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Magnetic field lines, Hamiltonian dynamics, and nontwist systems
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Magnetic field lines typically do not behave as described in the symmetrical situations treated in
conventional physics textbooks. Instead, they behave in a chaotic manner; in fact, magnetic field
lines are trajectories of Hamiltonian systems. Consequently the quest for fusion energy has
interwoven, for 50 years, the study of magnetic field configurations and Hamiltonian systems
theory. The manner in which invariant tori breakup in symplectic twist maps, maps that embody one
and a half degree-of-freedom Hamiltonian systems in general and describe magnetic field lines in
tokamaks in particular, will be reviewed, including symmetry methods for finding periodic orbits
and Greene’s residue criterion. iontwist mapswhich describe, e.g., reverse shear tokamaks and
zonal flows in geophysical fluid dynamics, a new theory is required for describing tori breakup. The
new theory is discussed and comments about renormalization are mad200@® American
Institute of Physicg.S1070-664X00)01905-4

I. INTRODUCTION In the first half of the 20th century, classical mechanics
was a relatively unfashionable discipline. This was the age of
Classical mechanics is a very old discipline; dependingnodern physics and the parallel development of functional
on where one selects=0, it is at least hundreds of years old. analysis in mathematics. Relatively few researchers thought
It may come as a surprise that important and substantiaderiously about classical mechanics. In the second half of the
progress has been made in this field in the last 50 years. Ipigth century the quest to achieve energy by controlling fu-
particular, the elementary problem of how a swing behavesgjon reactions by containing hot plasma in magnetic bottles
or the essentially equivalent problem of explaining the beyag begun, and impressive progress in this endeavor also
havior 'of bundles of closed magnetic field lines when SYMyyas(and is beingmade. It is my belief that there is a causal
metry is broken have been solved. Both of these systemgationship between the progress in fusion and that in clas-
possess nonlinearity and periodicity, and they are, amongic,| mechanics. The quest for fusion instigated a renewal in
other things, the subject matter of this talk. the study of classical mechanics, and indeed plasma physi-

Because this is the American Physical SociedPS) cists have made important contributions to classical mechan-

Centennial meeting it seems.appr_oprigte.to say a little abmb&s. This is an example of the not uncommon scenario of

;Zzgogﬁiz ttz?:] Z?Stf:(r-:‘ag?\ltruer?/ IFr:otitr]\I's f'elge'?nt]g?ezgis\'/telo cientific advancement, where practical and fundamental

discoveries. For systems with two degrees of freedomo progress are mad_e hand-!n-_hand. . .

canonical coordinates and two momente introduced the In fusion physics one is interested in containing charged
rticles, and because the particle concentrations of interest

idea that Hamiltonian systems are area preserving maps e tvpically small compared to the auantum concentration
planar regions. He of course did much more than this; p&'e typically np e quantu . on.
particles can be described classically. Thus obviously one is

worked on the existence of invariant surfa¢esi) and con- led h dv of classical trai es in el . d
jectured about their destruction, work that was completed bye to the study of classical trajectories in electric and mag-

G. D. Birkhoff. To many he is considered to be the father Ofnetic fields. But because particles follow magnetic field lines
the field of topology. However, in spite of the impressive to leading order, one needs to understand their nature. In my

discoveries by Poincar@irkhoff, and others in the first half €XPerience, the typical physicist outside of plasma physics
of the 20th century, the more impressive progress has bed}P€s not have a good feeling for the nature of magnetic field
made in the second half, namely, the proof of the celebratetines. Few know that a single field line can densely fill a
KAM (Kolmogorov—Arnold—Moser theorem, which gives Surface or wander around forever in a bounded region of
meaning to perturbation theory, the discovery of SmaleSPace without closing. This is because textbooks only discuss
horseshoes, which gives meaning to the notion of chaos, tHeases with symmetry. | do not know of a single electricity
clear understanding of the failure of perturbation theory, andnd magnetism text that treats magnetic field lines seriously.
the nonexistence of action-angle variables. Because of thEhe incorrect belief thaV-B=0 implies field lines are ei-
work of Greene and later researchers, we now understarffier closed or go to infinity, surprisingly still exists. Another
how invariant tori break and we have a theory of renormalthing that is not widely known is that the equations that
ization in Hamiltonian systems. In addition, much progressdescribe magnetic field lines are in fact a Hamiltonian sys-
has been made in understanding transport in Hamiltoniatem. Since Hamiltonian trajectories are typically chaotic, the
phase space, a major concern of fusion physics, but | will nosame is true of magnetic field lines.

dwell much on this topic. So | have two main goals:
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(i) to describe some of the progress in classical mechan-
ics in the last 50 years and to give a sense for why
contributions are associated with plasma physicists;
and

