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Abstract. We show how to transform a large class of infinite degree-of-freedom Hamil-
tonian systems into normal form. The energy-Casimir method that is widely used for
ascertaining stability in Hamiltonian fluid and plasma systems is only the first step. A
complete description involves changing to coordinates in which the energy is diagonal.
This amounts to a transformation to action-angle variables. Because fluid and plasma
systems typically have a continuous eigenspectrum, this transformation is nontrivial. It
will be shown that a family of integral transforms, which is a generalization of the Hilbert
transform, yields action-angle variables for a large class of fluid and plasma systems.
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1. Introduction

The goal of this paper is to show how to transform a class of infinite
degree-of-freedom Hamiltonian systems, i.e. Hamiltonian field theories, into
action-angle form. The class of systems is distinguished by two important
features: first, it is Hamiltonian in the noncanonical sense of possessing
a Lie-Poisson bracket description of the dynamics (e.g. Shepherd, 1990;
Morrison, 1998; Marsden & Ratiu, 1999) and second, the class as a whole
possesses a particular kind of continuous spectra that is akin to that discov-
ered by Van Kampen (1955) in plasma physics. These two features present
roadblocks to the usual construction of the transformation to action-angle
form. Because of the noncanonical form one must first canonize, i.e. find a
set of canonical variables. Because of the continuous spectrum the transfor-
mation constructed to diagonalize the Hamiltonian is novel and possesses
some intricacies.
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2 P. J. MORRISON

Finite linear Hamiltonian systems are simplified by transforming them
into normal form (Birkhoff, 2002; Williamson, 1936; Moser, 1958), a form
that is determined mostly by their eigenspectra. Action-angle form is the
normal form that occurs when the system is stable, i.e. when the spectrum
is neutral and nondegenerate. For finite systems the normal form for stable
systems is given variously by one of the following:

H =
N∑

n=1

ωn

2

(
p2

n + q2
n

)
= i

N∑

n=1

ωn Qn Pn =
N∑

n=1

ωn Jn , (1)

where (qn, pn) and (Qn, Pn) are canonical coordinates, and the last expres-
sion of (1) is the action-angle form, with Jn denoting the action variable.
The frequency associated with the degree of freedom labeled by n is given
by ωn := σn|ωn| with σn ∈ {−1, 1}. The quantity σn is the signature that
determines whether or not a stable oscillation possesses positive or negative
energy and plays an important role in the bifurcation theory described by
the Krein-Moser theorem (Krĕin, 1950; Krĕin & Jakubovič, 1980; Moser,
1958).

Infinite systems have the capacity for rich spectra composed of discrete,
continuous, and residual components (e.g. Kato, 1966; Reed & Simon, 1980;
Riesz & Nagy, 1955). If we restrict to the case of only a continuous spectrum
we would expect the analog of the last term of (1) to be

H =
∫

ω(u)J (u) du , (2)

where J (u) is a field action variable and the discrete sum over n is replaced
by the integration over a continuum label u. Describing how to effect this
transformation for the class of infinite dimensional Hamiltonian systems is
the main result of this paper. This is a substantial task and we only attempt
to sketch the basic ideas. (Greater detail for the cases of Vlasov-Poisson and
shear flow dynamics can be found in Morrison & Pfirsch (1992), Morrison
& Shadwick (1994), and Balmforth & Morrison (2002), with the most rigor
given in Morrison (2000).)

The canonization and diagonalization procedure we describe here com-
plements the stability arguments of Rayleigh (1896) and the energy-Casimir
type of Kruskal & Oberman (1958), Arnol’d (1965), Ripa (1983), and
others. (See e.g. Holm et al., 1985; Morrison & Eliezer, 1986; Morrison,
1998 for more details.) The essence of the energy-Casimir method is to
ascertain stability, as Dirichlet did for finite Hamiltonian systems, by using
essentially the Hamiltonian as a Lyapunov fuction. Our diagonalization
procedure completes the stability problem by finding the transformation to
normal mode coordinates. Alternatively, one can view the procedure in an
operator theory context. From this point of view we transform the operator
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HAMILTONIAN DESCRIPTION OF FLUID AND PLASMA 3

that embodies the linear dynamics into a multiplication operator (Reed &
Simon, 1980), akin to the procedure for diagonalizing matrices.

