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Multiwave model for plasma–wave interaction
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A model is presented that describes the interaction of electrons with both longitudinal and transverse
waves in a cold plasma. Starting from the Lagrangian for the system of fields, background plasma,
and particles, a finite dimensional self-consistent model is derived using the envelope approximation
for the waves. The~squared! wave amplitudes and phases form action-angle variables in the closed
system of waves and particles. The system conserves energy and momentum, and thus is natural for
solving the beam-loading problem. Numerical simulations are performed to compare with earlier
electrostatic problems. ©2003 American Institute of Physics.@DOI: 10.1063/1.1609989#
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I. INTRODUCTION

In describing the interaction of accelerated charged p
ticles in laser driven plasma accelerators it is important
consider the reaction of the relatively small number of acc
erated particles on the electromagnetic fields. This prob
is known as the beam-loading problem~see, e.g., Ref. 1!,
which in its full form includes the reshaping of the function
form of the wave fields during the acceleration process
simpler problem, as a first step to this full problem, is to a
the question of what happens to the amplitudes and phas
fixed sinusoidal waves during the acceleration process. H
we address this simpler problem. We start from the to
Lagrangian for the particle–field system and reduce to a l
dimensional Hamiltonian system that describes the chang
the wave amplitudes and phases during their interaction w
a sample ofN charged particles. The envelope approximat
is made to eliminate the fast space–time scales of the w
in the field Lagrangian, yielding a new wave–particle L
grangian from which we obtain the Hamiltonian for theN
1NL1NT21 degree-of-freedom system, whereNL andNT

denote the number of longitudinal and transverse waves
spectively.

The theory developed here is particularly designed
the study of particle acceleration by laser driven fields. T
theory gives a measure of the self-consistent field effe
including, but not limited to, the energy-momentum cons
vation for the system. The approximation of a fixed sin
soidal wave does not allow for the reshaping of the wa
fields, but this may be a small effect compared with t
decrease in amplitudes and shifts in the phase velocity
cause the accelerated particles are often launched in a lim
phase space region of the accelerated fields. The theory
scribes how test particle calculations can be expanded to
clude these key self-consistent field effects. For example,
increase of the longitudinal emittance from the shift in t
wave phase space velocity during the acceleration pro
can be addressed with this new model, a phenomenon th
outside the range of conventional test particle simulation

In the absence of transverse waves the system reduc
that for the beam–plasma system considered by many
4091070-664X/2003/10(10)/4090/5/$20.00
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thors, see Refs. 2–7. That system has been useful for ex
ing a number of self-consistent field issues including the c
rections to the quasilinear field theory of the gentle bump
tail problem in Refs. 7 and 8. In the present problem
particle orbits are significantly more complicated and th
understanding the effect of the orbits on the charge and
rent densities is much less developed than in the electros
beam–plasma system. Thus, for example, the relevanc
the ‘‘rotating bar’’ model introduced in Ref. 4 and the ‘‘mac
roparticle’’ model introduced in Ref. 5 for phase trapping a
not clear for the present problem.

In Sec. II we give the simplifying assumptions and th
use them to reduce the full field–particle Lagrangian den
to the finite dimensional Lagrangian for the wave amp
tudes, phases, and the particles. In Sec. III we derive
Hamiltonian for the system, introduce the action-angle va
ables for the waves, and derive conservation laws. In Sec
we give some numerical examples and discuss the resu

II. DERIVATION OF THE MODEL

The model we obtain describes the interaction of
electron beam in a cold plasma with multiple longitudin
and transverse waves. We start with a Lagrangian for
system of background plasma, fields, and particles,

L5E d3xH 1

2
mnuvu21

1

8p S U¹f1
1

c

]A

]t U
2

2u¹3Au2D
2rf1

1

c
j "AJ 1 (

i 51

i 5N H 1

2
mu ṙ i u21ef~r i ,t !

2
e

c
ṙ i "A~r i ,t !J , ~1!

wherev is the Eulerian velocity field andn is the particle
density for the background plasma,f and A are the scalar
and vector potentials, respectively,j is the current,r is the
charge density, and2e is the electron charge. Quantitie
with a subscript refer to beam particles whereas those w
out to the background plasma. The Coulomb gauge¹•A50
is assumed.
0 © 2003 American Institute of Physics
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Two kinds of waves are included:NL longitudinal
waves, which are described by the scalar potential, andNT

electromagnetic~linearly polarized! transverse waves, whic
are described by the vector potential.

Motivated by fluid theory and previous derivations f
the beam–plasma model, we assume the following linear
sponse relations for the background plasma:

vi5
1

4pne

]¹f

]t
, vT5

e

mc
A,

j i52envi , jT52nevT ,
~2!

r52
1

4p
¹2f,

f5(
i 51

NL

f i , A5(
i 51

NT

A i ,

wherevi and vT are the longitudinal and transverse velo
ties, respectively, in terms of which the currentsj i andjT are
described. We insert~2! into the action of~1!.