(i) to describe some recent work of my own in col-
laboration with John Greene and Diego del-Castillo-
Negreté on how invariant tori break in systems that \ 1 4.
violate the so-called twist condition. N

In Sec. Il it is described how both Hamiltonian systems and -
magnetic field line systems, particularly those of fusion de-
vices, are area preserving maps. Also, ways of casting the
equations for field lines in Hamiltonian form are presented.
In Sec. Il a bit of Hamiltonian dynamics lore is described
(e.g., periodic orbits, the rotation number or safety factor, the
standard maj but mainly the twist condition is described,
an important property possessed by the most studied Hamil-
tonian systems. Section IV describes systems that violate the
twist condition, and here the nontwist map, a prototype map o o )
for nontwist behavior, is discussed. Also in this section it is/S: 1- Depiction of Poincargeturn map in a two degree-of-freedom
shown how transport in zonal flows, nonmonotonic ket

g-profiles, and other systems are nontwist Hamiltonian sys-

tems. In Sec. V, reconnection in nontwist systems is briefly

considered. Here it is noted that island chains come in two Because the trajectories in the disk returngic=0 at
types and that this gives rise to a complicated arrangement afifferent times, it is natural to attempt to find a set of coor-
periodic orbits. The main problem, when and how do toridinates in which all the trajectories return at the same time.
break in nontwist systems, is described in Sec. VI. BeforeThis is achieved by using the coordinaje as a time vari-
describing our results on nontwist systems, we first reviewable. It is a classical result that in terms of thg,"” time
Greene’s calculation for twist maps and describe an associariable, this system still has Hamiltonian forfsee, e.g.,
ated procedure for finding periodic orbits. In Sec. VII a fewRef. 3, Sec. 1411 Upon settingg,= 7, dropping the sub-
comments about renormalization are made before we sunscripts “1” on g, andp,, the Hamiltonian in the new coor-

marize in Sec. VIII. dinates becomekl=H(q,p,7), where we suppress the de-
pendence on the fixed value Bf Thus we have reduced the

1. MAGNETIC EIELD LINES ARE HAMILTONIAN order of the problem, but at the expense of obtaining explicit

TRAJECTORIES time dependence in the Hamiltonian. Taking the return time

) ) of the disk of trajectories to b€, a little thought yields the
“Letus jump back abou_t 100 years and d_|scuss a result Geriodicity condition H(q,p,7)=H(q,p,7+T). Systems
Poincare Consider a Hamiltonian system with two degreesjike this are said to have one and a half degrees of freedom,

of freedom, the half accounting for the periodic time dependence. Thus
IH 9H we have arrived at the following conclusion: Hamiltonian
qi:—, pi=—, i=1.2, (1) systems of one and a half or two degrees of freedon{atre
P aq' least locally area preserving maps of a planar region. Maps

whereH=H(q,p) does not have explicit dependence uponIike these are sometimes called_ sympleptic maps.

time. Because it is not possible to visualize the four- ~NOW let us turn to magnetic field lines. In particular,
dimensional phase space, we set the Hamiltonian equal {Epn&der the arrangement of two current sources deplc_ted in
some constant value, s& and plot trajectories in a three- Fig. 2. This arrangement has a large current with derlity
dimensional space. If the equatiéh=E can be solved for rowmg in thez-.dlrgctmn and a smaller plosed current with
P>=P2(d1,P1,0s,E), which is usually the case, then a tra- densityJ, that lies in the plane perpendlcu_lar_icanq is on
jectory can be plotted in the space with axpsp;,q, as  average azimuthal. The separate magnet_lc flel_d Iln_es corre-
depicted in Fig. 1. If the trajectory returns to a neighborhoodSPoNding to the two currents are also depicted in this figure.
of the initial condition, which must be the case if the energy!t IS not difficult to show by analyzing the cylindrical coor-
surface is bounded, then Eg4) define a return map. In dinate field line equations,
appropriate coordinates this map is an area preserving map

of a planar regior(see, e.g., Ref. 2, pp. 151-15%n ex- dz_dp _pdo

ample of this is shown in Fig. 1, where a trajectory originat- B, B, B, '’

ing in theq,— p, plane returns at a later time t¢p=0. Near

this trajectory there igat least a little disk in the plane of that the field lines due to the total current, i.e., those of the
trajectories that return, and thus E@%) define an area pre- superposition of the two fields depicted, are typically not
serving map of at least a disk of tlyg — p; plane to itself.  closed and typically do not go to infinity.

)
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FIG. 2. Depiction of a two-current system and magnetic field lines.

Consider the symmetrical situation where the currents
are concentrated to single wires, a vertical one along the

z-axis corresponding td, and a circular one that points in
the ¢-direction and is located at=R, z=0, corresponding
to J,. In order to simplify the discussion we suppakeis
much larger thard,, and consider a region over which the
azimuthal field produced by, is approximately constant.

