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Global drift wave map equations that allow the integration of particle orbits on long time scales are
implemented to describe transport. Ensembles of test particles are tracked to simulate the
low-confinement mode/reversed shear/enhanced reversed shear plasmas in the Tokamak Fusion Test
Reactor(TFTR) tokamak and the Optimized Shear plasma in the Joint European T&ET$
tokamak. The simulations incorporate a radial electric fi@gd, obtained from a neoclassical
calculation[Zhu et al,, Phys. Plasma8, 2503(1999] and a model for drift wave fluctuations that

takes into account change in the mode structure di& {@aylor et al, Plasma Phys. Controlled
Fusion38, 1999(1996 ]. Steady state particle density profiles along with two different measures of
transport, the diffusion coefficient based on a running time average of the particle displacement and
that calculated from the mean exit time, are obtained. For either weak or reversed magnetic shear
and highly sheare#, , particle transport barriers are observed to be established. In the presence of
such a transport barrier, it is shown that there is, in general, a difference between the two measures
of transport. The difference is explained by a simple model of the transport barrie2000
American Institute of Physic§S1070-664X00)00404-3

I. INTRODUCTION between particle guiding centers and drift wave fluctuations.
The demonstration of reduced transport was possible because
Recently, there have been experimental reports ofhe drift wave maps allow very long time integration of par-
strongly improved particle confinement in tokamak ticle orbits in comparison to solving the exact guiding center
plasmas: These reports indicate that particle transport berhit equations. However, it was not possible in Ref. 5 to
haves as if a barrier exists in very weak or zero magnetigycate the transport barrier in detail because of the lack of a
shear regions, resulting in a transport level that is reduced tgsjiaple global model for the drift wave mode structure and
nearly the neoclassical prediction, or even lower, in the COrg o cause of the absence of a gcﬁdmodel.
region of the tokamak. Also, the formation of strong equilib- In the present work, we perform new test particle trans-

rium radial electric fieldsk, , are observed. From these ob- 4t simulations that show clearly the formation of the trans-

servations it is thought that the great improvement in particlg,q t parrier, We investigate the location of the particle trans-
confinement results from the suppression of drift wave tur- =

L . S ort barrier with the influence d&, on the drift wave mode
bulence, which is now well established as the pr|nC|paIp '

' . ) Etructure. For this purpose a global model for the drift wave
mechanism for causing anomalous transport in tokamal : :
plasmag mode structure and a neoclassical model for the radial elec-

In Ref. 5, it was shown that very weak or zero magneticmc field E, are taken from well developed theories. For the

shear can reduce the particle transport substantially without @00@! drift wave structure we adopt the analytical model of
significant change in the turbulence level, using newly deRef. 9, while forE, we use the results from the neoclassical
rived drift wave maps. These drift wave maps are area precalculation of Ref. 10.

serving maps for the guiding center motion of particles in A test particle simulation using the exact guiding center
drift wave turbulence. Specific drift wave maps were shownorbit equations for finding the location of transport barrier is
to have the form of the standard nontwist map for the recomputationally unfeasable because local transport proper-
versed shear (RS/enchanced reversed sheafERS  ties are needed. Generally, the calculation of such transport
plasma$® Such nontwist maps possess winding numberproperties from test particle simulations relies on the ergod-
profiles that are nonmonotonic, and sturdy invariant tori asicity property of an ensemble of particles evenly distributed
sociated with extrema of such profiles provide transport barever the whole region of phase space, which inevitably leads
riers. Also in Ref. 5, it was shown that highly sheared radialto globally averaged quantities. However, if we can calculate
electric fields, ones withv,|~c|E, /By|, where|v| is the the particle density profile directly, this difficulty does not
parallel ion thermal velocity an@, is poloidal magnetic occur. The drift wave maps make it possible to integrate a
field, can reduce the transport level by phase decorrelatiovery large number of particles for the long transport time
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scale under fairly complicated forms of the drift wave mode cM E“)
structure. Thus, the drift wave map allows us to calculate the Ry(I)=— 2B T (5)
steady state particle density profiles directly. waBy I

Although it is generally hard to infer local transport in-
formation from globally averaged quantities, we will show 2
that in some special cases it is possible in an indirect way to  v;(1)= \/5[5— edy(1)][1-NBo], (6)
obtain this information by comparing two different measures

of a global transport quantity. Namely, we calculate the dif or advancing the guiding centers over successive correlation
fusion coefficient based on a running time average of the. 9 g g . . ,
mes 2r/w. Here,a and R, are the minor and major radii,

square of the particle displacement and a second diffusio . ) N PR
coefficient calculated from the mean exit time. In generalr_eipecgve.‘lsy&?e Iriathr(?'t Sda;egtgzcrtﬁ;’l;e(t.ré?.)el‘ d ;bt_tr?g l(r}na i
these two quantities differ. We present a theory that explains ti‘P, x? Im nd gr ! ltjh m ndgth ' hl ; f th gr
the relationship between these two measures of transport ar C axis,;m ance are the mass a € charge ol the par-
ticle, respectively£ is the total energy, the equilibrium ra-

