
CHAOS VOLUME 13, NUMBER 2 JUNE 2003
REGULAR ARTICLES

Renormalization and destruction of 1 Õg2 tori in the standard
nontwist map
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Extending the work of del-Castillo-Negrete, Greene, and Morrison@Physica D91, 1 ~1996!; 100,
311 ~1997!# on the standard nontwist map, the breakup of an invariant torus with winding number
equal to the inverse golden mean squared is studied. Improved numerical techniques provide the
greater accuracy that is needed for this case. The new results are interpreted within the
renormalization group framework by constructing a renormalization operator on the space of
commuting map pairs, and by studying the fixed points of the so constructed operator. ©2003
American Institute of Physics.@DOI: 10.1063/1.1555472#
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In recent years, area-preserving maps that violate the
twist condition locally in phase space have been the ob
ject of interest in several studies in physics and math-
ematics. Thesenontwist maps show up in a variety of
physical models. An important problem from the physics
point of view is the understanding of the breakup of in-
variant tori, which show remarkable resilience in the re-
gion where the twist condition is violated, calledshearless
tori. In terms of the physical system modeled, these tor
represent transport barriers, and their breakup corre-
sponds to the transition to global chaos. Mathematically,
nontwist maps present a challenge since the standard
proofs of celebrated theorems in the theory of area-
preserving maps rely heavily on the twist condition. In
this article, we study the breakup of the shearless torus
with winding number 1 Õg2, where g is the golden mean.
This torus serves as a test case for improved technique
we developed. At the point of breakup the shearless torus
exhibits universal scaling behavior which leads to a
renormalization group interpretation.

I. INTRODUCTION

In this article we consider thestandard nontwist map
~SNM! M, as introduced in Ref. 1:

xn115xn1a~12yn11
2 !,

~1!
yn115yn2b sin~2pxn!,

where (x,y)PT3R, aP(0,1), andbP(2`,`). The map
M is area-preservingand violates thetwist condition

]xi 11~xi ,yi !

]yi
Þ0, ;~xi ,yi !, ~2!

along a curve in phase space, which has been recently c
the nonmonotone curve~which coincides with the shearles
curve when b50).2 Traditionally, most studies of area
4211054-1500/2003/13(2)/421/13/$20.00
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preserving maps have dealt with thetwist case, but in recen
years more and more research has been focused on the
twist case.

Applications of nontwist maps occur in many fields, f
example, the study of magnetic field lines in toroidal plas
devices~see, e.g., Refs. 3 and 4!, in celestial mechanics,5

fluid dynamics1 and atomic physics.6 It has been shown7,8

that nontwist regions appear generically in area-preserv
maps that have a tripling bifurcation of an elliptic fixe
point. In addition to these applications, the map is quite
teresting from a mathematical standpoint because many
portant theorems in the theory of area-preserving maps
sume the validity of the twist condition, e.g., the KAM
theorem and the Poincare–Birkhoff theorem. The SNM c
serve as a model for the development of new proofs. Up
now, only a few mathematical results exist for nontwist ma
~see, e.g., Refs. 2 and 9–11!.

We continue the work of del-Castillo-Negrete, Gree
and Morrison,12,13 who studied the breakup of the shearle
invariant torus with winding number 1/g, where g5(1
1A5)/2 is the golden mean. We present the analysis of
breakup of the shearless invariant torus with winding num
~in continued fraction representation!

v5@0,2,1,1, . . . #51/g2. ~3!

Because this winding number is a noble number~its contin-
ued fraction expansion ends with@1,1,1, . . . #!, the behavior
of the residues of the approximating periodic orbits is e
pected to be the same as in the 1/g case, i.e., we should find
the same fixed point of the renormalization group opera
with the same unstable eigenvalues that were found in R
13. But, the form of the renormalization group operat
which is defined later in Sec. IV, is different from the 1g
case. Also, the region of parameter space we study is di
ent. Additionally, since the periods of approximating period
© 2003 American Institute of Physics
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FIG. 1. Parameter space around the critical po
~marked by* ! of thev51/g2-shearless curve, showing
the points for which shearless invariant tori exist.
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orbits are bigger than those for the 1/g case, the present wor
serves as a test case for improved numerical techniques
scribed later in Sec. III A.

A different approach, which yields rough parameter v
ues for the breakup of invariant tori, was used by Shinoh
and Aizawa in Ref. 14, who showed that a shearless invar
torus crosses thex-axis at two points,15 xA5a/22 1

4 and xB

5a/21 1
4. For a given (a,b), a point on the shearless toru

(a/21 1
4,0), is iterated many times~we used 106). If the y

value stays below a threshold~we useduyu,0.52), it is as-
sumed that the shearless curve exists and the point is plo
Figure 1 depicts our duplication of their procedure.