Magnetic field lines, Hamiltonian dynamics, and . . . 2281

The field lines can be described by a surface of section such
as the one shown in Fig. 3. Here we have plotted points
where the field lines pierce a given vertical plane containing

the vertical wire, e.g., the plang=0. The ordinate of this

figure is p:=r?/2, wherer is a radius measured from the
circular wire, and the abscisgds an angle measured around
the circular wire. Thus,r(#) constitute a polar coordinate
system located in ang = constant plane. From the figure, it

(b)

can be inferred that field lines wind around in a helical man-IG. 4. Magnetic field line return map for an unsymmetrical two-current
ner and lie on nested tori centered on the circular wire. Mosgystem.
field lines densely cover a torus, but some are indeed closed.

Field lines that look like this are calledtegrable

The two-current system described above is a sort OBticaIIy while others lie on tori.

“poor man’s” version of the field lines that ideally occur in

So, what doesvV-B=0 imply? The answer is that the

stellarator or tokamak fusion devices. In practice, symmetrynap from thep— @ plane to itself that is defined by the field

is necessarily broken and the field lines look more like thosg,

ines is an area preserving map, just like that described above

shown in Fig. 4. Observe that some appear to wander chgg pamiltonian systems. The field line picture is identical to

0 0 27

FIG. 3. Magnetic field line return map for a symmetrical two-current sys-
tem.

the Hamiltonian trajectory picture with the role of time being
played by the azimuthal coordinagee Thus we have arrived

at the following conclusion: Magnetic field lines aia least
locally) trajectories of Hamiltonian systems of one and a half
or two degrees of freedom. Thus magnetic field line maps are
symplectic maps.

The relationship between magnetic field lines and
Hamiltonian systems was recognized early on in the fusion
program. The earliest reference | know of is that of Kruskal
(Ref. 4 in 1952, who iterated an explicit area preserving
map (similar to the standard map defined bejaw order to
describe the magnetic field of stellarators. Early papers in
which field line Hamiltonians were obtained for integrable
fields are Refs. 5 and 6See Ref. 7, which describes some of
the ample contributions from the former Soviet UnjoAl-
though many papers were written in the early 1960’s and
1970's on this topic, a general and explicit Hamiltonian de-
scription for field lines does not appear to have been discov-
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ered until the early 1980’s. Boozéin Ref. 8 considered a More generally, consider near-integrable systems with

potential representation for the divergence-free magnetione and a half degrees of freedom, which have Hamiltonians

field of the formB=V¢XVO0+V X Vy, an idea that was of the form H=H(J) +eH(6,J,t), with e<1. Here the

used previously in less generality in plasma physics andariables(d, J) are assumed to be action-angle variables for

dates way back to Euler. With this form f&; the field line  an integrable system with HamiltoniaHy(J). The fre-

equations can be cast into the following Hamiltonian form: quency is defined bywq(J):=dHy/dJ and the twist condi-
d oy do gy tion for this class of system is given by

d¢ 96’ d¢ Y’ dwe(J)  d*Ho(J)
where ¢ is the azimuthal anglej is a radial-like coordinate dJ 93
that plays the role of the momentum conjugate#oand
x(¢,0,¢) is the Hamiltonian. This formulation has been
widely used in stellarator researctBSee also Ref. 9, pp.
8-10) A more fundamental description was given by Cary
and Littlejohn(Ref. 10 in terms of an action principle that
depends on the vector potenti)

)

>0, (6)

wherec is a real numbel.Note, the twist condition exists if
dwo(J)/9J<c<0, which turns inta6) under time reversdl.

In Sec. Il we saw how Hamiltonian systems and mag-
netic field line equations are related to symplectic maps.
Such maps inherit the twist condition. Investigation of field
lines (or Hamiltonian trajectorigsconventionally requires

r numerical integration of differential equations like those of

Srl= Jr A-dr. (4 Eq.(2). However, it is now understood that Hamiltonian sys-

° tems haveuniversal behavior that is captured by studying
Here, as in Hamilton’s principle of mechanics, the trajecto-expncit symplectic maps of the plane.
ries are pinned at the initial and final positiomg,andr, The most studied symplectic map is te@ndard map

respectively. It is interesting to compare this action principle(sometimes called the Chirikov—Taylor mawhich is given
with the phase space action principle, the action principle OBy

mechanics that directly gives Hamilton’s equations

k

Sq p]=frlp~dq—Hdt. (5) Yn+1=Yn— ES”"(ZWX)a Xn+1=Xnt Ynt1- (7)
"o

Herey is a momentum-like variable andis a coordinate-

If one singles out one of the coordinates(#) to play the , , TR X
like variable that is assumed to be periodic with period 1.

