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Extending the work of del-Castillo-Negrete, Greene, and Morr[$inysica D91, 1 (1996; 100,
311(1997] on the standard nontwist map, the breakup of an invariant torus with winding number
equal to the inverse golden mean squared is studied. Improved numerical techniques provide the
greater accuracy that is needed for this case. The new results are interpreted within the
renormalization group framework by constructing a renormalization operator on the space of
commuting map pairs, and by studying the fixed points of the so constructed operat@003®
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In recent years, area-preserving maps that violate the
twist condition locally in phase space have been the ob-
ject of interest in several studies in physics and math-
ematics. Thesenontwist maps show up in a variety of
physical models. An important problem from the physics
point of view is the understanding of the breakup of in-
variant tori, which show remarkable resilience in the re-
gion where the twist condition is violated, calledshearless
tori. In terms of the physical system modeled, these tori
represent transport barriers, and their breakup corre-
sponds to the transition to global chaos. Mathematically,
nontwist maps present a challenge since the standard
proofs of celebrated theorems in the theory of area-
preserving maps rely heavily on the twist condition. In
this article, we study the breakup of the shearless torus
with winding number 1/92, where y is the golden mean.
This torus serves as a test case for improved techniques
we developed. At the point of breakup the shearless torus
exhibits universal scaling behavior which leads to a
renormalization group interpretation.

I. INTRODUCTION

In this article we consider thetandard nontwist map
(SNM) M, as introduced in Ref. 1:

Xnr1=XnFta(1=Yi, 1),

Yns1=Yn—b sin(2mx,), @
where §&,y) e TXR, ae(0,1), andbe (—«,»). The map
M is area-preservingand violates thewist condition

Xi+1(Xi,Yi)

(?yi #0, V(Xi 1yi)v (2)

preserving maps have dealt with ttveist case, but in recent
years more and more research has been focused on the non-
twist case.

Applications of nontwist maps occur in many fields, for
example, the study of magnetic field lines in toroidal plasma
devices(see, e.g., Refs. 3 and),4in celestial mechanics,
fluid dynamic$ and atomic physic&.lt has been showi?
that nontwist regions appear generically in area-preserving
maps that have a tripling bifurcation of an elliptic fixed
point. In addition to these applications, the map is quite in-
teresting from a mathematical standpoint because many im-
portant theorems in the theory of area-preserving maps as-
sume the validity of the twist condition, e.g., the KAM
theorem and the Poincare—Birkhoff theorem. The SNM can
serve as a model for the development of new proofs. Up to
now, only a few mathematical results exist for nontwist maps
(see, e.g., Refs. 2 and 9911

We continue the work of del-Castillo-Negrete, Greene
and Morrisont>13 who studied the breakup of the shearless
invariant torus with winding number 4/ where y=(1
+/5)/2 is the golden mean. We present the analysis of the
breakup of the shearless invariant torus with winding number
(in continued fraction representatjon

0=[0,2,1,1...]1=1/¥2 ©)

Because this winding number is a noble nump&r contin-

ued fraction expansion ends wifh,1,1, . . .]), the behavior

of the residues of the approximating periodic orbits is ex-
pected to be the same as in the thase, i.e., we should find
the same fixed point of the renormalization group operator
with the same unstable eigenvalues that were found in Ref.
13. But, the form of the renormalization group operator,

along a curve in phase space, which has been recently callechich is defined later in Sec. 1V, is different from theyl/
the nonmonotone curvéwhich coincides with the shearless case. Also, the region of parameter space we study is differ-

curve whenb=0).? Traditionally, most studies of area-
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ent. Additionally, since the periods of approximating periodic
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FIG. 1. Parameter space around the critical point
(marked by*) of the w= 1/y?-shearless curve, showing
the points for which shearless invariant tori exist.
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orbits are bigger than those for theyDase, the present work A. Periodic orbits and residue criterion
serves as a test case for improved numerical techniques de- Since the pioneering work of Greei'17eperiodic orbits

scribed later in Sec. 111 A. have proven to be very useful for studying the breakup of
A different approach, which yields rough parameter val-. P y ying P

ues for the breakup of invariant tori, was used by Shinoharmvariant_ t‘?fi in area-preserving maps. Below are some stan-
and Aizawa in Ref. 14, who showed that a shearless invariaraard deflnlfuons. _ )

torus crosses the-axis at two points?® x,=a/2— * and xg _An orbit of an area-preserving ma is a sequence of
—a/2+ L For a given &,b), a point on the shearless torus, POINtS {(Xi,¥i)} such that M(x;,y;)=(Xi+1,¥i+1). The
(a/2+1,0), is iterated many timeéve used 16). If they  Winding number o of an orbit is defined aso
value stays below a thresholde usedly|<0.52), it is as- =lim;_..(x; /i) when the limit exists. Here the-coordinate
sumed that the shearless curve exists and the point is plottel§. ‘lifted” from T to R. A periodic orbit of periodn is a
Figure 1 depicts our duplication of their procedure. sequence ofn points {(x;,y;)}iL,, such thatM"(x;,y;)