The fields are constrained by assuming the follow
forms:

f i~r ,t !5f i~ t !cos@kLix2vLi t2b i8~ t !#, i 51...NL ,
~3!

Ayi~r ,t !5ai~ t !cos@kix2v i t2u i8~ t !#, i 51...NT ,

and Axi[Azi[0. The longitudinal fields only have compo
nents in thex-direction. The amplitudes,f i(t) andai(t), and
the phases,b i8(t) andu i8(t), of ~3! are assumed to be slowl
varying functions of time~Whitham’s envelope approxima
tion, see Ref. 10!. We substitute~3! into ~1! and keep only
terms up to first~linear! order in the time derivatives of th
phases and the amplitudes. Assuming periodic boundary
ditions we perform the spatial integration~i.e., we average!
of the Lagrangian~1! over a box of sizel to obtain

L~ t !5(
i 51

N
m

2
@ ẋi

2~ t !1 ẏi
2~ t !#

1e(
i 51

N

(
j 51

NL

f j~ t !cos@kL jxi~ t !2vL j t2b j8~ t !#

2
e

c (
i 51

N

(
j 51

NT

ẏi~ t !aj~ t !cos@kjxi~ t !2v j t

2u j8~ t !#1
l 3

8p (
j 51

NL kL j
2 ḃ j8~ t !f j

2~ t !

vp

1
l 3

8p (
j 51

NT v j u̇ j8~ t !aj
2~ t !

c2
. ~4!

In the above calculation we have made use of the disper
relations for electrostatic and electromagnetic waves i
cold plasmavLi5vp @herevp5(4pne2/m)82 is the elec-
tron plasma frequency# andv i

25vp
21ki

2c2, respectively. We
have also assumed that wave vectors for different waves
different.
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In the next section we derive the Hamiltonian of th
system and show that the energy and momentum are
served.

III. HAMILTONIAN FORM AND CONSERVATION LAWS

We write the Lagrangian~4! in dimensionless variables

L5(
i 51

N
1

2
~ j̇ i

21ḣ i
2!1(

i 51

N

(
j 51

NL A Jj

n j
3N

cos@n j~j i2b j !#

2S 2nb

n D 1/3

(
i 51

N

(
i 51

NT S vp

v j
D 1/2A I j

m jN
ḣ i cos@m j~j i2u j !#

1(
i 51

NL

Jj ḃ j1(
i 51

NT

I j u̇ j1S 2nb

n D 2~1/3!

(
i 51

NL S 12
1

n j
D Jj

1S 2nb

n D 2~1/3!

(
i 51

NT S 12
v j

m jvp
D I j , ~5!

where a number of scalings have been performed,m j

5kj /kL1 , n j5kL j /kL1 , nb5N/ l 3, and the following substi-
tutions have been made:

j i5kL1xi2vpt~t!, h i5kL1yi ,

t5vp
21~2nb /n!2~1/3!t,

b j8~ t !5n jb j~t!1~n j21!vpt~t!,

u j8~ t !5m ju j~t!1S m j2
v j

vp
Dvpt~t!, ~6!

f j
25S mvp

2

ekL1
2 D 2S 2nb

n D 4/3 Jj

n j
3N

,

aj
25S mcvp

ekL1
D 2S 2nb

n D 4/3S vp

v j
D I j

m jN
.

From this Lagrangian, by the standard procedure we find
Hamiltonian of the system,

H5(
i 51

N pj i

2

2
1(

i 51

N
1

2 Fph i

1S 2nb

n D 1/3

(
j 51

NL S vp

v j
D 1/2A I j

m jN
cos@m j~j i2u j !#G2

2(
i 51

N

(
j 51

NT A Jj

n j
3N

cos@n j~j i2b j !#

2S 2nb

n D 2~1/3!

(
i 51

NL S 12
1

n j
D Jj2S 2nb

n D 2~1/3!

3(
i 51

NT S 12
v j

m jvp
D I j . ~7!

With this Hamiltonian the Poisson brackets are of c
nonical form and the conservation of energy,dH/dt50, is
license or copyright; see http://pop.aip.org/pop/copyright.jsp
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assured because the Hamiltonian contains no explicitt de-
pendence. To see conservation of momentum, we write
the equations of motion,

j̇ i5pj i
,

ṗj i
52(

j 51

NL A Jj

n jN
sin@n j~j i2b j !#

1S 2nb

n D 1/3

(
j 51

NT S vp

v j
D 1/2Am j I j

N
sin@m j~j i2u j !#

3Fph i
1S 2nb

n D 1/3

(
j 51

NT S vp

v j
D 1/2A I j

m jN

3cos@m j~j i2u j !#G ,

ḣ i5ph i
1S 2nb

n D 1/3

(
j 51

NT S vp

v j
D 1/2A I j

m jN
cos@m j~j i2u j !#,

ṗh i
50,

~8!