role of time, then comparison witth) indicates that the cor- . .
responding component of the vector potential is associategometimes we use:=(x,y) and write (7) compactly as

with the Hamiltonian, while the other components are assoZn+1= 1 (Zn)-
ciated with the canonical momenta. Figures 3 and 4 of Sec. Il were generated by repeated

Lest one thinks the story is over, | mention the work of iteration of the standard map. In Fig. 3 some of the horizon-

Mezic and Wiggins(Ref. 13, who give a description in tal lines are filled in while some are merely isolated points.
| These are, respectively, the rational and irrational tori of the

terms of commuting vector fields that does not require the T i . , :
introduction of the vector potential. magng’uc.fleld .conf|gl.1rat|on.. The rational tori are composed
of periodic orbits which satisfyz=T"(z) =TeTeT...T(2),
wheree means composition of functionse., T"(z) denotes
the quantity obtained upon inserting the map inside iteelf
Thetwist conditionis an ingredient that is used in many timeg). If after iterating the mam-times one returns to the
important theorems in Hamiltonian dynamics, theorems dugame point, then one has a periodic orbit of perio®n the
to Arnold, Moser, Aubry, Mather, and others. The conditionother hand, irrational tori are densely filled-out upon re-
is used in theorems that apply to both the ordinary differenpeated iteration. An important quantity is thetation num-

tial equation and map descriptions of Hamiltonian systemsper, w, which is defined to be the average horizontal jump
Because of this, we will describe the twist condition below inper iteration,

both contexts. Ultimately, the prevalence of the twist condi-
tion can be traced to the form of the Hamiltonians that de- . Xn

. . X w:=lim—. (8)
scribes particle dynamics. noo N

First, consider a one and a half degree-of-freedom sys-
tem, i.e., one with a singlg and p that satisfieH(q,p,t) Here, one suspends the periodic boundary conditiorx on
=H(q,p,t+T). The Hamiltonians for a driven swing and when taking the limit. For both rational and irrational tori the
for magnetic field lines without symmetry are of this type. rotation number exists, and is correspondingly a rational and
For a particle system, the swing included, the Hamiltonian idgrrational number. Thesafety factor q:=2#/w, is conven-
the sum of kinetic and potential energy paits= p?/(2m) tionally used in fusion physics, and it measures the mean
+V(q,t), with V(q,t)=V(q,t+T). Sincemg=p it is evi-  ratio of the number of turns the long way around the torus to
dent that larger canonical momentum implies larger velocitythe short way around. In Fig. 4 we see some irrational tori
a condition that is true for many Hamiltonians but obviously (or invariant tori as they are often calle@ihd remnants of the
not all. This simple monotonicity condition is the essence ofrational tori as isolated periodic orbits. Periodic orbits play a
the twist condition. large role in what is to come in Sec. VI.

. TWIST
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Now we define the twist condition for maps: a map sat-leading order the flows are directed along lines of latitude,
isfies the twist conditiorfis a twist map if points higher up  either eastward or westward, with variation in the flow speed
along a vertical line make larger jumps in the horizontalalong lines of longitude. This variation possesses a maxi-
direction. This will be true ifdy,,1/dx,>c>0. Thus we mum and the flows tend to be confined in longitude, which is
expect the rotation numbé@when it exist to increase mono- why they are called jets or zonal flows. Because of the maxi-
tonically in the vertical direction. This is indeed the case formum in flow speed, zonal flows give rise to transport phe-
the standard map, which is the prototype twist map. nomena, including barriers, described by nontwist Hamil-

tonian system&~'* The maximum in the flow profile
corresponds to the shearless curve.
IV. NONTWIST There is a long history of rotating fluid laboratory ex-

So, what is nontwist? Quite simply,rntwistsystem is ~ periments(see, e.g., Ref. J&designed to simulate facets of
any system that does not satisfy the twist condition. Ther@tmospheric dynamics. Our interest in the subject was cap-
are many ways that this can happen. For example, a systefred by an experiment in the laboratory of Swintefsee

can haveno twist which in the differential equations context also Refs. 17—19and in particular the connection between
means dwo(J)/dJ=0, while in the map context means drift wave transport and the fluid mechanics of zonal flows

dyn.119x,=0. Alternatively, there can be a single point at that this experiment simulates. Drift waves are described to
which these quantities vanish, and the vanishing can be dgading order by the Hasegawa—Mima equation and the same
arbitrarily high order. The most important violation of the is true for the fluid dynamics of the experiment. The experi-
nontwist condition is that for which there is a single simple ment is equipped with sophisticated particle tracking capa-
zero; i.e., for Wthh(x)o(J) possesses a Simp|e maximum or b|||ty, which is ideal for measuring the transport of tracer
minimum or for which the rotation number of the map has aparticles that are added to the fluid.