We see that the critical point for thej#/ shearless curve =(X;+m,y;) for alli=1,... n, andm s an integer. Peri-
(indicated by*) lies on the boundary in Fig. 1. Thus, the odic orbits have rational winding numbess=m/n. An in-
boundary points of Fig. 1 represent thitical functionfor  variant torusis an orbit with irrational winding number that
the SNM. This is a generalization of the definition of the covers densely a one-dimensional set in phase space. Of par-
critical function for the standard twist majsee, e.g., Ref. ticular importance are the invariant tori that wind around the
16), which has only one parameter, ek.The critical func-  x-domain because, in two-dimensional maps, they act as
tion in the twist case is then definedlagw). Here, we have  transport barriers.
two parameters, but the shearless invariant torus of a given  The linear stability of a periodic orbit is determined by
winding numberw exists only for parameter values belong- the value of itsresidue!’” R, which is defined aR:=[2
ing to a curve &,b(a; w)) in the parameter space. Thus, we _1r(L)]/4. Here,L is the mapM" linearized about the pe-
can define the critical function by the c_r|t|<_:al points on eachiodic orbit of interest and Tr denotes the trace. KR
of those curves by dc,b(ac;w)). By finding the critical 1 he orbit is stable or elliptic; IR<0 or R>1, it is

points for many other winding numberboth nobles and  \siapje or hyperbolic; in the degenerate cae® andR
non-nobles we hope to find a more accurate critical func- _ 4 ; is parabolic
tion curve than the one shown in F.'g' L . Periodic orbits can be used to systematically approxi-
In Sec. Il, we review some basic properties of the SNM. . . 7 : :
) : . mate invariant tor.” The method is based on the observation
The detailed breakup of the shearless invariant torus W|tt[1hat iven a sequence of rational numbéns /n} whose
winding number 1?2 is presented in Sec. Ill, which also . 9 q 5 /1

contains a discussion of the numerical procedures involve |_m|t Is w, the sequence of per|9d|c Qrblts with Wl.ndmg. num-
ers{m;/n;} approaches the invariant torus with winding

In Sec. IV, we interpret the results within the framework of X L , . 2
numberw in phase space. It is important to find the “best

the renormalization group. Section V contains a summary i
and some directions of future research. possible sequence, i.e., the sequence that convergeshi

fastest. The elements of the best possible sequiees e.g.,
Il. REVIEW OF RESIDUE CRITERION AND STANDARD Ref. 18 are the convergents that are obtained from succes-
NONTWIST MAP sive truncations of the continued fraction expansionwof
In this section, we give a brief review of some basic  The residue criteriod’ can be stated as follows: Con-
concepts of the theory of area-preserving maps in the contesgider an invariant torus with winding number Let {m; /n;}
of the SNM. For a more in-depth discussion the reader ide the sequence of convergents approximaéingndR; the
referred to Ref. 12 and references therein. residues of their corresponding periodic orbits.
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(1 If lim;_.|Ri|=0, the invariant torus exists. We will call the orbit with the biggefsmalley y-coordinate
(2) If lim;_.|Rj|=¢°, the invariant torus is destroyed. the up (down periodic orbit.

(3) At the boundary in parameter space between those two The SNM is also invariant with respect to the transfor-
limits, the invariant torus is at the threshold of destruc-mation
tion and the residues either converge to a constant, non-
g T(x,y)=(x+3-Y). (5)

zero value, or there are convergent subsequences.
The coordinates of the up and down periodic orbits on the
This criterion is based on the idea that the destruction ogymmetry liness;, denoted by X,i,y.i) and Kqi,Yqi), re-
an invariant torus is caused by the destabilization of nearbgpectively, are related by this symmetry as follows:
periodic orbits. The residue criterion has been used succeSF— -7 _T
fully in many cases to predict with high precision the thresh- Xaz:¥a2) = T((Xur,Yur))r - (Xuz:Yuz) = T((Xa1,Yar)),
old for the destruction of invariant tori. Several theorems(x,,,yq.)=T((Xy3,Yu3))» (Xua»Yua)=T((Xg3.Ya3))- ©)

have been proved that lend mathematical support to the - . .
19,20 Therefore, it is actually enough to compute periodic orbits on

criterion: : . .
The numerical search for periodic orbits is difficult be- $; ands, since the orbits along the other symmetry lines

cause, in principle, it is a two-dimensional root finding prob-Can be obtained fron®).
lem. However, the task is considerably simplified fevers-

ible maps'”?! which are maps that can be factored s ¢, Periodic orbit collisions and bifurcation curves