ḃ i52
1

2

1

An i
3JiN

(
k51

N

cos@n i~jk2b i !#

2S 2nb

n D 2~1/3!S 12
1

n i
D ,

J̇i5A Ji

n iN
(
k51

N

sin@n i~j i2b i !#,

u̇ i5
1

2

1

Am i I iN
S vp

v i
D 1/2S 2nb

n D 1/3

(
k51

N

cos@m i~jk2u i !#

3Fphk
1S 2nb

n D 1/3

(
j 51

NT S vp

v j
D 1/2A I j

m jN
cos@m j~jk2u j !#G

2S 2nb

n D 2~1/3!S 12
v i

m ivp
D ,

İ i52Am i I i

N S vp

v i
D 1/2S 2nb

n D 1/3

(
k51

N

sin@m i~jk2u i !#

3Fphk
1S 2nb

n D 1/3

(
j 51

NT S vp

v j
D 1/2A I j

m jN
cos@m j~jk2u j !#G ,

whence it is easy to see that the two components of the
momentum,

Pjª(
i 51

N

pj i
1(

j 51

NL

Jj1(
j 51

NT

I j , ~9!

Phª(
i 51

N

ph i
, ~10!

are conserved,dPj /dt5dPh /dt50. The third componen
~the momentum along thez-axis! is trivially conserved.

Notice that the canonical coordinates for the waves
the phasesb j andu j , and the corresponding conjugate m
Downloaded 10 Dec 2008 to 129.93.32.59. Redistribution subject to AIP 
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able and so theph i

are conserved. The number of degrees
freedom is thus reduced toN1NL1NT21. When the trans-
verse fields are set to zero, the Hamiltonian reduces to
given in Refs. 4 and 5.

From these equations we see that the coupling betw
waves only occurs by means of the particle dynamics. T
kind of coupling suggests there will be a transfer of ene
between transverse and longitudinal waves, as well as
tween particles and waves. Because our model is nonrela
istic, the latter interaction is expected to be small. Eve
where transverse waves in the system enter with two sm
factors: (vp /v i)

1/2 and (2nb /n)1/3. The first small factor
appears in laser wake field accelerator physics, where
laser frequency is much larger than the longitudinal wa
frequency. However, in our derivation of the model nowhe
is its smallness used and so it can in general be chosen
trarily. The smallness of the second factor is required to
sure that no significant changes of the shape of the wa
occurs. Therefore, generally the influence of the transve
waves is expected to be small. To increase the coupling
tween particles~electrons! and transverse~electromagnetic!
waves we have to consider relativistic velocities of the be
particles because the phase velocity of the transverse wa
always greater thanc. However, as we see from the ne
section, such coupling exists even in the nonrelativistic c
and is not negligible.

IV. NUMERICAL RESULTS AND DISCUSSION

In the absence of transverse waves the system has
extensively studied in a number of papers, see Refs. 2–9
the present section we give some preliminary numerical
sults that demonstrate the effect of the presence of transv
waves in the system. We analyze the system of Eqs.~8!
numerically forN5100 electrons uniformly distributed ove
2p, (2nb /n)1/350.1, pj i

(0)50, b i(0)50, and Ji(0)50.
The longitudinal waves grow up from instability. The initia
velocity of the beam particles is taken equal to the ph
velocity of the longitudinal wave~resonant electrons!. Be-
cause the system of Eqs.~8! is in a moving frame, the initial
momenta~velocities! are zero. All momentaph i

are taken to
be zero, and the frequencies are determined according to
formula,

v i

vp
5S 11m i

2 c2

vp
2/kL1

2 D 1/2

. ~11!

The ratio of the phase velocityvp /kL1 to c is taken to be
equal to 0.1 to justify the neglect of relativistic effects. Tw
quantities that are used in laser–plasma experiments
ueET /mv icu and ueEi /mvpcu. Using the relationsuEiu
5u¹fu and uETu5u(1/c)(dA/dt)u for the longitudinal and
transverse electric fields, and the relations~6!, we find the
following estimates:

U eEi

mvpcU.S vp

kL1cD S 2nb

n D 2/3A Ji

n iN
, ~12!
license or copyright; see http://pop.aip.org/pop/copyright.jsp
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U eET

mv ic
U.S vp

kL1cD 5/2S 2nb

n DA I i

m i
4N

. ~13!

For the parameters we use in our numerical simulations,
assumingJi5102, n i51, I i5105, and m i52, we get the
values of 1023 and 2.531025 for ~12! and~13!, respectively.