We see that the critical point for the 1/g2 shearless curve
~indicated by* ! lies on the boundary in Fig. 1. Thus, th
boundary points of Fig. 1 represent thecritical function for
the SNM. This is a generalization of the definition of th
critical function for the standard twist map~see, e.g., Ref.
16!, which has only one parameter, e.g.,k. The critical func-
tion in the twist case is then defined askc(v). Here, we have
two parameters, but the shearless invariant torus of a g
winding numberv exists only for parameter values belon
ing to a curve (a,b(a;v)) in the parameter space. Thus, w
can define the critical function by the critical points on ea
of those curves by (ac ,b(ac ;v)). By finding the critical
points for many other winding numbers~both nobles and
non-nobles!, we hope to find a more accurate critical fun
tion curve than the one shown in Fig. 1.

In Sec. II, we review some basic properties of the SN
The detailed breakup of the shearless invariant torus w
winding number 1/g2 is presented in Sec. III, which als
contains a discussion of the numerical procedures involv
In Sec. IV, we interpret the results within the framework
the renormalization group. Section V contains a summ
and some directions of future research.

II. REVIEW OF RESIDUE CRITERION AND STANDARD
NONTWIST MAP

In this section, we give a brief review of some bas
concepts of the theory of area-preserving maps in the con
of the SNM. For a more in-depth discussion the reade
referred to Ref. 12 and references therein.
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A. Periodic orbits and residue criterion

Since the pioneering work of Greene,17 periodic orbits
have proven to be very useful for studying the breakup
invariant tori in area-preserving maps. Below are some s
dard definitions.

An orbit of an area-preserving mapM is a sequence o
points $(xi ,yi)% such that M (xi ,yi)5(xi 11 ,yi 11). The
winding number v of an orbit is defined asv
5 lim i→`(xi / i ) when the limit exists. Here thex-coordinate
is ‘‘lifted’’ from T to R. A periodic orbit of period n is a
sequence ofn points $(xi ,yi)% i 51

n , such thatMn(xi ,yi)
5(xi1m,yi) for all i 51, . . . ,n, andm is an integer. Peri-
odic orbits have rational winding numbersv5m/n. An in-
variant torusis an orbit with irrational winding number tha
covers densely a one-dimensional set in phase space. Of
ticular importance are the invariant tori that wind around t
x-domain because, in two-dimensional maps, they act
transport barriers.

The linear stability of a periodic orbit is determined b
the value of itsresidue,17 R, which is defined asRª@2
2Tr(L)#/4. Here,L is the mapMn linearized about the pe
riodic orbit of interest and Tr denotes the trace. If 0,R
,1, the orbit is stable or elliptic; ifR,0 or R.1, it is
unstable or hyperbolic; in the degenerate casesR50 andR
51, it is parabolic.

Periodic orbits can be used to systematically appro
mate invariant tori.17 The method is based on the observati
that given a sequence of rational numbers$mi /ni% whose
limit is v, the sequence of periodic orbits with winding num
bers $mi /ni% approaches the invariant torus with windin
numberv in phase space. It is important to find the ‘‘bes
possible sequence, i.e., the sequence that converges tov the
fastest. The elements of the best possible sequence~see, e.g.,
Ref. 18! are the convergents that are obtained from succ
sive truncations of the continued fraction expansion ofv.

The residue criterion17 can be stated as follows: Con
sider an invariant torus with winding numberv. Let $mi /ni%
be the sequence of convergents approximatingv, andRi the
residues of their corresponding periodic orbits.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 2. Plot of behavior of the up and down period
orbits of winding number 3/8 for increasingb-values at
a50.4. The vertical axis shows they-coordinates of the
orbits alongs1 .
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~1! If lim i→`uRi u50, the invariant torus exists.
~2! If lim i→`uRi u5`, the invariant torus is destroyed.
~3! At the boundary in parameter space between those

limits, the invariant torus is at the threshold of destru
tion and the residues either converge to a constant, n
zero value, or there are convergent subsequences.

This criterion is based on the idea that the destruction
an invariant torus is caused by the destabilization of nea
periodic orbits. The residue criterion has been used succ
fully in many cases to predict with high precision the thres
old for the destruction of invariant tori. Several theorem
have been proved that lend mathematical support to
criterion.19,20

The numerical search for periodic orbits is difficult b
cause, in principle, it is a two-dimensional root finding pro
lem. However, the task is considerably simplified forrevers-
ible maps,17,21 which are maps that can be factored asM
5I 1+I 0 , where I 0,1 are involution maps that satisfyI 1

25I 0
2

51. The sets of fixed points of the involution maps,G0,1

5$(x,y)uI 0,1(x,y)5(x,y)%, are one-dimensional sets, calle
symmetry linesof the map. Once we knowG0,1, the search
for periodic orbits is reduced to a one-dimensional root fin
ing problem, as explained below in Sec. III A 1.

B. Standard nontwist map

The SNM is reversible. The symmetry linesG0 , com-
posed of fixed points ofI 0 , are s15$(x,y)ux50% and s2

5$(x,y)ux51/2%. The symmetry linesG1 , composed of
fixed points of I 1 are s35$(x,y)ux5a(12y2)/2% and s4

5$(x,y)ux5a(12y2)/211/2%.
A major difference between the standard nontwist m

and twist maps is that there are two periodic orbits, if th
exist, with the same winding number on each symmetry li
This can be seen easily in the integrable case. Forb50, the
m/n periodic orbits on thes1 symmetry line are located at

~x,y!5~0,6A12~m/n!/a!. ~4!
Downloaded 05 Jun 2003 to 128.83.131.6. Redistribution subject to AIP
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We will call the orbit with the bigger~smaller! y-coordinate
the up ~down! periodic orbit.