=1,°lo, wherely, are involution maps that satisfy2=12 o .
re 0.1 b Ni=lo Periodic orbits in the SNM can undergo a particular form

=1. The sets of fixed points of the involution mags; ; . X -
— {0 [1040%,Y) = (x.y)}, are one-dimensional sets, called ©f Pifurcation that occurs when the up and down periodic
symmetry line®f the map. Once we know, ;, the search Qrblts of the same winding number meet on th? symmetry
for periodic orbits is reduced to a one-dimensional root fingJine. These collisions were dete.ctec_i numgncally in Refs, 1,2'
ing problem, as explained below in Sec. Il A 1. 22 and 23. Further studies of this bifurcation can be found in
Refs. 2 and 11.

From (4) it follows that, for a givena, only periodic
B. Standard nontwist map orbits withm/n<<a exist atb=0. As the value ob increases,
the up and down orbits approach each other, and at the bi-
furcation value, they collide and annihilate each other. For
higher values ob, both orbits no longer exist. Figure 2 il-
lustrates the behavior of periodic orbits as we increlase
from b= 0. Here they-coordinates of then/n=3/8 periodic

={(x,y)|x=a(1—-y?)/2+1/2}. ) . .
A major difference between the standard nontwist mapg][b;f 8 r:lsl are shown as a function affor the fixed value

and twist maps is that there are o periodic orbits, if they Based on these numerical observations, the notion of a

exist, with the same winding number on each symmetry Iinebifurcation curve in parameter space was defined in Ref. 12
Thi ily in the i I . h . . : e
is can be seen easily in the integrable case.b=e®, the The m/n-bifurcation curve b, (a) is the set of é.b)

m/n periodic orbits on the, symmetry line are located at values for which then/n up and down periodic orbits are at
(x,y)=(0,=y1—-(m/n)/a). (4) the point of collision. The main property of this curve is that

The SNM is reversible. The symmetry lindg, com-
posed of fixed points of,, ares;={(x,y)|x=0} ands,
={(x,y)|x=1/2}. The symmetry linesI’;, composed of
fixed points ofl, are s;={(x,y)|x=a(1—-y?)/2} ands,
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FIG. 3. Bifurcation curves for several convergents
of 1/y2.
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for (a,b) values belowb=®,,(a), ther/s periodic orbits,
with r/s<m/n, exist. Thus,m/n is the maximum winding
number for parameter values along tim& n-bifurcation
curve.

The idea of approximating invariant tori with irrational

0.43

A. Numerical methods

The computational steps necessary to find the critical
point and the residue behavior of the approximating periodic
orbits are as follows:

winding numbers by periodic orbits is used to define the(1) Find a good approximation to the~B-bifurcation curve

bifurcation curve for an invariant torus as followsThe
w-bifurcation curve b=® ,(a) for an irrationalw is the set
of (a,b) values such thalb=CI>w(a)=Iimiﬁwd>mi,ni(a),
where®, /, (@) is them; /n;-bifurcation curve andm;/n;}

in (a,b)-space using the bifurcation curves for its con-
vergents.

(2) Along this bifurcation curve, find the up and down peri-
odic orbits on the symmetry ling, that approximate the
invariant torus, and compute their residues.

are the convergents of. For (a,b) points along the . . .
w-bifurcation curve the invariant torus with irrational wind- ) Iaocate tE%Q,b)_ .pmlnéafl]ong the curve at which the resi-
ing numberw is the curve of maximum winding number and 4 Fgeds ehx toit c_:drltlca fe t?wor. iodi bi iticali

is calledshearlessFigure 3 depicts the bifurcation curves for (4) Find the residues of the periodic orbits at criticality

P : long the remaining symmetry lines.
several convergents of 4. This figure also makes it plau- a , .
sible that the limit in the above definition exists. (5) Find the eigenvalues of the unstable eigenmodes of the

renormalization group operator. The details of how to do
this depend crucially on the type of critical scaling be-

lll. BREAKUP OF TORUS WITH @=1/72 havior that is exhibited by the residues.