the formation of a transport barrier. ) L . . .
This paper is organ?zed as follows: In Sec. Il the driftdlal electric_field is related to the electrostatic potential
' ' according toE (1) = —d®o/ar|,_,,7, and\ =/, where

wave map equations and assumptions for their derivation he kinetl tth " i< th -
are briefly reviewed. In Sec. Il the drift wave model that is €k IS the kinetic energy of the particle apdis the magnetic

used in the simulations is described. In Sec. IV the proceMoment. The poloidal and toroidal mode numbers of the

dures for the test particle simulations are described, includiecalized drift wave fluctuation are denoted by and L,

ing a Monte Carlo map for pitch angle scattering that is used€SPectively. The map equatio® and(3) are area preserv-
in conjunction with a drift wave map. Here the particle dif- ing and the Hamiltonian map structure of these equations
fusion coefficients and the steady state particle density prov_vas investigated for various forms for the radial electric field

files are obtained. In Sec. V we present a simple theory t@nd g-profile. L. . . .
explain the results in Sec. IV. Finally, we summarize and For a reversed shear magnetic field configuration, this
conclude in Sec. VI local map reduces to the standard nontwist rf&igM) when

expanded around,,;,, whereq’(r ,;)=0. For the SNM, the

relative rareness of low order resonant rational surfaces and

the small size of high order resonances cause a robustness of
Il. DRIFT WAVE MAP the tori near ;,. The presence of these robust or sturdy tori

C e . was shown to produce a strongly reduced transport rate,
The justification for extracting maps, such as the stan- b gy P

. . . ) . without a significant change in the drift wave fluctuation
dard map, from differential equations that describe partICI('i‘evel at each mode rational surface. This suppression of the

dynamics is based on the assumption that the force is COn%Fansport level by weak shear was suggested as the reason for
posed of waves with a broadband spectrum. Such force . . )
e formation of the transport barrier in the ERS

phase mix to zero except for temporally localized impulsive .
experiment

jumps, between which the differential equations can be eas- . .
L ) : T Although the local map equations are useful for studying
ily integrated to yield the map. The physical motivation and . . .

local transport, after many iterations particles eventually

justification given in Ref. 5 for introducing drift wave maps leave a neighborhood of the drift wave, and thus one must
in place of the differential equations was based on electro- ’

magnetic (laser and microwave scattering experiments extend the drift wave model to include global radial varia-
9 9 P ' tion. An appropriate global model is that of Connor and

which show aﬂ'iflze frequency spectrum for a fixed s;Catterim“"l'aylorw for drift wave fluctuations of frequency and an
wave vectork.”~*“ Indeed many e>_<per|ments §how a l_)roadinfinite frequency spectrume, n=+1+2,...
drift wave frequency spectrum with substantial amplitudes
for frequencienw with n=1,2,...K for K large. .

Two kinds of drift wave maps were introduced in Ref. 5, ?75=?b 2 2
local and global. Local drift wave map equations were de- 0,5, <

rived by idealizing the finite mode drift wave spectrum,
K

> exfg o (x—m)2/2]

m=my

X cog§ — or(X—m)2/2—(m+M)9+Le—nwt].

b= 3 by codMI—Lo—not), ) @
n=—K
by taking the limitK—-c. In this way one obtains the im- Here}_}o is the mode amplitudey=or+io, depends upon
pulsive jumps that lead to the mapping equations, the diamagnetic frequency, the density scale length, and
other plasma parametefsee Refs. 5 or 13 and Sec.)]Ik
T 4mc M¢M’Lsin(¢,\,), (2)  =kps, wherep=ro—r with ro defined byM/L=q(ro), k
a’By o =Lqg/r, ands(r)=(r/q)(dg/dr). In Ref. 5, Eq.(7) was

used to obtain the global map equations given by

Un+1= T Ri(Ins1) FRo(Ins1), (3
(1) 4mc o
Rull)= o [M - La(l], @ e o 2 e, o) ®
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1/2

o v 2cR, from p;"“ to p;, which also implies a reduction of the trans-
Fy+1=0Ont + > port level. Recently, the radial electric field for reversed
Row|[q(In+1)  Boa ; ; ;
magnetic shear discharges has been calculated using neoclas-
dp — sical theory with the impurity rotational veIocii39._T hese
X\ 5y UnenOnen) ~ErlInea) || (9 calculations show that a reduced analytic formulaBprob-
tained in Ref. 21 over estimates its magnitude and gradient.
2y For this reason, we use the result of Ref. 10 and the same
PN+1= Nt (10

Tokamak Fusion Test ReactdTFTR) database for the

The map defined by Eq$8)—(10) can be viewed as a present problem.