simple maximum or minimum. Universal behavior of this ~ The tracer particles are to high accuracy governed by a
kind of system is captured by a map that we have cHigee ~ Hamiltonian system of differential equations. This is because

standard nontwist mapwhich is defined by the velocity field is nearly two dimensional and satisfies
, ) -v=0, and because the tracer particles move with the fluid.
Yn+1=Ynt b SIN2mXn),  Xpr1=Xpta(l=ypn,q), 9 These conditions imply the following equations for the tra-

wherea andb are parameters and agaihas period 1. There jectories of the tracer particles:
are other ways of writing nontwist maps, but all of those

with the simple extremum property are essentially the same 5 _, :‘9_‘# y=v,=— (9_‘”
map, because they can be transformed into this form by <oy’ Yoo
means of a coordinate transformation. Note, that no coordi-

(10

vherey, the streamfunction, is the Hamiltonian, and the co-
g{dinates(x, y) are the canonical coordinates. They can be
viewed as longitude and latitude or as azimuthal and radial
coordinates in slab approximation. Thus a “pure” zonal flow

occurs if = ¢(x) andv(x) is nonmonotonigwith an ex-

along which the twist condition is violated. It is easy to de—t d theref i that wurbati £ thi
fine this quantity whet=0; for this case, the standard non- rem‘“ﬁ' an erefore flows that are perturbations of this
flow will violate the twist condition.

twist map reduces to an integrable map, like that of Fig. 3, E . v i b and in simplified mod
for which all the orbits lie on horizontal lines. Evidently, the xperlrgnﬁnta y itwas observédand in simplified mod-
els showh®* that nonmonotonic velocity flow creates a

twist condition is violated along the horizontal lige=0. For ¢ ¢ t barrier that is located in th . here th
b+#0 it is a greater challenge to define the shearless cury&'ONg fransport barner that 1S located in the region where the
velocity profile attains its maximum, i.e., near the shearless

one we meet in Sec. VI. Th for this is twofold
In spite of the fact that prior to this decade nontwist CUrVe- 1he reason for this 1s twolold,

systems received little attention, they occur in many physicali) Because of the maximum in velocity, it can be shown

detail; some of our work will be described in Secs. V-VII.
The nontwist map possessesiaearless curyea curve

systems. Below we describe several of these. In Sec. IVA that generally the density of low order resonan@ss

we discuss how nontwist must occur in atmospheric and land chainsdecreases as one approaches the shearless
laboratory zonal flows, where we began studying this phe- curve. Typically higher order resonances are smaller
nomena about ten years ago. In Sec. IV B we discuss non- and produce less damage.

twist in the magnetic field line context, and in Sec. IVC we (ii)  In the fluid mechanical and in some plasma models
briefly mention several other physical problems where non- (see below, perturbations of the pure zonal flow by
twist systems occur. the superposition of eigenmodes produce resonances

that are bounded away from the shearless cuiMeat

they are bounded away is a consequence of the phys-
Zonal flows are azimuthal jets that occur in planetary ics of the linear theoriesThus the eigenmodes must

atmospheres. The jet stream and polar night jet are examples have large amplitude®r strong turbulence is needed

that occur in the Earth’s atmosphere, and the great red spot is to overlap and thereby destroy the shearless invariant
intimately related to zonal flows in Jupiter’'s atmosphere. Be- torus.

cause of rotation, these flows are predominately two dimen-
sional, with the altitude being the ignorable dimension. To  In plasmas the zonal flow problem is analogousEto

A. Zonal flows and chaotic advection
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X B transport, with the electrostatic potential being the
Hamiltonian. Accordingly, if the radial electric field is not
monotonic, transport in the plane perpendicular to the mag-
netic field can be modeled with an area preserving map tha
violates the twist condition. Nonmonotonic radial electric
fields are believed to be present in the tokamak edge whel
there is good confinement and we have recently found the
same to be true in nontwist map mod#ls.

B. Nonmonotonic g-profiles

As described in Sec. Il, magnetic field lines in toroidal -0s 0 05 05 0 05
plasma devices, such as tokamaks and stellerators, ideally li (a) (b)
on and wrap helically around nested tori. Also recall that the
g-profile is the average pitch of this wrapping. Thus non-
monotonicg-profiles correspond to nontwist maps. In experi-
ments it has been observed that nonmonotgricofiles are
correlated with enhanced confineméhtThe map models
obtained in Ref. 20 contain this effect, as well as that of the
nonmonotonic radial electric fields described above, and the
contribution of each to transport was analyzed. We refer the
interested reader to this reference for details.