) ) ) 1. Searching for periodic orbits
In this SeCtI.OI’], we present _the analysis of the bree_lkup of Periodic orbits on the symmetry lines can be computed
th.e shgar_less mvanant_torgs in the standard. nontwist maPeIativer easily for reversible maps using the following
with winding numberw = 1/y~. Tables | and Il list the con- result2 If (x,y) € T, thenM"(x,y) = (x.y) if and only if
vergents used for these calculations. For more details, sqGni2 ' . - n=1)/2.
(x,y) el'g4 (for n even or MI"='q(x,y) eI’y o (for n

Ref. 24. odd). Thus, for example, periodic orbits with odd periodn
the s; symmetry line can be obtained by looking for points

TABLE I. Some of the convergents @=[0,2,1,1 . . .] for which the pe-

riodic orbits still exist at criticality. TABLE 1l. Some of the convergents ab=[0,2,1,1...] for which the

periodic orbits do not exist at criticality.

[i] FilFiiz [i] FilFit2

[1] 1/3 [19] 6765/17711 [ FilFies [ FilFie

[3] 3/8 [21] 17711/46368 [2] 2/5 [18] 4181/10946
[5] 8/21 [23] 46368/121393 [4] 5/13 [20] 10946/28657
(7] 21/55 [25] 121393/317811 [6] 13/34 [22] 28657/75025
[9] 55/144 [27] 317811/832040 (8] 34/89 [24] 75025/196418
[11] 144/377 [29] 832040/2178309 [10] 89/233 [26] 196418/514229
[13] 377/987 [31] 2178309/5702887 [12] 233/610 [28] 514229/1346269
[15] 987/2584 [33] 5702887/14930352 [14] 610/1597 [30] 1346269/3524578
[17] 2584/6765 [35] 14930352/39088169 [16] 1597/4181 [32] 3524578/9227465
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on s; that are mapped te; or s, after (n+1)/2 iterations.

This can be implemented as a one-dimensional root finding

problem by considering the zeros of the functiéify)
=sin2#(x—a(1—9?)/2)], where §,9):==M"T12(0y). The
sine function is used to eliminate the difference betwsgn
ands,. Similar ideas can be applied to find other orbits.

2. Finding m | n-bifurcation curves

Recall that the bifurcation curvé,,(a) of a periodic
orbit of winding numbem/n was defined in Sec. Il C to be
the set of points 4,b), at which the up and down periodic
orbits of winding numbem/n collide along thes; symmetry
line. Thus, at a given value &, the functionF(y) has two
roots forb<®,,(a), no roots(locally) for b>®,,,(a) and
a single root, which is also an extremum, to=®,,(a).
We thus search for the zero of the extremunt¢§) asb is
varied.

To find the whole(or large portions of a bifurcation
curve, we use the monotonic nature of the cuisee Fig. 3
as follows: Given a pointd;,b;) on the bifurcation curve,
i.e.,, b;=®.,(a;), we increase by a fixed amount ta,
=a;+agep We then start at the poingg,b,) and increase
b until we reachb,=®,,,(a,). To make sure that we are

finding the correct bifurcation curve, we start searching

(a,b)-space at 4,b)=(m/n,0). Even then, the steps im

Renormalization in standard nontwist map 425
TABLE IlIl. Period-12 behavior of the scaling functid,(a.).
Bn(ac) n Bn(ac)
15 —0.4865 27 —0.4865
17 —0.7090 29 —0.7078
18 0.5019 20 0.5028
19 —0.3901 31 —0.3887

where®,;(a) denotes the bifurcation curve of the periodic
orbit with winding numbefn]=F,/F,, 5, v4 IS @a number
to be determined later, ar8,(a) is a period-twelve func-
tion, i.e.,B,;1(a)=B,(a).

If Eq. (7) holds, it follows that for fixeca

q)[n+1]q)[n+12]_ q)[n](b[n+13]

q)l/‘yZ: ||m

. (8
nooo (P11~ Prap) = (Prny 13— Prnr 1) ®

We obtained the 3/-bifurcation curve usingqi=19 in Eq.
(8), i.e., using the bifurcation curves fp82], [ 31], [ 20] and
[19] (see Tables | and )l

Now one can justifya posteriori the use of Eq.(7).
Solving Eq.(7) with a=a, for v, yields

cannot be taken to be too large. Experience has shown thghg

steps ina of 1xX10 ° or 1x10 ® are safe. This method is

unfortunately very slow because the part of the curve at

smallb values is very steep and the interestingar critical
part of the curve is far away from tHe=0 limit.