. ! . . . To determine the parameters for the mode structure of
four-dimensional symplectic map associated with a two, . . .
the drift wave fluctuations, we proceed in the same way as

degree-of-freedom Hamiltonian system, where the fourtr1hat of Ref. 9. We start from the model equation for short-

,rﬂ?:m\/;ir\',ae?le’Ethse(gfgg)mcl;? Sgryiiﬁgﬁzlz It?rrrllgrzzleén- wavelength plasma fluctuations with large toroidal eigen-
Y, £0s: P mode numbeLt>1 in a large aspect ratio torus,

dent two-dimensional symplectic or area preserving map.

Ro(,l) '

This is seen by solving (10), which gives oy 1 9 N 2
=2mNv;/(Row) whenuy, is constant, and inserting this re- WW_U %HLQ’P

sult into Egs.(8) and (9). The resulting two equations are
area preserving because they can be derived from a mixed is | d ~

variable generating function according ltg=4/99y and _a(COSfH L—q,smﬁ%) _A}‘b(/)’ﬂ):o’ (1)
Inp1=0FIdl gy 1, whereF=F(ly,1,9n,.N). We leave the

map in the form of Eqs(8)—(10) because in Sec. IV we Where
allow v, to change by collisions.

In order to identify the location of the particle transport 5= 9 o= Ln o= 2Ly = E (12)
barrier an even more reliable global drift wave model, one q’ bgsR)’ bs’RQ’ T
that takes into account the density of rational surfaces and
the modification of the mode structure duelp, is needed. b= =k3p?, kﬁ:M, =2 , m:b' (13
In the next section, we describe the global model of drift 2 0 Wxe Ly
wave fluctuations that is used here in our test particle simu-
lations. A= 1 M%—b ) (14)
bs?| 7+ ni+1
IIl. DRIFT WAVE MODEL As in Sec. Il, p=r—rg is the distance from the rational

) ) ) ) surface where the mode is centered wiegng)) =M/L. The
Early work on drift wave fluctuations dealt with radially gyantity o measures the strength of the toroidicity induced
localized modes that arise at special radial points of the equiygge coupling. Inclusion of poloidal plasma rotatiarg,

librium profiles; for example, in the case of electron-drift qye to the radial electric field introduces a Doppler shifbin
modes these special points occur at the position of the maxi-

mum diamagnetic frequencw, ..*'® Recently, another o—K-vg=w—Kgve~w—Kg(vgo+vep), (15)
drift wave branch, composed of the so-called generalized .

modes, has been discovered and, in contrast to the localiz&t1€reve(r) is expanded aroung=0. Also, we assume a
modes, proposed as the principal cause of anomalodt”ear variation ofw, o(r) for the modeling of the general-
transport®~18 These new modes have a higher magnetidzéd mode,
shear damping rate than the localized modes and can arise at

any rational surface. As explained in our study of the local  , ;~w, o+
map, the relative rareness of resonant rational surfaces, i.e.,

the low density of rational surfaces in the weak shear region, . ] ) )
is believed to be one of the reasons for transport reduction byhere 1L, =w, sdw, o/dr|, - . With this assumption Eq.
weak sheat? which also underscores the importance of the(11) becomes

dw,.

dr

1+

) s

P~ Wyeo
r=rg

generalized modes since they can arise at arbitrary rational , P ) 5
surfaces. In this work, we study the particle transport proT_z_az ~ tix —a(cosﬂﬂssinf}—)
duced by these generalized modes. X a0 IX

For determination of the drift wave mode structure, an-
other important element that must be considered is the — A+ kx
E,-generated poloidal flow. As mentioned in Sec. I, in ERS
and other high confinement experiments, there are indicayherex=Lq'p, k=, + k,, and
tions that large equilibrium radial electric fields exist. There
have been many studies of the roleE®f on the drift wave _ (g _ T
mode structuré?® and these studies show that the depen’*~ Lq'bs?L, (r+7,+1)' 2 Lq'bSLe(r+7+1)
dence of the mode width on the ion Larmor radius is reduced (18

$(x,9)=0, (17)
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In Eq. (18) we define Wg=kyvgg/wyieo and Q=(w
—kgveo)/ w, e0~1. The quantityx; measures the shearing
due to the gradient ob, ., while x, measures the shearing
due to theEXB Doppler shift. ~

Upon Fourier expanding the potenti@l in the poloidal
angled,

:ﬁ(x,ﬁ)=§m: Cnm(x)e™ M7, (19)

and projecting Eq(17) onto themth harmonic, we obtain

a _ OPme1
Cm(Lm_A)d’m_Ez Cm+1( Dm+1+S O—;:( ) =0,
(20)
where the operatdr,, is defined by
2
L= W+az(x—m)2+ KX|. (21)