In Sec. 2 we describe our class of infinite-dimensional systems and give
some examples. In Sec. 3 we see that the unifying principle of our class is the
common Hamiltonian form. Also in this section we describe conservation
laws with a particular emphasis on the momentum. Section 4 describes
the nontrivial determination of equilibria and the equations for the nearby
linear dynamics. The eigenvalue problem is described in Sec. 5, where the
origin of a class of integral transforms, which are generalizations of the
Hilbert transform, is also described. In Sec. 6 the canonization and diago-
nalization of the class of linear Hamiltonian systems is discussed. Finally
in Sec. 7 we discuss future work.

2. A Class of Infinite-Dimensional Systems

2.1. SCALAR 2 + 1 MEAN FIELD THEORIES

The class of field theories we consider possesses a single independent vari-
able ζ(q, p, t), which is a density-like variable that depends on the inde-
pendent variables z := (q, p) as well as time. Associated with the class
of field theories are two phase spaces: the field phase space, which is the
function space in which the density ζ resides, and the particle phase space
of independent variables z. There is cause for confusion here because we
introduce action-angle variables associated with both of these phase spaces:
the field action-angle variables of (2), our main goal, and en route to this
goal, a set of particle action-angle variables that below we denote by (θ, J).
We write ζ:Z × IR → IR where Z denotes the particle phase space, which
we take to be D1 × D2, Π × D2, or Π2, where Π is the one-torus chosen
depending on which of p and q is periodic, and D1,2 are (not necessarily
proper) subsets of IR. We will not be specific about the topology of Z.

We suppose the density satisfies an equation of motion of the following
form:

∂ζ

∂t
+ [ζ, E ] = 0 , (3)

where the particle Poisson bracket is defined by the usual expression [f, g] =
fqgp − gqfp, where fq := ∂f/∂q etc., and the quantity E is an energy-like
quantity that we call the particle energy.

If (3) were a Liouville equation, then E would be a given function of z,
and we would have a linear theory. However, we are concerned about mean
field theories which are nonlinear partial integrodifferential equations. Such
equations arise, for example, by truncation of BBGKY-like hierarchies,
which results in a particular, generally global, functional dependence of the
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4 P. J. MORRISON

particle energy on the density. We determine our general class of systems
by obtaining the particle energy in terms of the field energy given below.

2.2. FIELD ENERGY

The field energy is the integrated energy corresponding to a particular
density ζ. We write the field energy in terms of energies corresponding to
one-particle, H1, two-particle, H2, . . . interactions, where

H1[ζ] =
∫

Z
h1(z) ζ(z) d2z ,

H2[ζ] =
1
2

∫

Z

∫

Z
ζ(z)h2(z, z′) ζ(z′) d2z d2z′ , (4)

and the generalizations to H3, H4, . . . are obvious. The quantities h1 and
h2, the interaction kernels, are left unspecified. But, we suppose the two-
particle interaction possesses the symmetry h2(z, z′) = h2(z′, z).

The field energy of our class of systems is then given by H[ζ] = H1 +
H2 + . . .. Henceforth, we will only consider field energies with the first two
terms, H[ζ] = H1 + H2.

The particle energy is obtained from the field energy by functional
differentiation

E :=
δH

δζ
= h1 +

∫

Z
h2(z, z′) ζ(z′) d2z′ , (5)

where the functional derivative is defined as usual by δH =
∫
Z δζ δH/δζ d2z.

2.3. EXAMPLES

2.3.1. Vlasov-Poisson
In the case of Vlasov-Poisson we set z = (x, p), which physically corresponds
to a one degree-of-freedom particle phase space, and we set ζ = f(x, p, t),
which is the phase space density that is chosen to give zero net charge.
The one and two-particle interaction kernels are given respectively by the
following:

h1(z) =
p2

2m
, h2(z, z′) = c|x − x′| , (6)

where c is a constant. Thus the field energy is

H[ζ] =
∫

IR2

p2

2m
f dxdp +

1
8π

∫

IR
E2 dx . (7)

Upon taking the functional derivative, we obtain the usual Vlasov-Poisson
particle energy, E := δH/δf = p2/2m + eφ[f ](x) .
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HAMILTONIAN DESCRIPTION OF FLUID AND PLASMA 5

2.3.2. 2D Euler
In the case of the two-dimensional Euler fluid equations, we set z = (x, y),
which physically corresponds to a two-dimensional configuration space, and
we set ζ = ζ(x, y, t), which is the scalar vorticity. The one- and two-particle
interaction kernels are given respectively by the following

h1(z) ≡ 0 , h2(z, z′) = c ln[(x − x′)2 + (y − y′)2] , (8)

where c is a constant. Thus the field energy is given by

H[ζ] =
∫

IR2

v2

2
dxdy , (9)

where the velocity is related to the scalar vorticity by ζ = ẑ · ∇ × v, and
functional differentiation gives E := δH/δζ = ψ[ζ](x). For this case the
particle energy corresponds to the streamfunction, where �ψ = ζ.