The SNM is also invariant with respect to the transfo
mation

T~x,y!5~x1 1
2,2y!. ~5!

The coordinates of the up and down periodic orbits on
symmetry linessi , denoted by (xui ,yui) and (xdi ,ydi), re-
spectively, are related by this symmetry as follows:

~xd2 ,yd2!5T~~xu1 ,yu1!!, ~xu2 ,yu2!5T~~xd1 ,yd1!!,
~6!

~xd4 ,yd4!5T~~xu3 ,yu3!!, ~xu4 ,yu4!5T~~xd3 ,yd3!!.

Therefore, it is actually enough to compute periodic orbits
s1 and s3 , since the orbits along the other symmetry lin
can be obtained from~6!.

C. Periodic orbit collisions and bifurcation curves

Periodic orbits in the SNM can undergo a particular fo
of bifurcation that occurs when the up and down perio
orbits of the same winding number meet on the symme
line. These collisions were detected numerically in Refs.
22 and 23. Further studies of this bifurcation can be found
Refs. 2 and 11.

From ~4! it follows that, for a givena, only periodic
orbits withm/n,a exist atb50. As the value ofb increases,
the up and down orbits approach each other, and at the
furcation value, they collide and annihilate each other. F
higher values ofb, both orbits no longer exist. Figure 2 il
lustrates the behavior of periodic orbits as we increasb
from b50. Here they-coordinates of them/n53/8 periodic
orbits ons1 are shown as a function ofb for the fixed value
of a50.4.

Based on these numerical observations, the notion o
bifurcation curve in parameter space was defined in Ref.
The m/n-bifurcation curve b5Fm/n(a) is the set of (a,b)
values for which them/n up and down periodic orbits are a
the point of collision. The main property of this curve is th
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 3. Bifurcation curves for several convergen
of 1/g2.
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for (a,b) values belowb5Fm/n(a), the r /s periodic orbits,
with r /s,m/n, exist. Thus,m/n is the maximum winding
number for parameter values along them/n-bifurcation
curve.

The idea of approximating invariant tori with irrationa
winding numbers by periodic orbits is used to define
bifurcation curve for an invariant torus as follows:12 The
v-bifurcation curve b5Fv(a) for an irrationalv is the set
of (a,b) values such thatb5Fv(a)5 lim i→`Fmi /ni

(a),
whereFmi /ni

(a) is themi /ni-bifurcation curve and$mi /ni%
are the convergents ofv. For (a,b) points along the
v-bifurcation curve the invariant torus with irrational wind
ing numberv is the curve of maximum winding number an
is calledshearless. Figure 3 depicts the bifurcation curves fo
several convergents of 1/g2. This figure also makes it plau
sible that the limit in the above definition exists.

III. BREAKUP OF TORUS WITH vÄ1Õg2

In this section, we present the analysis of the breakup
the shearless invariant torus in the standard nontwist m
with winding numberv51/g2. Tables I and II list the con-
vergents used for these calculations. For more details,
Ref. 24.

TABLE I. Some of the convergents ofv5@0,2,1,1, . . . # for which the pe-
riodic orbits still exist at criticality.

@ i # Fi /Fi 12 @i# Fi /Fi 12

@1# 1/3 @19# 6765/17711
@3# 3/8 @21# 17711/46368
@5# 8/21 @23# 46368/121393
@7# 21/55 @25# 121393/317811
@9# 55/144 @27# 317811/832040
@11# 144/377 @29# 832040/2178309
@13# 377/987 @31# 2178309/5702887
@15# 987/2584 @33# 5702887/14930352
@17# 2584/6765 @35# 14930352/39088169
Downloaded 05 Jun 2003 to 128.83.131.6. Redistribution subject to AIP
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A. Numerical methods

The computational steps necessary to find the crit
point and the residue behavior of the approximating perio
orbits are as follows:

~1! Find a good approximation to the 1/g2-bifurcation curve
in (a,b)-space using the bifurcation curves for its co
vergents.

~2! Along this bifurcation curve, find the up and down pe
odic orbits on the symmetry lines1 that approximate the
invariant torus, and compute their residues.

~3! Locate the (a,b) point along the curve at which the res
dues exhibit critical behavior.

~4! Find the residues of the periodic orbits at criticali
along the remaining symmetry lines.

~5! Find the eigenvalues of the unstable eigenmodes of
renormalization group operator. The details of how to
this depend crucially on the type of critical scaling b
havior that is exhibited by the residues.