As in Ref. 9, we assume~«<1 and write = %+ pL,
where an ordering inv is assumed. Writind_,=L5+L*,
whereL% =02+ 0?(x—m)? andL'=x, we obtain the fol-
lowing zeroth order solution of Eq20),

¢21(x)=ex;{—i%(x—m)2 , 22)
. 1 |7(Qs—1) .
Ko—_lgmg m‘l‘b—lﬁ, (23)

whereL2 ¢ =\q¢0. Hereié is included so thav? has a
small negative imaginary pattwhich physically represents

the destabilizing effect of electron Landau resonance o

trapped electront’

To zeroth order, all the modes of EqR2)—(23) are
degenerate, and we must proceed to first order to remove t
degeneracy and obtain the relationship betwegis. The
first order equation is

Cn(Lmn=A) bt Con( o+ L= A) 1,
a 5¢?nt1
22
The solvability condition for(24) is obtained by multi-
plying by ¢,?, and integrating ovex, which gives

(24)

0o —
Cm+1< Pm+1+S X

aV
()\0+mK—A)CmZT(Cmﬁ—l"_Cm—l): (25)
where
0 -1
vE“ ¢%( ¢%+1—s%)dxﬂf (40)%dx
(26)

The solution to Eq(25) can be obtained easily by using
the generating functiog(u) =2 ,,c,, exp(~imu). Upon mul-
tiplying (25) by exp(~imu), summing ovem, and manipu-
lating, the equation fog(u) is seen to be

d
iKag(U)-F[)\O—A—a’VCOSU)]g(U):O, (27)

Downloaded 22 May 2006 to 128.83.179.53. Redistribution subject to AIP

i

Kwon et al.

which has the solution

g(u)=exp(i M )

This expression fog(u) can be easily inverted to obtad,
by using the generating function for the Bessel functign
This gives

aV
— ——SInu
K

(28)

Cn=JIm(aV/k), (29

using\o=A, which is valid to lowest order.

If xis large, only a few neighboring modes will be ex-
cited. For weak shear ing and w, ., the parametek is
small, and the number of modes that are significantly
coupled to moden becomes large. Asymptotically, the num-

ber of coupled modes is given by
Am~|aV/k|Y2. (30)

Summarizing, the model drift wave spectrum is given by

o my
5T 3 3 enqeem]
n=-o« L m=m

(31)

OR

xoo{— ?(x—m)z—(m+M)ﬂ+ Le—not|,
where ¢, is the mode amplitudeg is determined by Eq.
(23), and|my|~|m,|~|aV/ | Y2 Here, the limit of an infi-
nite frequency spectrumw, n=*1,+2 ... is assumed for
the derivation of map equations and multiple toroidal mode
numbers(sum overlL) are also included. This form repre-
sents a ballooning mode centered atry with my,—m;+1
Sidebands. The radial width is approximately given by the
distance between the two outer most rational surfaces for the
idebands with mode numbersM{m;,N) and (M
e m,,N). 5

The drift wave amplitudep, is determined by

lc

Ly,

b0

C (32

Te,

wherel is the mixing length ancILTi is the ion temperature

gradient length scale. Here we use the Ottaviani—Horton—
Erba (OHE) model, which gived .= qp.R/L+,.? Each bal-
looning mode hasn,—m;+1 sidebands, and therefore an
effective fluctuation amplitude for the ballooning mode is
approximately given by\N¢X (my—m;+1)X ¢y, whereNt
is the number of different toroidal modes. The constant fac-
tor C is introduced to place this value in the appropriate
range, and is chosen to I~ 1/(NtX (my—my)).

Within the ordering used for the derivation of the drift
wave modelp~L,,/R~ <1 ando is given approximately

by

L, _ r+p+1sk,\ |t
O-NbQSR_l_l—I 5— . ﬁ

L, [ . L,S
NbQSR_l_I(g_ﬁ) (33
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If we consider only the shear damping terin,s/qR, then o+ Cmsl
the absolute value of the imaginary partebecomes 7 v Csll
61
L2 212 §|
o1~ t3m2= 77, 34 8
bR oPRAG! B
by the definition ofc- and Eq.(23). Since the radial variation f
of a single sideband is approximately @xgoi|k5sX(r R e
—rm?2], where q(r,)=(M+m)/L, its radial width is g 02 Q4|1a06 08 10 0 02 04r/a<16 08 10
given by i)
2 gRp; ? 420"
A= NG~ s R o
280"

Note that this expression fails as one approachgs since iff
s—0. This divergence is caused by the fact thet all of the 4
above formulas is set to a constant value at the rational sur 2|
face throughr, where the modes are centered. To remove o
this divergence, one must allow a radial variatiorspbut a
detailed consideration is beyond the scope of the present
work. Here we give an estimate of the minimum allowableFIG. 1. Radial profiles of, T;, Te, andn; for three confinement cases.
distance betweenmn and the nearest sideband within which €ase | models an L-mode TFTR plasma_, (_:ase Il models the ERS TFTR
. . . . plasma, and Case Ill models the JET optimized shear plasma.
our model is plausible. Upon expandiagroundr ,, using

s=s,,;Ar, and settingAr,,=Ar, we obtain

21x10™

1410

7.0¢10"

R (2) Case II: This is the case of an ERS plasma on the TFTR
(A1) min= \ /L_ (36) (shot number 88299 This plasma has a reversed shear
Ll Stinl g-profile and largeE, . The g, is located arr =0.3%
The estimate of36) is used for determining the drift wave and the region wherg, is highly sheared is mostly in-
mode structure near, ;. side r=0.4a. These data are obtained from Budny in
PPPL.