2.3.3. Other Examples
Many other examples with physical content exist. For example, Jeans equa-
tion for stellar dynamics is obtained by changing the sign of the h2 of the
Vlasov equation and removing the zero net charge condition, and quasi-
geostrophy is obtained by changing the relationship between the vorticity
and the streamfunction. Interesting examples where the underlying charac-
teristics correspond to integrable n-body problems are the Cologero-Moser
system (Moser, 1975; Illner, 2000), and the apparently unstudied cases of
Stäckel potential interaction, Smereka’s product potential (Smereka, 1998),
and the Toda-Vlasov equation.

3. Hamiltonian Form and Conservation Laws

3.1. MEAN FIELD HAMILTONIAN FORM

It is evident from the above that the energy, H, which will turn out to be the
Hamiltonian, is quadratic in ζ. Usually quadratic Hamiltonians correspond
to linear dynamics, as is the case for the simple oscillations described in
Sec. 1. However, the Vlasov-Poisson equation, the Euler equations, and
indeed every equation in the class described in Sec. 2, are quadratically
nonlinear. The discrepancy lies in the fact that the variable ζ does not
constitute a set of canonically conjugate field variables. Theories of the
kind described in Sec. 2 possess a description in terms of noncanonical
degenerate Poisson brackets, brackets that are sometimes referred to as
Lie-Poisson brackets. These brackets are linear in the field variables and
thus account for the nonlinearity missing in the Hamiltonians. Much has
been written about Lie-Poisson brackets, so we will not dwell, but refer the
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6 P. J. MORRISON

reader interested in more detail to Morrison (1998) and Marsden & Ratiu
(1999). It is this Hamiltonian form that is the unifying theme that defines
our class of systems.

The noncanonical Lie-Poisson bracket of our class is given by

{F, G} =
∫

Z
ζ

[
δF

δζ
,
δG

δζ

]
d2z . (10)

Observe that this bracket depends explicitly upon the variable ζ, unlike
usual Poisson brackets that only depend on (functional) derivatives of the
canonical variables. Like canonical Poisson brackets, the bracket of (10) is
antisymmetric and satisfies the Jacobi identity. Using (10) the equations of
motion are obtained in the form

∂ζ

∂t
= {ζ, H} = −[ζ,

δH

δζ
] = −[ζ, E ] , (11)

where H = H1 + H2 is defined by (4). This constitutes the Hamiltonian
form.

Associated with this Hamiltonian form are natural constants of motion;
viz. the energy or Hamiltonian H[ζ] = H1 +H2 and an infinity of constants
known as Casimir invariants,

C[ζ] =
∫

Z
C(ζ) d2z , (12)

where C(ζ) is an arbitray function. The Casimir invariants arise from de-
generacies in the Poisson bracket and do not occur in canonical theories.
An important additional invariant is the momentum P [ζ], a quantity that
is Hamiltonian dependent. We discuss this invariant further below.

3.2. MOMENTUM

Momentum invariants generally arise from translation symmetries that in
the present context might be determined by the form of h2. This is how the
strong version of Newton’s third law is built into the n-body problem. We
generalize this idea significantly as follows. We state that our system has a
momentum invariant if there exists a canonical transformation

z = (q, p) ←→ z̄ := (χ, π)

such that in the new particle coordinates z̄ := (χ, π), the interactions h1

and h2 have the form

h1 ◦ z = h̄1(π) , h2 ◦ (z, z′) = h̄2(π, π′, |χ − χ′|) (13)
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HAMILTONIAN DESCRIPTION OF FLUID AND PLASMA 7

upon composition with z(z̄). We will refer to the coordinates (χ, π) as
momentum coordinates.