Now let us consider numerical solutions of Eqs.~8!.
First we look at the case of one longitudinal and one tra
verse wave. In Fig. 1 we show results from several runs w
various values of the transverse wave amplitude. We see
little influence of the transverse wave. With no transve
wave~solid curve! the longitudinal field evolves according t
the equations for the longitudinal single-wave model. F
example, the results agree with those shown in Ref. 5~up to
a change of variables!.

In Fig. 2, we show runs with two transverse waves w
equal initial amplitudes and phases, but with different wa
vectors. Now comparison with the single-wave case sho
that the growth of the longitudinal wave occurs at an ear
time that depends on the size of the initial amplitudes of

FIG. 1. Case of one transverse and one longitudinal wave. Several runs
different transverse wave initial amplitudes andm152.0 are shown. Not a
significant difference from the single wave model~solid line! is seen.

FIG. 2. Case of two transverse and one longitudinal wave,I 15I 25105,
m152.0, m253.0, andu1(0)5u2(0)50.0. The longitudinal wave exhibits
faster growth with larger initial transverse wave amplitudesI i .
Downloaded 10 Dec 2008 to 129.93.32.59. Redistribution subject to AIP 
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transverse waves. Further, we examine the behavior of
system for long times. In Fig. 3 we show the growth of t
longitudinal wave for large initial amplitudes of the tw
transverse waves~solid line!. Figure 3 gives evidence for th
chaotic behavior that is to be expected: a very small diff
ence in one of the initial transverse wave amplitudes, a
ference of one part in 105, causes a large difference in th
subsequent evolution~dashed line!. Figure 4 shows the evo
lution of the two transverse waves in the presence of
longitudinal wave and the beam electrons. The nonlinear
teractions cause adI /I;10% oscillation of energy betwee
the two transverse waves overDt;200.

In Fig. 5 we show the case of two transverse waves w
slightly different wave vectors. The character of the curve
similar to that in Fig. 3, but it appears that the large grow
in the longitudinal wave on such a large time scale is no
three-wave resonant phenomenon because the period of
resonance would be on a much shorter time scale@see for-
mula ~11!#. In Fig. 6 we show results for two transvers
waves with equal initial amplitudes, but different initia

ithFIG. 3. Case of two transverse and one longitudinal wave,I 1510511, I 2

5105, m152.0, m253.0, and u1(0)5u2(0)50.0. The two transverse
waves have slightly different large initial amplitudes. This figure sho
sensitivity to the initial conditions.

FIG. 4. Case of two transverse and one longitudinal wave,I 15I 25105,
m152.0, m253.0, andu1(0)5u2(0)50.0. The evolution of the two trans
verse amplitudes is shown.
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phases and different wave vectors. Again a large growth
the longitudinal wave is present. The two curves again sh
sensitivity to initial conditions—in this case due to trunc
tion error. The small scale oscillation evident in the plots
Fig. 6 ~and also in some of the other figures! appears to be a
real effect and not an artifact of numerical errors because
present in runs with different accuracy.

The accelerated and larger growth of the longitudi
wave with the addition of the transverse waves is not
surprising because our system is highly nonlinear and
many degrees of freedom. Chaotic behavior is to be
pected, see also Ref. 5. There are two kinds of electro
those trapped in~the bottom of! the trough of the electro
static wave, and those that can gain enough energy to o
come the electrostatic wave potential. The large transv
wave amplitudes facilitates the transfer between the
kinds of motion and as a result there is a more effect
transfer of energy between the transverse and longitud
waves giving rise to the large growth of the longitudin
wave.

V. CONCLUSIONS

We have derived a system of ordinary differential equ
tions for describing the evolution of an electron beam in
cold plasma interacting with multiple longitudinal and tran
verse waves. In this Hamiltonian formulation we have sho
conservation of momentum and energy. The model is non
ear and has features of chaotic behavior. An example w
one longitudinal and two transverse waves shows a la
growth in the longitudinal wave amplitude that is due
energy transfer between the transverse and longitud
waves through the beam particles.

FIG. 5. Case of two transverse and one longitudinal wave,I 15I 25105,
m152.0, m252.2, andu1(0)5u2(0)50.0. The two transverse waves hav
slightly different wave vectors.
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Le Blancet al.11 report damping of the wake field acce
erator field thought to be due to beam loading from acce
ating 109 electrons to 2 MeV givingWb;mJ from the
600 mJ laser pulse.

A further modification of the model to include relativis
tic effects is needed for a more realistic description of e
periments. In laser–plasma experiments on acceleratio
electrons by a wake field~longitudinal wave! the electrons
are relativistic. To make conclusions based on our mo
about such a physical situation, we need to extend the the
to include relativistic effects. This is work currently i
progress.
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