(D (a.)—b )

[n+13]\%c c
=lim|—"—"—7-—], 9
= nﬂoo( (D[n+1](ac)_bc ( )
Bn(ac):(q)[nJrl](ac)_bc)V]Tn/lz: (10)

where @ ,b) is the critical point for breakup of the shear-
less 142 invariant torus, i.e.p.=®q,2(a;). We found that

We managed to drastically improve the speed of these; “*?=2.678. Some numerical evidence for the periodicity

calculations by using the following ideas:

of B,(a.) is given in Table IIl.

(1) Numerical evidence strongly suggests that a bifurcation
curve is smooth and monotonically increasing, althoughg. results

it is not proved mathematicalfy. So we use linear ex-

trapolation from two previous points to find the new
value of b around which to search for the bifurcation
point. It was found that any higher order extrapolation

did not improve the algorithm further.
2

large periodse.g., of the order of several milligrthe

To find bifurcation curves for periodic orbits with very

In this subsection, we present the results of our compu-
tations.

1. Residue behavior at criticality

We computed bifurcation curves up [82]=3524578/
9227465 and found the critical points along them, i.e., the

following procedure is used: Starting at the bifurcation parameter values along those curves for which the residues
curve of a smaller period, we increaseuntil the bifur-  of approximating periodic orbits neither converge to zero nor
cation curve of the higher period is reached. The advandiverge to infinity. Figure 4 shows the critical residue behav-
tage of this procedure is that we do not need to do theor of the up and down periodic orbits on the symmetry line
extremely time consuming calculations of the bifurcations, along several different bifurcation curves. For lower pe-
curves for very high period orbits starting lat=0, but  riod bifurcation curves, the residues first show signs of a
rather we can search for them near the region of intereskix-cycle (to be discussed later in greater detailut then
converge to|R;|~0.25. This is because the invariant torus
we are studying is not quite shearless. Thus we see the same
3. Finding 1/y*-bifurcation curve behavior of the residues as in the case of a twist map. As we

Recall that the Zf%-bifurcation curve was defined as the proceed to higher period bifurcation curves, the behavior of
limit of m;/n; bifurcation curves, wheren /n; are conver- the residues of the approximating periodic orbits found along
gents of 142. It was numerically observed that close to criti- (N€S1 Symmetry line resembles more and more a six-cycle. A
cality, this limit is approached in accordance with the follow- _renormalization group interpretation of these results is given
ing scaling relatiort? in Sec. IV, N _

Finally, we found the critical pointd.,b;) along the

D1 13(2) =D yppe(a) +By(a) vy, 1/v?-bifurcation curve to be the following:

(@)
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0.25
-0.25

FIG. 4. Residue behavior of the up
(a) (n] (top figure and down(bottom figure
periodic orbits ons; at the critical
points on bifurcation curves of20]
(+), [24] (O) and[28] (*).

0.25

(b) [n]

a,=0.425160543, b.=0.9244636470355. (12) periodic orbits ors; (and of the down periodic orbits 3)
converge to the six-cyclgD,,D,,D3,D,,D5,Dg}, where
At the critical parameter values{,b.), the residues of the
down periodic orbits ors;, which are equal to the residues D,=1.584+0.008, D,=-1.288+0.002,

of the up periodic orbits o, because of the symmetry of D,=—2.630:0.006, D,=—0.609+0.005, (13)
the map [see Egq. (6)], converge to the six-cycté
{C4,C5,C5,C4,Cs,Cql, Where D5=2.336-0.006, Dg=—2.630+0.006.
C,=—0.609+0.005, C,=—1.288+0.002, The residue convergence for other symmetry lines is shown
in Table IV where we denote b, andRy the residues of
C;=2.593-0.005, C,=1.584+0.008, (12 i i

the up and down periodic orbit on the symmetry lige
C5=2.336-0.006, Cg=2.593+0.005. Note that the six-cycl¢D;} of R, andRy, (respectively, the

The six-cycle can clearly be seen in Fig. 5 which shows théix-¢ycle{Ci} of R, and Rdl? is observed to be the same as
residues of the up and down periodic orbits at the criticathat of R, andRy, (respectivelyR,, andRy,) except it is
point along thes; symmetry line. The residues of the up shifted. The two six-cycles are related because of the sym-
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3 T T T T T T
oL i
1tk i
o of .
1k i
oL 4
_3 | | 1 1 1 1
0 5 10 15 20 25 30 35
@) [n] FIG. 5. Residue behavior of the up
(left figure) and down (right figure
35 periodic orbits ons; at the critical

point on 1A2-bifurcation curve.