1. Searching for periodic orbits

Periodic orbits on the symmetry lines can be compu
relatively easily for reversible maps using the followin
result:12 If ( x,y)PG0,1, thenMn(x,y)5(x,y) if and only if
Mn/2(x,y)PG0,1 ~for n even! or M (n61)/2(x,y)PG1,0 ~for n
odd!. Thus, for example, periodic orbits with odd periodn on
the s1 symmetry line can be obtained by looking for poin

TABLE II. Some of the convergents ofv5@0,2,1,1, . . . # for which the
periodic orbits do not exist at criticality.

@ i # Fi /Fi 12 @i# Fi /Fi 12

@2# 2/5 @18# 4181/10946
@4# 5/13 @20# 10946/28657
@6# 13/34 @22# 28657/75025
@8# 34/89 @24# 75025/196418
@10# 89/233 @26# 196418/514229
@12# 233/610 @28# 514229/1346269
@14# 610/1597 @30# 1346269/3524578
@16# 1597/4181 @32# 3524578/9227465
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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on s1 that are mapped tos3 or s4 after (n11)/2 iterations.
This can be implemented as a one-dimensional root find
problem by considering the zeros of the functionF(y)
5sin@2p(x̂2a(12ŷ2)/2)#, where (x̂,ŷ)ªM (n11)/2(0,y). The
sine function is used to eliminate the difference betweens3

ands4 . Similar ideas can be applied to find other orbits.

2. Finding m Õn-bifurcation curves

Recall that the bifurcation curveFm/n(a) of a periodic
orbit of winding numberm/n was defined in Sec. II C to be
the set of points (a,b), at which the up and down periodi
orbits of winding numberm/n collide along thes1 symmetry
line. Thus, at a given value ofa, the functionF(y) has two
roots forb,Fm/n(a), no roots~locally! for b.Fm/n(a) and
a single root, which is also an extremum, forb5Fm/n(a).
We thus search for the zero of the extremum ofF(y) asb is
varied.

To find the whole~or large portions! of a bifurcation
curve, we use the monotonic nature of the curve~see Fig. 3!
as follows: Given a point (a1 ,b1) on the bifurcation curve,
i.e., b15Fm/n(a1), we increasea by a fixed amount toa2

5a11astep. We then start at the point (a2 ,b1) and increase
b until we reachb25Fm/n(a2). To make sure that we ar
finding the correct bifurcation curve, we start search
(a,b)-space at (a,b)5(m/n,0). Even then, the steps ina
cannot be taken to be too large. Experience has shown
steps ina of 131025 or 131026 are safe. This method i
unfortunately very slow because the part of the curve
smallb values is very steep and the interesting~near critical!
part of the curve is far away from theb50 limit.

We managed to drastically improve the speed of th
calculations by using the following ideas:

~1! Numerical evidence strongly suggests that a bifurcat
curve is smooth and monotonically increasing, althou
it is not proved mathematically.25 So we use linear ex
trapolation from two previous points to find the ne
value of b around which to search for the bifurcatio
point. It was found that any higher order extrapolati
did not improve the algorithm further.

~2! To find bifurcation curves for periodic orbits with ver
large periods~e.g., of the order of several million! the
following procedure is used: Starting at the bifurcati
curve of a smaller period, we increaseb until the bifur-
cation curve of the higher period is reached. The adv
tage of this procedure is that we do not need to do
extremely time consuming calculations of the bifurcati
curves for very high period orbits starting atb50, but
rather we can search for them near the region of inter

3. Finding 1Õg2-bifurcation curve

Recall that the 1/g2-bifurcation curve was defined as th
limit of mi /ni bifurcation curves, wheremi /ni are conver-
gents of 1/g2. It was numerically observed that close to cri
cality, this limit is approached in accordance with the follo
ing scaling relation:12

F [n11]~a!5F1/g2~a!1Bn~a!n1
n/12, ~7!
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whereF [n] (a) denotes the bifurcation curve of the period
orbit with winding number@n#5Fn /Fn12 , n1 is a number
to be determined later, andBn(a) is a period-twelve func-
tion, i.e.,Bn112(a)5Bn(a).

If Eq. ~7! holds, it follows that for fixeda

F1/g25 lim
n→`

F [n11]F [n112]2F [n]F [n113]

~F [n11]2F [n] !2~F [n113]2F [n112]!
. ~8!

We obtained the 1/g2-bifurcation curve usingn519 in Eq.
~8!, i.e., using the bifurcation curves for@32#, @31#, @20# and
@19# ~see Tables I and II!.

Now one can justifya posteriori the use of Eq.~7!.
Solving Eq.~7! with a5ac for n1 yields

n15 lim
n→`

S F [n113]~ac!2bc

F [n11]~ac!2bc
D , ~9!

and

Bn~ac!5~F [n11]~ac!2bc!n1
2n/12, ~10!

where (ac ,bc) is the critical point for breakup of the shea
less 1/g2 invariant torus, i.e.,bc5F1/g2(ac). We found that
n1

21/1252.678. Some numerical evidence for the periodic
of Bn(ac) is given in Table III.

B. Results

In this subsection, we present the results of our com
tations.