For global modeling of the drift wave, particularly for o o
the generalized mode, one must, in principle, assign modds) Case IlI: This is the case of optimized shear plasma ex-
to all of the rational surfaces. However, this procedure is ~ Pe€riment on the JETshot number 40542 In this case,
impossible in practice, so here we choose rational surfaces in  thed-profile is not reversely sheared. But it is nearly flat
a manner based on the density of rational surfaces of the N r<0.4%. Also the plasma has large positivé
given g-profile. In particular, modes are placed on rational ~ Which is highly sheared im<0.6a. All neutral beams
surfaces so thaj-values are nearly equally spaced. are coinjected parallel to the plasma current. These data

We carry out our simulations for three different cases  are also taken from U-files in an ITER database.

that correspond to the TFTR and Joint European TQFES) In Fia. 1. ol - lotted f h n th
discharges. We usB,=260cm,a=94cm, andBy=4.6T n Fig. 1, plasma profiles are plotted for each case. In the

for the TFTR, and R,=307.6cm, a=94cm, and B, figure, triangular and circular dots represent experimental

=3.57 T for JET. According to the ordering in the drift wave d_ata a_r;?] solid Cl:c_rlvesdare fitt_ed p;ofilgs_ftused In the simula-
model, b and Q satisfy b=k2p2/2~e<1 and Q=w/w, . tions. These profiles determine the drift wave parameters.

~1. We can determine the parametérand » using these Square points on the-curves represent the selected rational

relations. Although, these parameters are different for théurfacj‘es on which drift wave modes are aSS|ghed. Figure 2
following three cases, their order of magnitude are simila€Ontains plots ofg, for Case Il and Case Ill. Figures 3—-5
and approximately given bly~40 andw~2.5x 10° s for show plots o.f the parametbrV/ | for the three cases. From
Case | and.~20 andw~5X10%s ! for Case Il and Case the figures it can be seen that the decrease of the mode
lll. In the following simulations, multiple toroidal mode Widths caused by, is appreciable for <0.3% in Case II,
numbers ofL=40, 43, 46 are chosen for Case | ahd and forr<0.5% in Case IlI.

=20, 22, 25 for Case Il and Case llb is set to 2.5

x10*s™! for Case | and 5.810%s ! for Case Il and Case V. TEST PARTICLE SIMULATION

. . . .
In our test particle simulations, a Monte Carlo Coulomb

(1) Case I: This is the case of a low-confinement mdde  collisional pitch angle scattering map is used in conjunction
mode plasma on the TFTRshot number 509)1which  with the map equations of Sec. Il. Assuming that small angle
has a monotonically increasing-profile and dose not Coulomb scattering changes the direction, but not the mag-
have an appreciabl&,. These data are taken from nitude, of the velocity, the collisional scattering map for the
U-files in an Iternational Thermonuclear Experimentalchange of velocity was derived in Ref. 23 and is given by the
Reactor(ITER) database. following:
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10 (a) Case ll (TFTR) 14 (aL=40
0 IIK
12 .
. -10] o / \'\\' .
£ =z 101 / /
= -2 < / !
i \ /wH_ >5 / \\ /l
~ -304 " = 8- / N o
i / \ /
-401 64 // \./
-504 -/
4 T : T T ,
B04— T T T T T 0.0 02 0.4 06 0.8 1.0
00 02 04 06 08 1.0 r/a
a b)L=43
14 o)L=
N
(b) Case lll (JET) 12 /N
/ \
1401 o < \ a
1204 = 104 - | o
S 7 \ /
100 Y \ -
[ o /
£ 801 \/
= 64 ]
2> 60
401 4 . . . . .
] 0.0 02 0.4 06 0.8 1.0
20
r/a
° L=46
; o)L =
-20 T T T T T T 14 S)
0.0 0.2 0.4 0.6 0.8 1.0 VN
/a 12 - s T
I 1 ,
< 1/ \
FIG. 2. Radial profiles of the equilibrium radial electric field,, for Case = 10+ / \-\ Y
Il and Case Il Sa 1 ye \\ S "
- 7
= 8 1 o \\ /f/
v
6- [ |
2pi 4 . . . . .
(p)¢=(py)i cosys + B SiNv1C0Sy2, (37 0.0 02 0.4 0.6 0.8 1.0
i r/a
2 2pi ; 172 ; ;
_ 2 APy ; FIG. 3. The coupling elemenV/«|Y* of Eq. (29) for different toroidal
B (p”)' + B; sirt "1 sirt Y2 modes,L =20, 22, 25, for Case |, the L-mode plasma.
2
+ \/@cos —(py); Siny, cos (38)
B; YT sYLEOSY2 | kinetic energy does not much affect the final results in these