C. Other physical systems

Nontwist maps arise in many other physical problems. In

celestial mechanics. when planetary gravitational potentiaIE'G' 5. Depiction of two possible separatrix possibilities, with transition
. ! . point, in a nontwist system.

are not spherically symmetric because of oblateness of the

planets, there are corrections to the Keplerian orbits that are

governed in essence by a nontwist mather problems standard nontwist map in Figs. 6 and 7. In these figures the
described by nontwist maps include the dynamics of rays ifharametersa and b are chosen so that the map is nearly

a cylindrical waveguide with a periodic array of lendes, integrable, as opposed to the values chosen for Fig. 8, which
particle accelerators with nonmonotonic tifieand super-  contains both topologies nestled together with chaotic trajec-

CO?dUCtg’lZQSJ quantum interference devi¢8QUIDS and  (qries. Upon magnification of this figure one sees both to-
polymers?

V. RECONNECTION IN NONTWIST SYSTEMS :

i
Magnetic field line systems that do not satisfy the twist 5\\\
condition have a richer Hamiltonian structure than those that 'L
do. In Figs. 4 and &) we see the usual island structure that -J
occurs in Hamiltonian systems with the twist condition, the
usual island structure of tokamak and stellarator geometries 5
However, given a set of fixed points, thepoints and ‘
0-points of the figure, there are two topologies, i.e., there are :
two ways to hook up the separatrices. The alternative way isgs
shown in Figs. &) and 5c). The phenomenon where the (g
separatrices change from one of these topologies to the othe
is calledreconnectionand it is an example of what is called
a global bifurcation.

Reconnection of this type was noticed early on in the
magnetic fusion context where it was suggested as an expla
nation for rapid current penetration in tokamaR# discus-
sion in the context of Hamiltonian systems was given in Ref.
27. We first pointed out that this kind of reconnection is a
consequence of violation of the twist condition in Refs.
12-14 and discussed it in subsequent wW@tkf. 28. Several
other contributions have been made in a variety of
contexts?®~32too many to describe in detail here. Instead we
present a picture gallery of reconnection phenomena in theiG. 6. A reconnection bifurcation in the standard nontwist map.

-05 0 05
(c)
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FIG. 7. Another reconnection bifurcation in the standard nontwist map.
FIG. 8. A depiction of the two possible separatrix possibilities together with

chaos in the standard nontwist map.
pologies intertwined on ever finer scales. This is a harbinger

of a difficulty associated with finding periodic orbits that is ) o )
addressed in the next section. in preparation for the generalization to nontwist maps that

we implement in Sec. VIC. Since Greene’s criterion uses
periodic orbits, we describe in Sec. VIB how the involution
decomposition that arises from discrete symmetries can be
used to find them. Fdv=0, the shearless curve corresponds

In order to understand transport, one must understang the liney=0, but forb+ 0, as noted above, some care is
how and when invariant tori break. In Fig. 3 we see thatrequired to make precise what is meant by this quantity. We
trajectories, being bound to horizontal lines, the invariantdiscuss this in Sec. VIC where we describe our solution to
tori, cannot migrate in the vertical direction, while in Fig. 4 the main problem.
tori are broken and migration can occur. Thus we turn to ourA Greene’s criterion
main problem: '

For which values of the standard nontwist map param-  Greene’s criterion is a method for determining parameter
etersa and b is the shearless curvevith rotation number values for the destruction of invariant tori in twist maps.
equal to the inverse of the golden mean critical? Unlike KAM theory, these tori are far from the integrable
Recall the rotation numbew, is the average jump per itera- limit. Since physical systems are often not nearly integrable,
tion (suspending periodicilyin the horizontal directionw this procedure is of greater importance, but one must resort
=lim,_ . X,/n, and the shearless curve is the curve alongo numerics to implement it. Greene originally calculated the
which the twist condition fails. parameter value for the destruction of thstinvariant torus

One could attempt to solve the main problem by brutein the standard map.
force numerical iteration of the standard nontwist map. With ~ Green’s calculation has two essential ideas. The first
careful numerics this procedure can give a sense ofathe idea is that one can approximate an invariant torus by a se-
—b parameter space and it might be sufficient to answeguence of periodic orbits. It is evident from Fig. 3 that this is
some engineering questions, but besides being inelegarmpssible for integrable systems, since this picture depicts
such a technique is limited in accuracy and gives limitedboth rational and irrational tori, but indeed it was generated
insight into how tori break. In contrast, for twist maps thereon a computer screen for which all orbits are periodic.
is a criterion due to Greene that allows one to perform ex{Clearly there are a finite number of pixels on any screen or
tremely accurate computations and to understand the selfr any data array.When a system is not integrable, it re-
similar nature of phase space near a torus that is on the vergeains true that near an invariant torus are periodic orbits of
of breaking. For this reason we attack the main prob{em arbitrarily high order.