1. Residue behavior at criticality

We computed bifurcation curves up to@32#53524578/
9227465 and found the critical points along them, i.e.,
parameter values along those curves for which the resid
of approximating periodic orbits neither converge to zero n
diverge to infinity. Figure 4 shows the critical residue beha
ior of the up and down periodic orbits on the symmetry li
s1 along several different bifurcation curves. For lower p
riod bifurcation curves, the residues first show signs o
six-cycle ~to be discussed later in greater detail!, but then
converge touRi u'0.25. This is because the invariant tor
we are studying is not quite shearless. Thus we see the s
behavior of the residues as in the case of a twist map. As
proceed to higher period bifurcation curves, the behavior
the residues of the approximating periodic orbits found alo
thes1 symmetry line resembles more and more a six-cycle
renormalization group interpretation of these results is giv
in Sec. IV.

Finally, we found the critical point (ac ,bc) along the
1/g2-bifurcation curve to be the following:

TABLE III. Period-12 behavior of the scaling functionBn(ac).

n Bn(ac) n Bn(ac)

15 20.4865 27 20.4865
17 20.7090 29 20.7078
18 0.5019 20 0.5028
19 20.3901 31 20.3887
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. Residue behavior of the up
~top figure! and down~bottom figure!
periodic orbits ons1 at the critical
points on bifurcation curves of@20#
~1!, @24# ~s! and @28# ~* !.
s
f

th
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p

wn

s

ym-
ac50.425160543, bc50.9244636470355. ~11!

At the critical parameter values (ac ,bc), the residues of the
down periodic orbits ons1 , which are equal to the residue
of the up periodic orbits ons2 because of the symmetry o
the map @see Eq. ~6!#, converge to the six-cycle26

$C1 ,C2 ,C3 ,C4 ,C5 ,C6%, where

C1520.60960.005, C2521.28860.002,

C352.59360.005, C451.58460.008,

C552.33660.006, C652.59360.005.

~12!

The six-cycle can clearly be seen in Fig. 5 which shows
residues of the up and down periodic orbits at the criti
point along thes1 symmetry line. The residues of the u
Downloaded 05 Jun 2003 to 128.83.131.6. Redistribution subject to AIP
e
l

periodic orbits ons1 ~and of the down periodic orbits ons2)
converge to the six-cycle$D1 ,D2 ,D3 ,D4 ,D5 ,D6%, where

D151.58460.008, D2521.28860.002,

D3522.63060.006, D4520.60960.005,

D552.33660.006, D6522.63060.006.

~13!

The residue convergence for other symmetry lines is sho
in Table IV where we denote byRui

andRdi
the residues of

the up and down periodic orbit on the symmetry linesi .
Note that the six-cycle$Di% of Ru1

andRd2
~respectively, the

six-cycle$Ci% of Ru2
andRd1

) is observed to be the same a
that of Ru3

and Rd4
~respectively,Ru4

and Rd3
) except it is

shifted. The two six-cycles are related because of the s
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. Residue behavior of the up
~left figure! and down ~right figure!
periodic orbits ons1 at the critical
point on 1/g2-bifurcation curve.
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metry of the map as follows:D15C4 , D25C2 , D45C1 ,
D55C5 , C35C6 , and D35D6 . It was numerically ob-
served thatC6'2D6 , and thereforeC3'2D3 . Using these
relations we see that there are only five independent resi
which we take to beC1 , C2 , C3 , C4 , andC5 .

TABLE IV. Period-six convergence pattern of the residues near critica
along the different symmetry lines.

@ i # Ru1
5Rd2

Ru2
5Rd1

Ru3
5Rd4

Ru4
5Rd3

@1# , @13# , @25# D1 C1 D4 C4

@3# , @15# , @27# D2 C2 D5 C5

@5# , @17# , @29# D3 C3 D6 C6

@7# , @19# , @31# D4 C4 D1 C1

@9# , @21# , @33# D5 C5 D2 C2

@11# , @23# , @35# D6 C6 D3 C3
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We compared the values of the residues at three diffe
points along the 1/g2-bifurcation curve, one point below
criticality, one at criticality, and one above criticality
(a2 ,b2)5(0.425160540,0.9244636195728), (ac ,bc)
5(0.425160543,0.9244636470355) and (a1 ,b1)
5(0.425160545,0.9244636653440), respectively. The
merical results for theCi are listed in Table V. We see tha
each element of the six-cycle tends to zero for (a2 ,b2), to
infinity for (a1 ,b1), while it tends to the critical value a
(ac ,bc). Figure 6 clearly illustrates this behavior.

A comparison with the results of Ref. 12 shows th
within numerical accuracy, we found the same values for
residues of the six-cycle, but the sequence has shifted
two: C15H3 , C25H4 , C35H5 , C45H6 , C55H1 and
C65H2 , where Hi denote the residues for the 1/g case

y
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found in Ref. 12. A similar shift by two occurs for othe
symmetry lines.