map simulations, because local diffusion coefficient is inde-
pendent ob after the onset of diffusiofsee Ref. pand the
extrinsic stochasticity by the collision map satisfies the con-
dition for onset of diffusion. Particle positions are advanced
in time using the alternation of the drift wave and collision
maps until they reach the limiter at=0.9%. Once a particle
vi=[—vétIn(1— 7;1)]1’2, Vo=2115, (39 reaches the limiter, it is treated as lost and a new patrticle is
d)orn again at the core in the same way. This procedure is

to be uniformly distributed ofi0,1]. Here v is the collision continued in anticipation of a steady state. To determine
rate, 5t is the simulation time step, anebt<1 is required whether our particle ensemble has reached a steady state, we

Because of the randomness associated with the paramet&fieck t0 see if the particle fluxes at two positions;0.4a

7, and 7,, the collision map is an example of a dynamical andr=0.9%, are t,h,e same. In Figs. 6, 8, and 10, partlcle_
system with extrinsic chaos or stochasticity. fluxes at these positions are plotted for our three cases. Evi-

The particle simulation is carried out as follows. For dently, the fluxes have saturated, since the fluxes measured at

each time step, the collision map is applied to the velocity oithe two d|ffere_nt p_osmons are hearly same.

each particle. Then, the changed velocity is used in the next. The two diffusion coefﬂments are calcu!a_ted as _fOIIOWS'
iteration of the drift wave map equations (#)—(10). The First, we calculate the usual diffusion coefficient using
process is repeated. Initially, we locate 32768 ions atr 11N

=0.0%, and the initial pitch parameter is setXe-0.0. The D(t)= 2t Nz [ri(t)—r;(0)]? (40)
initial kinetic energy is set to 4.5 keV for Case | and 22 keV =1

for Case Il and Case Il according to the core ion temperafor the ensemble oD * ions. In Figs. Ta), 9(a), and 11a)
tures of the experimental data. However, this choice of initiathe time series oD(t) is plotted for the three cases. The

where the subscriptsandf refer to values before and after
the collision, respectively. Herp,=v,/{};, €, is the ion
gyrofrequency on the magnetic axis, gne= mvf/ZB is the
magnetic moment. The two angles andy, are determined
from

where n, and 5, are two random numbers that are assume
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FIG. 4. The coupling elemenuV/«|*? of Eq. (29) for different toroidal
modes,L =20, 22, 25, for Case Il, the ERS plasma. Triangles represent th

case withE, and squares represent the case witHgut

FIG. 5. The coupling elemerjizV/x|"? of Eq. (29) for different toroidal
modes,L =20, 22, 25, for Case llI, the OS plasma. Triangles represent the

case withE, and squares represent the case withgut

quantity D(t) converges to a well-defined constant values,
indicating that the radial transport is indeed a diffusion pro-
cess. Specifically, we obtain the diffusion coefficient from
the time series oD (t) by using

DD for all cases. The difference is small in Case | and
becomes larger in the other two cases where there is impor-
tant confinement. We will show that the difference is related
to the formation of internal transport barriers. A detailed ex-
1 T planation will be given in the next section.
T-To fTOD(t)dt’ (41) Finally, we calculate steady state particle density profiles
] ) ) ) in the following way. The minor radius is divided into 120
whereT, is the time at which convergence is observed 0 Set, g pins with equal radial widths, and the number of par-
In. ) o . ticles in each radial bin is counted after the particle flux has
To obtain the second diffusion coefficient, we calculatee,ched the saturated value. The bin numbers obtained in this
the average confinemefthean exit time (7,) and then use 5y are then divided by the volume of the corresponding
it 1o obtain a diffusion coefficient defined bYeu  radial bin and finally normalized so that the total number of
=a°/7ex)- In Figs. 1b), 9(b), and 11b), (7o, is plotted  panicles is unity. In Fig. 12, the particle density profiles are
vs time. ForD,; calculations, we use the values@h,p &t  piotted for the three cases. We see that the density in Fig.
the final time. 12(b) and Fig. 12c) drops abruptly compared to that of Fig.
Table | showsD andD., for our three cases. The values 12), which indicates the existence of transport barriers in
in parentheses are cases wheteis included. We see that the former two cases. The former two cases have zero or
both D and D, for Case Il and Case Il are smaller than very weak magnetic shear regions and the points where the
those for Case I. Also, for Case Il and Case lll, we see thatlensity profiles drop coincide with the boundaries of these
the transport is reduced by the inclusiontgf. Note that the  regions. If we includeE, , the transport barrier for the JET
difference betweerD and D, varies for each case, but case moves outward and particle confinement is further im-

