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Multiwave model for plasma—wave interaction
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A model is presented that describes the interaction of electrons with both longitudinal and transverse
waves in a cold plasma. Starting from the Lagrangian for the system of fields, background plasma,
and particles, a finite dimensional self-consistent model is derived using the envelope approximation
for the waves. Thésquared wave amplitudes and phases form action-angle variables in the closed
system of waves and particles. The system conserves energy and momentum, and thus is natural for
solving the beam-loading problem. Numerical simulations are performed to compare with earlier
electrostatic problems. @003 American Institute of Physic§DOI: 10.1063/1.1609989

I. INTRODUCTION thors, see Refs. 2—7. That system has been useful for explor-
ing a number of self-consistent field issues including the cor-
In describing the interaction of accelerated charged parrections to the quasilinear field theory of the gentle bump on
ticles in laser driven plasma accelerators it is important taail problem in Refs. 7 and 8. In the present problem the
consider the reaction of the relatively small number of accelparticle orbits are significantly more complicated and thus
erated particles on the electromagnetic fields. This probleranderstanding the effect of the orbits on the charge and cur-
is known as the beam-loading probleisee, e.g., Ref.)l  rent densities is much less developed than in the electrostatic
which in its full form includes the reshaping of the functional beam—plasma system. Thus, for example, the relevance of
form of the wave fields during the acceleration process. Ahe “rotating bar” model introduced in Ref. 4 and the “mac-
simpler problem, as a first step to this full problem, is to askroparticle” model introduced in Ref. 5 for phase trapping are
the question of what happens to the amplitudes and phases bt clear for the present problem.
fixed sinusoidal waves during the acceleration process. Here In Sec. Il we give the simplifying assumptions and then
we address this simpler problem. We start from the totalise them to reduce the full field—particle Lagrangian density
Lagrangian for the particle—field system and reduce to a lowto the finite dimensional Lagrangian for the wave ampli-
dimensional Hamiltonian system that describes the change itudes, phases, and the particles. In Sec. Ill we derive the
the wave amplitudes and phases during their interaction witktlamiltonian for the system, introduce the action-angle vari-
a sample ol charged particles. The envelope approximationables for the waves, and derive conservation laws. In Sec. IV
is made to eliminate the fast space—time scales of the wavege give some numerical examples and discuss the results.
in the field Lagrangian, yielding a new wave—particle La-
grangian from which we obtain the Hamiltonian for the
+N_+N;—1 degree-of-freedom system, whedg and Nt
denote the number of longitudinal and transverse waves, re- The model we obtain describes the interaction of an
spectively. electron beam in a cold plasma with multiple longitudinal
The theory developed here is particularly designed forand transverse waves. We start with a Lagrangian for the
the study of particle acceleration by laser driven fields. Thesystem of background plasma, fields, and particles,
theory gives a measure of the self-consistent field effects 1 1
including, but not limited to, the energy-momentum conser- L:f dSX{—mn|v|2+ -
vation for the system. The approximation of a fixed sinu- 2 8m
soidal wave does not allow for the reshaping of the wave 1
fields, but this may be a small effect compared with the —pp+—j-A
decrease in amplitudes and shifts in the phase velocity be- ¢
cause the accelerated particles are often launched in a limited e
phase space region of the accelerated fields. The theory de- — =1;°A(r; 1)
scribes how test particle calculations can be expanded to in- ¢
clude these key self-consistent field effects. For example, theherev is the Eulerian velocity field and is the particle
increase of the longitudinal emittance from the shift in thedensity for the background plasmé,and A are the scalar
wave phase space velocity during the acceleration processd vector potentials, respective)yis the currentp is the
can be addressed with this new model, a phenomenon that éharge density, and-e is the electron charge. Quantities
outside the range of conventional test particle simulations. with a subscript refer to beam particles whereas those with-
In the absence of transverse waves the system reducesdat to the background plasma. The Coulomb gavig&=0
that for the beam—plasma system considered by many aus assumed.

Il. DERIVATION OF THE MODEL
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Two kinds of waves are includedN, longitudinal In the next section we derive the Hamiltonian of the
waves, which are described by the scalar potential, dpd system and show that the energy and momentum are con-
electromagnetiglinearly polarized transverse waves, which served.
are described by the vector potential.

Motivated by fluid theory and previous derivations for
the beam—plasma model, we assume the following linear '8 HAMILTONIAN FORM AND CONSERVATION LAWS
sponse relations for the background plasma:

We write the Lagrangiafd) in dimensionless variables,
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wherev, andvy are the longitudinal and transverse veloci- +(_b) (1_ @j )I~ 5)
ties, respectively, in terms of which the currepjtandj; are n i=1 Mjwp I

described. We insef®) into the action of(1).