0 5 10 15 20 25 30 35
(b) [n]

metry of the map as followsD,=C,, D,=C,, D,=Cy, We compared the values of the residues at three different
Ds=Cs, C3=Cg, and D3=Dg. It was numerically ob- points along the /?-bifurcation curve, one point below
served thaCg~ —Dg, and therefor€;~—D3. Using these  criticality, one at criticality, and one above criticality:
relz_;ltions we see that there are only five independent residuggi ,b_)=(0.425160540,0.9244636195728), ac(be)
which we take to b&,, C;, C3, C4, andCs. =(0.425160543,0.9244636470355)  and a.(b.)
=(0.425160545,0.9244636653440), respectively. The nu-
TABLE IV. Period-six convergence pattern of the residues near criticalityMerical results for thec; are listed in Table V. We see that
along the different symmetry lines. each element of the six-cycle tends to zero far (b_), to
infinity for (a, ,b.), while it tends to the critical value at

[i] R, =Ry R, =Ry R,,=Ry R,=Rqy . . . .
r 2 2z 2 ¢ S (a¢,b.). Figure 6 clearly illustrates this behavior.
%g : Hg ' 5?]] Bl gl 84 g“ A comparison with the results of Ref. 12 shows that,
[5] [17] [29] Dz Cz D2 Cz within numerical accuracy, we found the same values for the
[71,[29], [31] D, C, D, C, residues of the six-cycle, but the sequence has shifted by
(9], [21], [33] Ds Cs D, C, © C,= = = = =
[11] . (23] . 135 D c D c two: C;=H;, C,=H,, C3=Hs, C,=Hg, Cs=H; and

Ce=H,, where H; denote the residues for thellcase
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TABLE V. Numerical values of the residue six-cydls atz_=(a_,b_),
z.=(a,be), andz, =(a; ,by).

(in symmetry line coordinatésand points of the periodic
orbit [ 33] with the x andy coordinates rescaled hy'? and
B2 respectively. The result suggests that periodic orbits re-

[n] zZ_ Ze zZ. zZ_ Z. Z. » e ’ - . ;

o0 ¢ oo e Y TTr—— s o9 main invariant under a simultaneous spatial rescaling and
L 1 565 565 565 €, 0914 0914 0914 hifting of the winding number welve fr n

[07] -0.702 —0.702 —0.702 1.893 1.893 1.893 i1; g of the ding number by twelve frorn] to [

[13] -0.601 —0.601 -0.601 1574 1574 1574 .

[19] -0.611 —0.611 —0.612 1590 1.591 1.592

[25] -0.610 —0.612 -0.614 1578 1.591 1.599 _

[31] —0.566 —0.612 —0.644 1.406 1581 1.710 C. Numerical accuracy

[03) C, -0.752 -0.752 —-0.752 Cg 2.169 2.169 2.169 We conclude this section with comments about the nu-

[09] —-1328 -1328 -1.328 2,505 2.505 2505 merical accuracy of the results.

[15] -1.286 —1.286 —1.286 2.329 2329 2.329

[21] —1.289 —-1.290 -1.291 2.337 2340 2341 (1) Points on than/n-bifurcation curves were found with an

[27] -1273 -1.289 —1.300 2.300 2.338 2.364 accuracy ranging between 1¥ and 10 %5, where the

(33] -1161 —1.249 ~1.276 1873 2288 2614 larger value corresponds to larger periods. We obtain this

[05] C; 3450 3.450 3450 C, 3.450 3.450 3.450 measure of accuracy from the condition

[11] 2534 2534 2534 2534 2534 2534 , ,

[17] 2598 2598  2.598 2598 2.598 2.598 F(y)=0, F'(y)=0, andF"(y)#0, (17)

[23] 2588 2594 2598 2588 2594 2.598 , )

[29] 2498 2588  2.650 2498 2588 2.650 as explained previously. The numbers quoted above are

)

found in Ref. 12. A similar shift by two occurs for other

symmetry lines.

2. Spatial scaling at criticality

As expected, the shearless curve exhibits scale invari-
ance at criticality, which can be demonstrated explicitly by
using symmetry line coordinatés (%,9) defined by%=x
—a(l-y?)/2 and§y=y—vys. In these coordinates, thg; (3
symmetry line becomes a straight line that intersects the
shearless curve at the origin. We find that, in symmetry
line coordinates, the shearlesgAinvariant torus at critical-
ity remains invariant under a scale change,yl
— (', B'?). This property is illustrated in Fig. 7.