5:
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FIG. 8. Particle fluxes at two different positions-0.4a andr =0.9% for
Case Il. The solid line represents the case \Eitland the square dotted line
represents the case withdgf .
proved. But, the transport barrier for the TFTR is mostly
. o . o
1.2x10 (a) D, (cm’/s) time series unchangt_ed. This is because the region wherds highly _
1.2x10° sheared is nearly the same as the region where the magnetic
1.1x10° shear reverses. However, as we have mentioned above, par-
1.1x10° T, T ticle transport is reduced.
1.0x10%
9.5x10"1 V. TRANSPORT BARRIER AND INHOMOGENEITY IN
9.0x10* THE LOCAL DIFFUSION COEFFICIENT
8'5"10:' In general, the anomalous diffusion caused by electro-
8.0x10 1 static drift waves is highly inhomogeneous because of the
750 T T T 400 600 800 1000 radial variation of the drift wave fluctuation amplitude and
t (ms) correlation length. However, if there exists a transport bar-

rier, small inhomogeneities of the ambient fluctuations may
not be noticeable, and only a big difference between the local

%1 (b) Mean Exit Time <z,,> (ms) transport properties inside and outside of the transport barrier
301 will matter. Here, we model such a situation using a one-
25 dimensional diffusion equation with a spatially varying dif-
fusion coefficient,
201
m_ D 42
151 —=—
o~ grztb(nn], (42
101
where
5-
. T . T T . D, if |ri<r
0 200 400 600 800 1000 D(r={_+ Irf<ro (43
t (ms) D, if rps|ri<a

FIG. 7. Time series of the running diffusion coefficidn(t) and the mean Equation(43) is a Fokker—Planck equation in the absence of
exit time (74, for Case . drag, which is further discussed in the Appendix. In Sec. IV,
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FIG. 10. Particle fluxes at two different positions 0.4a andr =0.9% for

FIG. 9. Time series of the running diffusion coefficiéh(t) and the mean
exit time( 7, for Case Il. The solid line represents the case \ittand the
square dotted line represents the case witliqQut

D was calculated by using a constant source at the center and
a sink at the edge. This situation can be represented by in-

cluding a &-function source term located at the core and by
imposing a vanishing boundary conditionrat = a,

(92

an
i W[D(r)n]—%pé(r).

(44)
Here p is the particle production rate at the core. With the
boundary conditiom(*+a) =0, a steady state solution can be
obtained readily,

P e P P s PR e
" 2D, 2D, 2D, P 2D, b
ner)= .
P e 22 i =g <a
2D, 2D, b
(45)
The total number of particled/ is given by
N J g p[D1a’+(D,—Dy)ri] ”
= n(ndr= 2D,D, ; (46)
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1.0x10°
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Case lll. The solid line represents the case \Etfand the square dotted line
represents the case withds} .
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FIG. 11. Time series of the running diffusion coefficiéntt) and the mean

and the ensemble average of the local diffusion coefficiengxit time (7., for Case Iil. The solid line represents the case véithand

D(r) is given by

the square dotted line represents the case witkput
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TABLE |. Dgy and§for three confinement cases. The values in parenthe- = c |
ses are cases whekg is included. % 0.03 (a) Case
a
D (cn?/s) Dy (Cr?/s) 2
£ 0.02
Case | 8.3x 10* 1.52<10° S
Case Il 2.7%10% (1.81x 10%) 1.92X 10° (1.36x 10°) 8
Case Il 1.3% 10° (5.94x 10) 4.81x 10° (1.30< 10°) N 001
E
2 0.004
00 02 0.4 06 08 10
. r/a
— 1 (a 2 0.04-
D=— | D(r)n(r)dr 2 (b) Case ll _
_a 2 ——noE,
) Py 0.03 1 _
D4[D,a’+2(D;—Dj)ar,+2(D,—Dy)ri] A S —E,
B D1a2+(D2—Dl)rt2J ' ( 7) n“_s 0.024
©
It is clear that in the steady state, this ensemble average must _9_;1’ 001
give the same result fdD as that obtained from E¢41). g '
Our next job is the calculation of,; and, henceD gy;. 2 0.00 .
The mean exit time of the particles undergoing random mo- 00 02 04 06 08 10
tion is given by the solution of Dynkin’s equation, which r/a
involyes the adjoint .of the operator of E@2). In the Ap- 2 005 . (c)Caselll _
pendix, the theory is explained in greater detail. For our @ - .\:\ _;\.(‘-.\ ——noE,
problem, Dynkin's equation takes a very simple form, 8 'KI-M 1 - E
72U 3 oo2{ |} 4N
D(r)—=-1, |r|l<a, 48 5
(1= Ir| (48) 8
<
whereu, a variable that can be related to the mean exit time, S o1
satisfies the boundary conditiar{ =a) =0. The solution of g
Eq. (48) is given by S 0004 e
2 (atr?) ) 00 02 04 06 08 10
r a‘—r r
~55- 1 2D > +2|§ if |r]<rp fa
u(r)= 1 2 1 (49) FIG. 12. Radial profiles of the steady state particle density for three differ-
(az— r2) ] ent cases. The profiles are normalized so that total particle number is the
oD, if rb$|f|<a same. In(b) and (c), solid lines represent cases wilh and the square
2 dotted lines represent cases with&jt
and we have
(a®—r3) ri
<Text>: U(O)Z T + ﬁ, (50) VI. CONCLUSION
2 1
and We have carried out global test particle simulations for
) ) three tokamak confinement regimes. The simulations incor-
D — a- D;Dsa (51) porate drift wave fluctuations derived from a linear superpo-
& 2(Tey Dya%+(Dp,—Dy)ri’ sition of the generalized toroidal modgwith the modifica-
) _ — tion due toE, (Ref. 9 taken into account. Using, obtained
The difference betweeD, andD is given by from neoclassical theory with the measured impurity rota-
_ (d—1)(xp—X2) tional velocity° rotational invariance was removed, and we
Dext—D=2D1mz—, (52)  have demonstrated the suppression of drift wave transport
b