The fields are constrained by assuming the foIIowingWhere a number of scalings have been performeg,

K /kp1, v;=K;/K 1, n,=N/I3, and the following substi-

forms: tutlons have been made:
di(r,t)=g(t)codk i x—w it—=B{ ()], 1=1.Ng, . §=kixi—opt(7),  m=kpyi,
Ayi(r,H) =aj(t)codkix—wit— 6/ (t)], i=1..Nq, t=w, ' (2n/n)~ 7,

and A,;=A,;=0. The longitudinal fields only have compo- Bl ()=vB{(7)+(vi— L wt(7)
nents in thex-direction. The amplitudes$;(t) anda;(t), and ! 1 ! P

the phasesg; (t) and ¢/ (t), of (3) are assumed to be slowly ) j
varying functions of timgWhitham's envelope approxima- 0; ()= u; 91(7)+(MJ_ w_)“’pt(T)v (6)
tion, see Ref. 10 We substitutg3) into (1) and keep only P
terms up to firstlinearn order in the time derivatives of the mw 2ny 413 Jj
phases and the amplitudes. Assuming periodic boundary con- ¢J ekf ( n ) 3N
1

ditions we perform the spatial integratigne., we average

of the Lagrangiar({1) over a box of sizé to obtain mcw,, l

2( znb)4/3( wp) )
ekLl n wj ,U,]N
From this Lagrangian, by the standard procedure we find the
NN Hamiltonian of the system,
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In the above calculation we have made use of the dispersion n
relations for electrostatic and electromagnetic waves in a
cold plasmaw, ;= w, [here wp= (47-rne2/m)’2 is the elec- Z
tron plasma frequen@yandw =wp +k2 , respectively. We -
have also assumed that wave vectors for different waves are With this Hamiltonian the Poisson brackets are of ca-
different. nonical form and the conservation of energyl/dr=0, is
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assured because the Hamiltonian contains no expticié-
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menta are; andl;, respectively. The variables are ignor-

pendence. To see conservation of momentum, we write owtble and so thga,]i are conserved. The number of degrees of

the equations of motion,
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whence it is easy to see that the two components of the total _

momentum,
N Nt
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Py=2, Py, (10

freedom is thus reduced té+ N, + Ny— 1. When the trans-
verse fields are set to zero, the Hamiltonian reduces to that
given in Refs. 4 and 5.

From these equations we see that the coupling between
waves only occurs by means of the particle dynamics. This
kind of coupling suggests there will be a transfer of energy
between transverse and longitudinal waves, as well as be-
tween particles and waves. Because our model is nonrelativ-
istic, the latter interaction is expected to be small. Every-
where transverse waves in the system enter with two small
factors: @,/w;)*? and (2n,/n)*3. The first small factor
appears in laser wake field accelerator physics, where the
laser frequency is much larger than the longitudinal wave
frequency. However, in our derivation of the model nowhere
is its smallness used and so it can in general be chosen arbi-
trarily. The smallness of the second factor is required to en-
sure that no significant changes of the shape of the waves
occurs. Therefore, generally the influence of the transverse
waves is expected to be small. To increase the coupling be-
tween particlegelectron$ and transverséelectromagnetic
waves we have to consider relativistic velocities of the beam
particles because the phase velocity of the transverse wave is
always greater thac. However, as we see from the next
section, such coupling exists even in the nonrelativistic case
and is not negligible.

IV. NUMERICAL RESULTS AND DISCUSSION

In the absence of transverse waves the system has been
extensively studied in a number of papers, see Refs. 2-9. In
the present section we give some preliminary numerical re-
sults that demonstrate the effect of the presence of transverse
waves in the system. We analyze the system of E§p.
numerically forN=100 electrons uniformly distributed over
2m, (2np/n)*3=0.1, p¢(0)=0, B;(0)=0, and J;(0)=0.

The longitudinal waves grow up from instability. The initial
velocity of the beam particles is taken equal to the phase
velocity of the longitudinal wavdresonant electronsBe-
cause the system of Eq®) is in a moving frame, the initial
momenta(velocitieg are zero. All moment@,, are taken to

be zero, and the frequencies are determined according to the
formula,

Wj

@p

2 112
+ui—— ) . (11
wplKiy
The ratio of the phase velocity,/k_, to c is taken to be
equal to 0.1 to justify the neglect of relativistic effects. Two
quantities that are used in laser—plasma experiments are
|eEr/mwic| and |eE;/mwyc|. Using the relations|E,|
=|V¢| and |E|=|(1/c)(dA/dt)| for the longitudinal and
transverse electric fields, and the relatidég we find the

are conserveddP./d7=dP,/d7=0. The third component following estimates:

(the momentum along theaxis) is trivially conserved.