2. Spatial scaling at criticality

As expected, the shearless curve exhibits scale inv
ance at criticality, which can be demonstrated explicitly
using symmetry line coordinates12 ( x̂,ŷ) defined by x̂5x
2a(12y2)/2 and ŷ5y2ys . In these coordinates, thes3

symmetry line becomes a straight line that intersects
shearless curve at the origin. We find that, in symme
line coordinates, the shearless 1/g2 invariant torus at critical-
ity remains invariant under a scale change (x,y)
→(a12x,b12y). This property is illustrated in Fig. 7.

As described in Ref. 13, we can findys using

ys5 lim
i→`

y[2 i 11] y[2 i 111]2y[2 i 21] y[2 i 113]

~y[2 i 11]2y[2 i 21]!2~y[2 i 113]2y[2 i 111]!

'0.47253494777, ~14!

wherey[n] denotes they-coordinate of the periodic orbit@n#
along thes3 symmetry line. To obtain the quoted value ofys

we usedi 510. We then obtaineda andb as follows:27

a5 lim
n→`

U x̂[2 i 11]

x̂[2 i 113]
U1/12

'1.61759 ~15!

and

b5 lim
n→`

U ŷ[2 i 11]

ŷ[2 i 113]
U1/12

'1.65702, ~16!

where (x̂[n] ,ŷ[n] ) are symmetry line coordinates of the poi
of the periodic orbit@n# that is the closest to the origin
Within numerical accuracy, these values are the same a
Ref. 13.

Further numerical analysis shows that periodic orb
also exhibit scaling behavior locally near thes3 symmetry
line. Figure 8 shows points of the periodic orbit@n#5@21#

TABLE V. Numerical values of the residue six-cycleCi at z25(a2 ,b2),
zc5(ac ,bc), andz15(a1 ,b1).

@n# z2 zc z1 z2 zc z1

@01# C1 0.565 0.565 0.565 C4 0.914 0.914 0.914
@07# 20.702 20.702 20.702 1.893 1.893 1.893
@13# 20.601 20.601 20.601 1.574 1.574 1.574
@19# 20.611 20.611 20.612 1.590 1.591 1.592
@25# 20.610 20.612 20.614 1.578 1.591 1.599
@31# 20.566 20.612 20.644 1.406 1.581 1.710

@03# C2 20.752 20.752 20.752 C5 2.169 2.169 2.169
@09# 21.328 21.328 21.328 2.505 2.505 2.505
@15# 21.286 21.286 21.286 2.329 2.329 2.329
@21# 21.289 21.290 21.291 2.337 2.340 2.341
@27# 21.273 21.289 21.300 2.300 2.338 2.364
@33# 21.161 21.249 21.276 1.873 2.288 2.614

@05# C3 3.450 3.450 3.450 C6 3.450 3.450 3.450
@11# 2.534 2.534 2.534 2.534 2.534 2.53
@17# 2.598 2.598 2.598 2.598 2.598 2.59
@23# 2.588 2.594 2.598 2.588 2.594 2.59
@29# 2.498 2.588 2.650 2.498 2.588 2.65
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~in symmetry line coordinates! and points of the periodic
orbit @33# with the x andy coordinates rescaled bya12 and
b12, respectively. The result suggests that periodic orbits
main invariant under a simultaneous spatial rescaling
shifting of the winding number by twelve from@n# to @n
112#.

C. Numerical accuracy

We conclude this section with comments about the
merical accuracy of the results.

~1! Points on them/n-bifurcation curves were found with a
accuracy ranging between 10212 and 10215, where the
larger value corresponds to larger periods. We obtain
measure of accuracy from the condition

F~y!50, F8~y!50, and F9~y!Þ0, ~17!

as explained previously. The numbers quoted above
the values ofF(y) obtained at the numerically foun
minima in y.

~2! Periodic orbits along the different symmetry lines arou
the critical point were found with an accuracy rangin
between 10215 and 10217. Here, the criterion is the dif-
ference between the winding numberm/n of the periodic
orbit of interest, and the winding number of the orbit th
results when starting at the numerically found location
the periodic orbit on the respective symmetry line, a
then iterating the map.

~3! A criterion for the accuracy of the scaled bifurcatio
curve F1/g2 is harder to find, since the location of th
actual curve is unknown. An upper bound on the err
though, should be the distance between theF1/g2 and
F [37] , since the latter definitely lies on the other side
F1/g2. This error was found to be approximately
310213.

~4! A criterion for the accuracy of the critical point in pa
rameter space, (ac ,bc) is even harder to define, since w
cannot actually find the residues of existing orbits ofall
periods, which is required to check if the six-cycle at th
point continuesad infinitum. We believe that the value
for ac is accurate up to 131029.

~5! The uncertainties for the critical residues, quoted abo
in Eq. ~12!, were computed from the variation in numer
cal values of residues atac for the three or four highes
period orbits found~e.g., forC1 , using residues of@13#,
@19#, @25# and @31#).

~6! If we evaluate the residues of the up and down perio
orbits along thes1 ands3 symmetry lines, then the resi
dues on the other two symmetry lines can be construc
using symmetry arguments~see Sec. II A!. But, as a
check of the numerical procedures, we independen
evaluated the residues on all the four symmetry lines
confirmed the symmetry arguments.