As described in Ref. 13, we can find using

4

Yi2i+1] Yiei+1117 Yzi-11 Y[2i+13]

=lim
Vs ioe(Y2ir117 Yi2i-11) — Y2i + 131~ Y2i+117)

~0.47253494777, (14

wherey|, denotes thg-coordinate of the periodic orbjn]
along thes; symmetry line. To obtain the quoted valueyaf
we usedi = 10. We then obtained and 8 as follows?’

©)

5\( . 1/12
a=lim |22 ~1.61759 (15)
n—oo | X[2i+13]
(6)
and
S\/ . 1/12
B=lim |22 <1 65702, (16)
n—o| Y[2i+13]

where q,9[q)) are symmetry line coordinates of the point
of the periodic orbit[n] that is the closest to the origin.
Within numerical accuracy, these values are the same as in
Ref. 13.

Further numerical analysis shows that periodic orbits
also exhibit scaling behavior locally near teg symmetry
line. Figure 8 shows points of the periodic orpit]=[21]

the values ofF(y) obtained at the numerically found
minima iny.

Periodic orbits along the different symmetry lines around
the critical point were found with an accuracy ranging
between 10%° and 10’ Here, the criterion is the dif-
ference between the winding numbefn of the periodic
orbit of interest, and the winding number of the orbit that
results when starting at the numerically found location of
the periodic orbit on the respective symmetry line, and
then iterating the map.

A criterion for the accuracy of the scaled bifurcation
curve ®4,,2 is harder to find, since the location of the
actual curve is unknown. An upper bound on the error,
though, should be the distance between dhg,» and
@377, since the latter definitely lies on the other side of
®,,,2. This error was found to be approximately 2
X 10713,

A criterion for the accuracy of the critical point in pa-
rameter spacega( ,b.) is even harder to define, since we
cannot actually find the residues of existing orbitsatyf
periods, which is required to check if the six-cycle at that
point continuesad infinitum We believe that the value
for a is accurate up to X 10 °.

The uncertainties for the critical residues, quoted above
in Eq. (12), were computed from the variation in numeri-
cal values of residues at, for the three or four highest
period orbits founde.g., forC,, using residues df13],
[19], [25] and[31]).

If we evaluate the residues of the up and down periodic
orbits along thes; ands; symmetry lines, then the resi-
dues on the other two symmetry lines can be constructed
using symmetry argumentsee Sec. Il A But, as a
check of the numerical procedures, we independently
evaluated the residues on all the four symmetry lines and
confirmed the symmetry arguments.

IV. RENORMALIZATION GROUP INTERPRETATION

In this section, we interpret the above results within the

renormalization group framework. The analysis follows Ref.
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FIG. 6. Residue convergence @ throughCg at z; (+), z, (O) andz; (X) (see Table V.

13 closely, since, as expected, the residue behavior exhibitsam invariant torus with aspecific winding number under

six-cycle at criticality. But, because of the different winding strong perturbation.

number (i.e., different from 14) the renormalization group The following renormalization approackee e.g., Refs.

operator will have a different form. 13 and 3% is based on the residue criteri¢8ec. Il A). To
Renormalization ideas have been used fruitfully in areastudy the breakup of an invariant torus of winding numégr

preserving maps and Hamiltonian flowSee, e.g., Refs. Wwe loosely represent the map as

28-34 and references thergin contrast to mathematical M=(R;,R,.R ) (18)

KAM theory, which proves the existence of dense sets of L2

invariant tori in regions of phase space, the renormalizationvhere the{R;} are the residues of the periodic orbits with-

group approach addresses the problem of the destruction @finding numbers{m;/n;}, the convergents of». For ex-
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ample, the integrable map will be represented®9,0 . ..)  whereR, =R, ;. This operation can be interpreted asrae
because all the orbits are parabolic in that case. The kejenormalizationsince periodic orbits with large periods are
idea is to construct an operat® that explores the infinite transformed into periodic orbits with smaller periods.

tail of (18) by mapping a map given bii8) to another map, The residue criterion can now be rephrased in this
R(M), represented byR(M)=(R;,R,,...,R;,...), framework:
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(1) If lim,_.,R"(M)=(0,0,Q...), theinvariant torus ex- By induction, an orbit with winding numbé¥, /F;, , under
ists. (U,T) is transformed into an orbit oR "(U,T) with wind-
(2 Iflim,_.R"(M)=(F%»,+wx,...), theinvariant torus ing numberF,_,/Fi o_,.
is destroyed.
(3) If lim,_.,R"(M) is a map for which the residues B. Simple periodic orbit of R
have finite, nonzero values, i.e., a map that is invariant
under the action ofR™ (a fixed point of R™) for
some m>0, the invariant torus is at the threshold of
destruction. Possible scenarios are the convergence P
the residues to a fixed value or to a convergent subse-
qguence. (X) (X_,),ZIyZ/,yZ) (X)
U. = A
y y \y

