint operator given by

M5b~x!•¹1
1

2 (
i , j

~ssT! i j

]2

]xi]xj
, ~A4!

and the boundary condition isu(x,t)50 for xP]V. The dif-
ferential ofu(x,t) is given by Ito’s formula,25

du~x,t !5S ]u

]t
1MuDdt1(

i , j
~¹u! i

Ts i j j j~ t !dt, ~A5!

which leads to
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u~x,t !5u~x0 ,t0!1E
t0

t S ]u

]t
1MuDdt8

1E
t0

t

~¹u!T
•s•j~ t8!dt8 ~A6!

for t0<t<tx0 ,t0
. Settingt5tx0 ,t0

and taking the average o
both sides of Eq.~A6!, we obtain

^u~x,tx0 ,t0
!&5u~x0 ,t0!1^E

t0

tx0 ,t0
~21!dt8&

5u~x0 ,t0!2^tx0 ,t0
&1t0 . ~A7!

In the first identity, Eq.~A3! and ^j(t)& were used. Sincex
reaches]V at t5tx0 ,t0

andu vanishes on]V, the left-hand
side of Eq.~A7! is zero and we therefore obtain

^tx0 ,t0
&5t01u~x0 ,t0!. ~A8!

If we set t050 and assume that a steady state is reach
then we have

^tx0
&5u~x0!, ~A9!

whereu(x) is the solution of the following elliptic boundary
value problem:

Mu~x!521 in V,
~A10!

u~x!50 on ]V.

This equation is called Dynkin’s equation. For our proble
we reduce this equation to one dimension, in which case
~A10! has the simple form

D~x!
]2u~x!

]x2 521. ~A11!
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