IV. RENORMALIZATION GROUP INTERPRETATION

In this section, we interpret the above results within t
renormalization group framework. The analysis follows R
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 6. Residue convergence forC1 throughC6 at z1 ~1!, z2 ~s! andz3 ~3! ~see Table V!.
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13 closely, since, as expected, the residue behavior exhib
six-cycle at criticality. But, because of the different windin
number~i.e., different from 1/g! the renormalization group
operator will have a different form.

Renormalization ideas have been used fruitfully in ar
preserving maps and Hamiltonian flows.~See, e.g., Refs
28–34 and references therein.! In contrast to mathematica
KAM theory, which proves the existence of dense sets
invariant tori in regions of phase space, the renormaliza
group approach addresses the problem of the destructio
Downloaded 05 Jun 2003 to 128.83.131.6. Redistribution subject to AIP
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an invariant torus with aspecific winding number under
strong perturbation.

The following renormalization approach~see e.g., Refs
13 and 35! is based on the residue criterion~Sec. II A!. To
study the breakup of an invariant torus of winding numberv,
we loosely represent the mapM as

M5~R1 ,R2 ,R3 , . . . !, ~18!

where the$Ri% are the residues of the periodic orbits wit
winding numbers$mi /ni%, the convergents ofv. For ex-
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 7. Invariance under rescaling of shearless 1/g2

torus at criticality.
k re

his
ample, the integrable map will be represented by~0,0,0, . . . !
because all the orbits are parabolic in that case. The
idea is to construct an operatorR that explores the infinite
tail of ~18! by mapping a map given by~18! to another map,
R(M ), represented by R(M )5(R̂1 ,R̂2 , . . . ,R̂i , . . . ),
Downloaded 05 Jun 2003 to 128.83.131.6. Redistribution subject to AIP
ey
whereR̂i5Ri 11 . This operation can be interpreted as atime
renormalizationsince periodic orbits with large periods a
transformed into periodic orbits with smaller periods.

The residue criterion can now be rephrased in t
framework:
-
y

FIG. 8. Invariance of periodic orbits under simulta
neous rescaling and shift of winding numbers b
twelve. Here we show the periodic orbits@21# (3) and
@33# (s) after rescaling ofx andy coordinates bya12

andb12, respectively.
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~1! If lim n→`R n(M )5(0,0,0, . . . ), theinvariant torus ex-
ists.

~2! If lim n→`R n(M )5(6`,6`, . . . ), theinvariant torus
is destroyed.

~3! If lim n→`R n(M ) is a map for which the residue
have finite, nonzero values, i.e., a map that is invari
under the action ofR m ~a fixed point of R m) for
some m.0, the invariant torus is at the threshold
destruction. Possible scenarios are the convergenc
the residues to a fixed value or to a convergent sub
quence.

There are two kinds of fixed points:simplefixed points and
critical fixed points. In the case of area-preserving maps,
come to the following interpretation. Asimplefixed point is
an integrable map~all the residues are zero!, and its basin of
attraction contains all the maps for which the invariant to
exists. Acritical fixed point is a map for which the invarian
torus under consideration is at criticality. All the maps in
basin of attraction exhibit the same universal behavior at
critical breakup.

A. Renormalization group operator

Following the discussion in Refs. 33 and 13, we u
pairs of commuting maps because they provide a simple
to define the renormalization operators for invariant tori.

A pair of commuting mapsis an ordered pair of maps
(U,T), such thatUT5TU. An orbit of a point (x,y) gener-
ated by (U,T) is the set of points$UmTn(x,y)%, wherem
andn are integers. Aperiodic orbit of period m/n is an orbit
for which UmTn(xi ,yi)5(xi ,yi).

For the breakup of the invariant torus with winding num
ber v51/g2, we define the renormalization group opera
by

RS U

T DªBS U21T21

U T2 DB21. ~19!

As for the case of 1/g,13 this operator contains both time an
space renormalization as follows:

Thespace renormalizationis represented by the operat
B, which rescales the (x,y) coordinates, i.e., (x,y)
→B(x,y) where

B5S r 0

0 sD . ~20!

At the critical fixed point studied in this article, we see th
r 5a ands5b given by Eqs.~15! and ~16!.

The time renormalizationis, again, accomplished by th
specific combination of the commuting maps. If (x,y) is a
periodic orbit of (U,T) with winding numberFi /Fi 12 , then
B(x,y) is a periodic orbit of (Û,T̂)5R(U,T) with winding
numberFi 21 /Fi 11 , as can be verified as follows:

ÛFi 21 T̂Fi 11B~x,y!5B~UT!2Fi 21 ~UT2!Fi 11~x,y!

5BU2Fi 211Fi 11 T2Fi 2112Fi 11~x,y!

5BUFi TFi 12~x,y!5B~x,y!.
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By induction, an orbit with winding numberFi /Fi 12 under
(U,T) is transformed into an orbit ofR n(U,T) with wind-
ing numberFi 2n /Fi 122n .