Sec. VI Q by extending Greene'’s criterion to nontwist maps.  As one increases the paramekein the standard map,
This extension is nontrivial and so we briefly review more and more invariant tori break. A body of research lead-
Greene’s criterion in the context of twist maps in Sec. VI A, ing up to and including the proof of the KAM theorem sug-

VI. LAST TORUS OF THE STANDARD NONTWIST
MAP
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gested that sturdy tori are those with winding numbers that 2 —]
are difficult to approximate by rational numbers. A class of
numbers called noble numbers, a class that includes thi s
golden mean and its inverse, are especially difficult to ap-

proximate. For this reason Greene conjectured that the lasy

surviving invariant torus has a rotation number equal to the up orbits
inverse of the golden mean, © % 7
1 5-1 1 0- S
—= = =0.618..., (17
0% 2 1
1+ X q e}
1+... down orbits

and he calculated the value lofor which this torus is critical
to very high precision. He did this by finding a particular 3
sequence of periodic orbits with rotation numbeis;
=n;/m; (n; andm; are integersthat limit to 1/y. The w;’s

he used were obtained by truncating the continued fractior ;7 /M o's
expansion and writing the result as a simple fraction. This x
givesw;=F;/F;,, where theF;’s are the Fibonacci num- FIG. 9. Symmetry lines for the standard nontwist map.
bers, 1,1,2,3,5,....

The second essential idea concerns the stability of the
periodic orbits. In the vicinity of stable periodic orbits, The most well-known discrete symmetry is time reversal

nearby orbits remain nearby, while unstable orbits movesymmetry, where the equations of motion are invariant under
away exponentially. The type of periodic orbit depends uport— —t and p— —p. Hamiltonian systems do not always

the residuewhich Greene defined by possess this time reversal symmetry. In particular, the non-
1 twist systems of interest here do not satisfyq,p) #H(q,
R::Z[z—tracQDT“)], (12) —p). However, another discrete symmetry exists that

amounts tda— —t andg— — ¢, and we exploit this discrete
whereDT" is a deceptively simple notation for the matrix symmetry to obtain periodic orbits for the standard nontwist
obtained upon linearizing" about the periodic orbit. If 0 map.
<R<1, the periodic orbit is stable or elliptic, ifOR or R The story of discrete symmetries and their association
>1, the periodic orbit is unstable or hyperbolic, andRif =~ with periodic orbits is a long one, so we only touch on two
=0 or R=1, the periodic orbit is parabolic, which is char- salient points and direct the reader to Ref. 28, where we
acteristic of periodic orbits in integrable systems. Greene calreview the method and apply it to the standard nontwist map.
culated the residues for the periodic orbit sequence that limThe two points are
its to the golden mean and observed that if;limR;=0, (i) Discrete symmetries in Hamiltonian differential equa-
then the torus with rotation number jl/exists, while if tions are manifest in the corresponding area preserving maps
lim; ., R, diverges then the torus does not exist. At critical- asinvolution decompositiondf we represent maps such as
ity he found lim_... Rj~.25. He was able to creep in on the those of(7) and(9) asz,.;=T(z,), then we have an invo-
critical value of the parameter by examining the residueslution decomposition iff =101, wherel ;o1 =identity and

and in this way obtaik.~.97... to a gazillion places. I ool p=identity. (Recall herec means composition of func-
tions)
(i) Periodic orbits can be found by searchisgmmetry
B. Involution decomposition and periodic orbits lines which are curves in the plane that map into themselves

In order to imol {G , thod it i tunderllorlo.
n orderto implement Lreene's method 1S necessary 10 e gecong point above is most important because it

gf“‘ p?I’IOdIC orbtlts. An efﬂmen;vt\;ay to do t]tn's tls to te)ipl?'t C{jeduces the search for periodic orbits to a one-dimensional
ISCTEte Symmetries possessed by maps o ,|n erest. in tragl ot finding problem. For the standard nontwist map the
tional course work we learn about Noether’'s theorem,

how it relat tries tants of motion. H an%ymmetry lines are shown in Fig. 9. By searching along
ow it relates Ssymmetries 1o constants of motion. HOWEVery, e jines we have been able to calculate periodic orbits of

the symmetries involved in this theorem are continuous symy, ry high order to high accuracy

metries, symmetries such as space translation that depeng '

continuously on a parameter. Although discrete symmetrie% Results

are not useful for obtaining constants of motion, it was rec-" u

ognized by Birkhoff(see, e.g., Ref. 33and de Vogeleare Now we are in a position to solve our main problem.