Notice that the canonical coordinates for the waves are
the phaseg; and ¢;, and the corresponding conjugate mo-
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FIG. 1. Case of one transverse and one longitudinal wave. Several runs witRIG. 3. Case of two transverse and one longitudinal waye,10°+1, |,
different transverse wave initial amplitudes ang=2.0 are shown. Nota =10, u;=2.0, u,=3.0, and 6,(0)=6,(0)=0.0. The two transverse

significant difference from the single wave modsblid line) is seen. waves have slightly different large initial amplitudes. This figure shows
sensitivity to the initial conditions.

eEr wp 52 2nb I . .
=k c — — (13 transverse waves. Further, we examine the behavior of the
L1

Maw;C n N system for long times. In Fig. 3 we show the growth of the
For the parameters we use in our numerical simulations, ani@ngitudinal wave for large initial amplitudes of the two
assumingJ;=10?, »;=1, I,;=1C°, and u;=2, we get the transverse wavesolid line). Figure 3 gives evidence for the
values of 102 and 2.5< 10" ° for (12) and(13), respectively. chaotic behavior that is to be expected: a very small differ-

Now let us consider numerical solutions of Eqg).  ence in one of the initial transverse wave amplitudes, a dif-
First we look at the case of one longitudinal and one transference of one part in £0 causes a large difference in the
verse wave. In Fig. 1 we show results from several runs witrfubsequent evolutiofashed ling Figure 4 shows the evo-
various values of the transverse wave amplitude. We see vefytion of the two transverse waves in the presence of one
little influence of the transverse wave. With no transversdongitudinal wave and the beam electrons. The nonlinear in-
wave(solid curve the longitudinal field evolves according to teractions cause &l/1~10% oscillation of energy between
the equations for the longitudinal single-wave model. Forthe two transverse waves ovar~200.

example, the results agree with those shown in Réfipbto _ In Fig. 5 we show the case of two transverse waves WiFh
a change of variablgs slightly different wave vectors. The character of the curve is

In Fig. 2, we show runs with two transverse waves withSimilar to that in Fig. 3, but it appears that the large growth

equal initial amplitudes and phases, but with different waven the longitudinal wave on such a large time scale_ is not a
vectors. Now comparison with the single-wave case show§ree-wave resonant phenomenon because the period of such
that the growth of the longitudinal wave occurs at an earlief€sonance would be on a much shorter time sfsde for-

time that depends on the size of the initial amplitudes of thénula (11)]. In Fig. 6 we show results for two transverse
waves with equal initial amplitudes, but different initial
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FIG. 2. Case of two transverse and one longitudinal waye;l,= 10, FIG. 4. Case of two transverse and one longitudinal waye:;|,= 10,
n1=2.0, u,=3.0, andf,(0)= 6,(0)=0.0. The longitudinal wave exhibits w©;=2.0, u,=3.0, andd,(0)= 6,(0)=0.0. The evolution of the two trans-
faster growth with larger initial transverse wave amplituties verse amplitudes is shown.
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FIG. 5. Case of two transverse and one longitudinal waye;l,=1C, FIG. 6. Case of two transverse and one longitudinal waye:l,=1C,
#1=2.0, up,=2.2, andd,(0)= 6,(0)=0.0. The two transverse waves have u,=2.0, u,=3.0, 6;(0)=0, and 6,(0)=3m/2. The initial phases of the
slightly different wave vectors. two transverse waves are different. Diminishing accuracy causes sensitivity

to truncation error.

phases and different wave vectors. Again a large growth in | ¢ Blancet al*! report damping of the wake field accel-

the longitudinal wave is present. The two curves again shovgator field thought to be due to beam loading from acceler-

sensitivity to initial conditions—in this case due to trunca- ating 10 electrons to 2 MeV givingW,~mJ from the
tion error. The small scale oscillation evident in the plots ingog mJ laser pulse.

Fig. 6 (and also in some of the other figureppearstobe a A fyrther modification of the model to include relativis-
real effect and not an artifact of numerical errors because it i effects is needed for a more realistic description of ex-
present in runs with different accuracy. periments. In laser—plasma experiments on acceleration of

The accelerated and larger growth of the longitudinalg|ectrons by a wake fieldongitudinal wavé the electrons
wave with the addition of the transverse waves is not 100y relativistic. To make conclusions based on our model
surprising because our system is highly nonlinear and hagqyt such a physical situation, we need to extend the theory
many degrees of freedom. Chaotic behavior is to be exg, include relativistic effects. This is work currently in
pected, see also Ref. 5. There are two kinds of electronsp'rogress_
those trapped irfthe bottom of the trough of the electro-
static wave, and those that can gain enough energy to OVeL ~ NOWLEDGMENTS
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