B. Simple periodic orbit of R
We can find the integrable period-two orbit (U6 ,T6) of

the renormalization operator~19! by requiring that
R(U6 ,T6)5(U7 ,T7). This two-cycle is given by the fol-
lowing pairs of maps:

U6S x

yD 5S x2g27y2/g2

y D , T6S x

yD 5S x116y2

y D ,

~21!

where the rescaling of the coordinates is given by

B5S 2g 0

0 6g D . ~22!

Using the definitionU6
mT6

n (x,y)5(x,y) of the periodic
orbits of periodm/n, we get the rotation number as a fun
tion of y:

v6~y!52
16y2

2g27y2/g2
5

1

g2
~16y2!S 16

y2

g4D 21

'
1

g2 F16S 12
1

g4D y21 . . . G .

Thus we see that the map (U2 ,T2) is locally equivalent,
under a change of coordinates, to the SNM with parame
(a,b)5(1/g2,0).

C. Critical periodic orbit of R
The next step is to analyze the critical periodic orbit

R. Consider the nontwist map

C5~C1 ,2,C2 ,2,C3 ,2,C4 ,2,C5 ,

2,C6 ,2,C1 ,2,C2 , . . . !, ~23!

where theCi are the elements of the six-cycle comput
earlier, and the ‘‘2’’ denote the periodic orbits that do no
exist ~see Table II!. By construction, this map is a period-1
orbit of the renormalization group operator~a fixed point of
R 12), i.e.,

R 12C5C. ~24!

In Sec. III B, we found that the residues of the periodic orb
approximating the 1/g2-shearless curve in the standard no
twist map exhibit convergence to the six-cycle$Ci%. Assum-
ing that we can fine-tune the results for (ac ,bc), we expect
that limn→`R nM (ac ,bc)5C.

If we are studying the breakup of the 1/g2-shearless
curve for parameter values along the bifurcation curve
one of the low-period convergents, then we start near
stable manifold of the critical periodic orbit ofR. But, under
the action ofR, we are pushed along an unstable directio
Thus, we see parts of the six-cycle of residues~see Fig. 4!,
but the limiting residue behavior is observed to
lim i→`uRi u'0.25, which is characteristic for the critica
fixed point oftwist maps~see, e.g., Ref. 33!. In renormaliza-
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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tion group language, this means that part of the unsta
manifold of the critical nontwist fixed point@maps for which
(a,b) is below (ac ,bc)] is in the basin of attraction of the
critical twist fixed point.

D. Eigenvalues

As shown in Ref. 13, it is possible to use our numeri
data to draw further conclusions about the renormaliza
group operatorR, in particular to compute its unstable e
genvalues. The main difficulty in computing these eigenv
ues is that the space of maps is infinite-dimensional whe
the (a,b) parameter space has only two dimensions. But
fact that we can find an isolated point (ac ,bc) in parameter
space at which the map is at criticality means that the dim
sion of the unstable manifold is two. The mapM at (ac ,bc)
is the intersection point of the two-parameter family of ma
with the stable manifold of the fixed point, i.e., valuesac and
bc describe the location of the critical fixed point ofR 12 in
its unstable manifold.

Below, we first compute the eigenvalues characteriz
the approach to (ac ,bc) in the (a,b) parameter space usin
the numerical results from above. As shown in Ref. 13, ba
on the type of numerical data obtained, the two eigenval
can be found by

n15 lim
n→`

S F [n112]~ac!2bc

F [n]~ac!2bc
D ~25!

and

n25 lim
n→`

S ac [2n112]2ac

ac [2n]2ac
D . ~26!

The last step is to relate the valuesn i to the unstable eigen
valuesd i of the renormalization group operatorR. The key
idea is to study the behavior of the residues of the perio
orbits approximatingv at the (a,b) values used in the com
putation ofn i . For details see Ref. 13.

Denoting the unstable eigenvalues ofR by d1 and d2 ,
we conclude thatd i5(1/n i)

1/12. We find numerical values o

d1'2.678, d2'1.583. ~27!

Comparing these to the values found in Ref. 13 shows
within ~assumed! numerical uncertainty these values are t
same as those for 1/g, as predicted. Theac values used to
determined2 were ac[26] and ac[14] , which explains the
larger discrepancy. Work is under way to improve this res

V. CONCLUSION

We have shown through numerical simulations that
critical residue values at the breakup of the 1/g2-shearless
curve in the standard nontwist map coincide with those
the 1/g-shearless curve. In addition, the critical scaling p
rameters and the unstable eigenvalues of the renormaliza
group operator were found to be the same for both cases.
main differences are the location of the respective criti
point in parameter space and the detailed form of the re
malization group operator in terms of commuting maps pa

Future work includes the search for the breakup val
of more winding numbers to map out the details of the cr
Downloaded 05 Jun 2003 to 128.83.131.6. Redistribution subject to AIP
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cal function depicted in Fig. 1. In addition, new fixed poin
of the renormalization group operator might be obtained
studying the breakup of shearless curves with non-no
winding numbers.
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