(Ref. 39 that they do organize the periodic orbit structure of However, there is a difficulty. In Greene’s original calcula-

Hamiltonian systems and, most importantly, it was shown bytion he was able to find the necessary periodic orbits by

Greene(Ref. 395 how they can be used in numerical compu- searching a particular symmetry line. In the present case it

tation to vastly expedite the search for periodic orbits inwas discovered that periodic orbits with rotation numbers

maps. w;j=F,;/F;, sometimes do not exist and sometimes come in
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N 0.6
y 00+ N
~ N b J
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0.0 0.1 0.2 0.3 0.4 0.5

b 0.0 : T : . : T ;
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FIG. 10. Separation ity and collision of a pair of periodic orbits in the
standard nontwist map.
FIG. 11. Bifurcation curves limiting ta, .

pairs. It is perhaps not too surprising that they could come in

pairs, since a resonance will generally open two island chains To get a handle on this problem we introduced the no-
at the two equal values of thegprofile. This is easy to show tion of ther/s-bifurcation curve which is defined to be the
whenb=0, but asb increases the periodic orbits can collide locus of pointga,b) such that the periodic orbit with rotation
and disappear all together. In Fig. 10 we show the behavionumberr/s is at its collision point. We can write this curve
ash is increased foa=0.618 and rotation number 3/5. Ata asb=®,,(a). In practice we fixa and then easb away
critical value ofb, between four and five, the orbits collide. from zero until we are at bifurcation. The's-bifurcation
Thus we have a big problem, because we do not knoveurves are useful because we know that below the curve the
whether or not a given periodic orbit exists for values of thepair of periodic orbits exists, but above it they do not.
parameters andb. Evidently periodic orbits on the curve are at a point of

FIG. 12. Standard nontwist map at
criticality.
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degeneracy, and we call periodic orbits of this tgbearless 0254

periodic orbits Now we can define the shearless curve when 4 ,, 3

b+ 0: Shearless periodic orbits limit to the shearless curve. ] / \

In Fig. 11 we show several's-bifurcation curves that indi- 173 ! \/\ N \

cate the approach to a limiting curve. We call this limiting 0133 / '\ r \

curved,,, . Note this figure only shows periodic orbits with * 000 i _ / i

rotation numbers representative of half of the Fibonacci se- ] i {'

guence. It turns out that periodic orbits with rotation num- 0.5 \ /

bers equal to only half of the sequence exist, but this is | 1 Vo4

sufficient for effecting the limit of their residues as calcu- ] -/

lated from Eq(12). However, there is another surprise: these i e =TT L ()

residues do not limit to a number, but limit to a period-6 x

cycle; i.e., the sequence of residues has six convergent sul;, g«

sequences. This makes the calculations of convergence vel ] /\'\ /0/\

difficult because one must work much harder to obtain the<410*+ it \ I \‘\

same level of convergence of the residue values as for the, 1 ¥ / %

twist case. We overcame this difficulty by exploiting some 40 i / 5/v' “‘

tricks involving symmetry, and we refer the reader to Ref. 28 .4«  § \ ]’ \

for details. o ' ; |
The upshot is that we calculated periodic orbits fts 1410% 4 r 4 { :

=75, 025/121, 393 and obtained the following critical values 4010‘5_‘)“ Vool

of the parameters: T \"\" !
a~0.686 049, b~0.742497 002 412. 13 O T 5100

55010
X

In Fig. 12 we show the standard nontwist map at these criti-
cal values. Here we see the last invariant torus bounding afiG. 13. Depiction of self-similar structure in the standard nontwist map at
orbit generated from aingleinitial condition. criticality.

VIl. RENORMALIZATION

amples of representative physical systems, including the

The jagged structure of the last invariant torus shown ir} . . . . X
. T - racking of particles in zonal flows and magnetic field lines
Fig. 12 suggests a self-similar structure reminiscent of phase

" . L P _~Ih reversed shear configurations. Some Hamiltonian lore was
transitions. This suggestion is strengthened in Fig. 13, which_ . : . - . .
. ) > . reviewed, including the definition of such quantities as peri-
is a blow-up and rescaling of a region of Fig. 12. The anal-_ . : . )

o : . odic orbits, the rotation number, and the residue. Reconnec-
ogy to phase transitions is not merely suggestive, but there is

I .~ tion in nontwist systems was discussed. The use of discrete
a well-developed theory for renormalization in Hamiltonian

systems. Early work on the theory was due to K{:ujanoﬁg.ymmetnes for finding periodic orbits was described in the

(Refs. 36 and 37 but the picture was completed by Greenecontext of Greene’s method for finding the last invariant

. S torus in twist systems. The difficult generalization of

and Mackay(Refs. 38-4]. In t_h|s.theory, as in critical phe Greene’s method to nontwist systems was also described. A
nomena, there is a renormalization group operator, but her%w brief comments were made about renormalization
fixed points correspond to invariant tori at criticality rather our goal here has been to acquaint the reader witH some
than to phase transitions. In Ref. 42 we obtained a new fixed r goal here cquaint : .

oint for this operator. Eurther discussion is bevond theOf the ideas in this area of Hamiltonian field line dynamics,
P . P A . Y and the contributions of plasma physicists. However, there is
scope of this paper; the interested reader is referred to th'z?n enormous literature in this area and many topics have by
reference.

necessity been omitted, particularly those on transport.
VIIl. SUMMARY
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