We can find the integrable period-two orbl { ,T-.) of
the renormalization operator(19) by requiring that
(UL, T+)=(U5,T5). This two-cycle is given by the fol-
wing pairs of maps:

X+1iy2>
y L

There are two kinds of fixed pointsimplefixed points and
critical fixed pomts_. In .the case O.f area-preserving maps, W(\a/vhere the rescaling of the coordinates is given by
come to the following interpretation. simplefixed point is
an integrable magall the residues are zeraand its basin of -y 0
attraction contains all the maps for which the invariant torus B 0 =+~

. " . L . . . =7
exists. Acritical fixed point is a map for which the invariant . T o
torus under consideration is at criticality. All the maps in its ~ Using the definitionU= T (x,y) = (x,y) of the periodic
basin of attraction exhibit the same universal behavior at th&rbits of periodm/n, we get the rotation number as a func-

(22

critical breakup. tion of y:
A. Renormalization group operator 1+y? 1 2\ 7t
_ aroup opera w+<y>=—%=—z<1ty2)(1ty—4>
Following the discussion in Refs. 33 and 13, we use -y Fyly y Y

pairs of commuting maps because they provide a simple way
to define the renormalization operators for invariant tori. - i 14| 1- i
A pair of commuting maps an ordered pair of maps, A o

(U,T), such thalUT=TU. An orbit of a point (x.y) gener- Thus we see that the mapJ( ,T_) is locally equivalent,

ated by U,T) is the set of pointdU™T"(x,y)}, wherem ) i
andn a):e(fnte)gers Aoeriodic grbit if peric()d }r% is an orbit under a change of coordinates, to the SNM with parameters
' (a,b)=(1/y?,0).

for which U™T"(x;,y;) = (X;,Yi)-
For the breakup of the invariant torus with winding num-
ber w=1/y?, we define the renormalization group operator

y2+

C. Critical periodic orbit of R

by The next step is to analyze the critical periodic orbit of
R. Consider the nontwist map
Y v -1 C=(Cqy,—,Cy,—,C3,—,C4,—,C
R T -:B U T2 B . (19) 1 12 1~3) 1 ~~4 15y
_1C61_1C11_1C21"')1 (23)

As for the case of %/, this operator contains both time and
space renormalization as follows:

The space renormalizatiois represented by the operator
B, which rescales the x(y) coordinates, i.e., X,y)
—B(X,y) where

where theC; are the elements of the six-cycle computed
earlier, and the " denote the periodic orbits that do not

exist (see Table . By construction, this map is a period-12

orbit of the renormalization group operat@ fixed point of

R, ie.,
r o RC=CcC. (24)
B= . (20
0 s In Sec. Il B, we found that the residues of the periodic orbits

. ) . L i ) approximating the }-shearless curve in the standard non-
At the critical fixed point studied in this article, we see thattwist map exhibit convergence to the six-cyé@,}. Assum-

r=a ands=p given by Eqs(15 and(16). ing that we can fine-tune the results fa.(b.), we expect
Thetime renormalizatioris, again, accomplished by the that lim, .. R "M (a,,b)=C
— 00 c1Mc, .

specific combination of the commuting maps. ¥Y) is a If we are studying the breakup of the,2shearless

periodic orbit of U, T) with winding numberF; /Fi., then e for parameter values along the bifurcation curve for
B(x,y) is a periodic orbit of U, T)=R(U,T) with winding  one of the low-period convergents, then we start near the

numberF;_;/F;.;, as can be verified as follows: stable manifold of the critical periodic orbit &. But, under
. . the action ofR, we are pushed along an unstable direction.
UFi-1 TFRiaiB(x,y)=B(UT) Fi-t (UT?)Fir1(x,y) Thus, we see parts of the six-cycle of resid(sse Fig. 4,
—BU Fi-1+Fis1 T-Fi-1+ iy y) but the limiting residue behavior is observed to be
lim;_,..|Ri|~0.25, which is characteristic for the critical
=BUFi TFi+2(x,y)=B(x,y). fixed point oftwist maps(see, e.g., Ref. 33In renormaliza-
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tion group language, this means that part of the unstableal function depicted in Fig. 1. In addition, new fixed points
manifold of the critical nontwist fixed poirimaps for which  of the renormalization group operator might be obtained by
(a,b) is below (@¢,b.)] is in the basin of attraction of the studying the breakup of shearless curves with non-noble
critical twist fixed point. winding numbers.
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