whered=D,/D; and x,=r,/a<1. Note that this expres-
sion is always positive iD,>D;. Generally, the local dif-

for weak and reversed magnetic shear.
To study the formation and location of particle transport
barriers, knowledge of local particle transport is required,

fusion coefficient increases as one approaches the tokamalkd we chose to calculate the particle density profile directly.
edge?* In particular, if there exists a transport barrier, this isA direct density profile calculation was facilitated by em-

the case that we actually meet. Note also thdDj=D,,

ploying drift wave and collision mapsTwo diffusion coef-

i.e., the diffusion is nearly homogeneous, then the differencéicients were calculated. One based on the running time av-

vanishes. In Sec. |V, the difference betwdeg, andD for

erage of the particle displacemebt, and the other based on

Case | is the smallest, so we can interpret this as an indicahe mean exit timeD o= a%/2( 7). The simulations dem-
tion of a more homogeneous radial diffusion as compared tonstrated that reversed or very weak magnetic shear can re-

the other two cases.

duce the particle transport by establishing a transport barrier.
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They also showed thaEr can move the transport barrier t{du ,

outward and that the resulting particle confinement is further ~ U(X,t)=U(Xo,to) + ft o TMudt

improved. The two diffusion coefficient®,,; andD, were °

found to always differ and, in the presence of the transport t T N ter

barrier, the difference became large. This difference was ex- * IO(VU) ro- E{(t)dt (A6)

plained by using a one-dimensional diffusion equation and ) )
Dynkin’s equation with a simple profile for the local diffu- for to=t=<ry, .. Settingt=r,  and taking the average of
sion coefficient, i.e., one in the form of a step function with both sides of Eq(A6), we obtain
a low value inside the transport barrier and a high value _
outside the barrier. (u(x, Txo,t0)>:U(Xo:to)+<f (= 1)dt’)
to

=U(Xo,to) = (7 1) +to- (A7)

This work was supported by the Korea Advanced Insti-I" the first identity, Eq(A3) and(&(t)) were used. Since

tute of Science and Technology and the U.S. Department Jf_eachesm att:_TXo’to andu vanishes on}, th.e left-hand
Energy under Contract No. DEFG03-96ER-54346. ComputSide of Eq.(A7) is zero and we therefore obtain
ing_resources were provided by the Texas Advanced Com- (7o 1) =to+U(Xo,t0). (A8)
puting Cente(TACC). 0o
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then we have
APPENDIX: MEAN EXIT TIME AND DYNKIN'S

EQUATION (7x,) = U(Xo), (A9)

Dynkin’s equation and its relationship to the mean exitwhereu(x) is the solution of the following elliptic boundary
time is well explained in several books on probability theoryvalue problem:
and stochastic differential equatiéh?®Here we briefly sum- _
marize the salient points, which are needed for our problem. Mu()=-1in €,
The equation governing particles undergoing Brownian u(x)=0 on 4Q.
motion in a domain is given by

(A10)

This equation is called Dynkin’s equation. For our problem,

% —b(X)+ a(X) &), (A1) we reduce this gquation to one dimension, in which case Eq.
dt (A10) has the simple form

where &(t) is a random function of time that causes the J2u(x)

Brownian motion and satisfies;(t)&;(t"))= & 6(t—t). D(x) pvea -1 (Al1)

The quantityb is deterministic. The particle density, obeys
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