If such a transformation exists, then the following momentum is con-
served:

P [ζ] =
∫

Z
π(z) ζ(z) d2z . (14)

This can be shown by differentiating (14), changing to momentum coordi-
nates, and using the fact that h2 depends on |χ − χ′|.

Building in momentum conservation in the manner above is not the
most general way possible. Ultimately, momentum conservation should arise
from Nöther’s theorem in an action principle, which could then be re-
duced to obtain the class of systems presented here. However, the definition
given is sufficient for our purposes. It includes that for the Vlasov system,
where P =

∫
pfdpdq and the two momenta for 2D Euler system, where

Py =
∫

xζdxdy and Px = −
∫

yζdxdy. In the case of 2D Euler, there exists
a coordinate system in which h2 possesses translation invariance in both
spatial directions, and for this reason we get the two conserved momenta.

4. Equilibria and Linearization

We now effect the usual procedure of expanding about an equilibrium
state by setting ζ = ζe + δζ and retaining terms of first order in δζ.
We will see that our class of Hamiltonian systems has the property that
eigenvalue problems resulting from the linearization procedure possess con-
tinuous spectra.

4.1. EQUILIBRIA

Equilibria, ζe, satisfy
∂ζe

∂t
= 0 = {ζe, H} , (15)

which upon using (10) implies

[ζe, Ee] = 0 , (16)

where we add the subscript ‘e’ to the particle energy because it depends
functionally on ζe. Equation (16) implies functional dependence of ζe on Ee

or vice versa. More generally it implies the existence of a single variable,
say J , such that ζe(J) and Ee(J).

Given J(q, p) one can obtain a θ such that the pair (θ, J) constitutes
a canonically conjugate system of particle coordinates. We call these co-
ordinates equilibrium coordinates, which are in general distinct from the
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8 P. J. MORRISON

momentum coordinates (χ, π) defined above. Thus we have three sets of
canonical particle coordinates at our disposal

(q, p) ←→ (θ, J) ←→ (χ, π) .

We assume the problem is stated in terms of (q, p) and that we know (χ, π),
somehow, possibly because of the physics. We now describe in more detail
how one might obtain (θ, J).

If we knew Ee(q, p) then we could attempt to use the usual procedure for
obtaining action-angle variables for a one degree-of-freedom Hamiltonian
system. But the question remains, how do we obtain Ee(q, p) from the
equilibrium equation (16)? It is clear that (16) alone cannot determine
an equilibrium because this equation allows the choice of a free function,
e.g. any function ζe(Ee) is a solution of (16). In fact there are two routes one
can follow in hope of finding a solution: one can assume the function ζe(Ee)
and seek Ee = Ee(z) or, conversely, one can assume Ee = Ee(z) and seek
ζe(Ee). Once the free function is chosen, we seek to remove the ambiguity
by using the expression for the particle energy.

Let us follow the first route and assume a form for the function ζe(Ee).
We then insert this function into the expression for the particle energy (5)
to obtain

Ee(z) = h1(z) +
∫

Z
h2(z, z′) ζe(Ee(z′)) d2z′ . (17)

This integral equation is the generalization of the equilibrium elliptic equa-
tions that are obtained in the cases of the Vlasov-Poisson and 2D Euler
examples. The point here is that there may be no elliptic equation corre-
sponding to the inverse of the integral operator with the kernel h2. However,
we are fortunate that (17) has the form of a Hammerstein integral equation
(Hammerstein, 1930), a nonlinear integral equation about which much is
known. In the sequel we will assume we have a solution of this equation,
one that is sufficiently well-behaved for our purposes. There are very inter-
esting analysis questions pertaining to (17), but we leave these to a future
publication.

We conclude this subsection with a discussion of some special cases.
If we have a momentum invariant, then we can rewrite (17) in terms of
momentum coordinates as follows:

Ee = h̄1(π) +
∫

Z
h̄2(π, π′, |χ − χ′|) ζe(Ee) dχ′dπ′ .

Some advantage is achieved by this form because the difference kernel makes
the problem amenable to Fourier transform techniques. Other simplifica-
tions occur for the cases below:

pedro.4.08.03.tex; 8/04/2003; 12:45; p.8



HAMILTONIAN DESCRIPTION OF FLUID AND PLASMA 9

4.1.1. Vlasov-like
For this case, the momentum and equilibrium particle coordinates coincide.
For Vlasov, π = J , h̄2 = h̄2(χ − χ′), and the convolution form leads to a
solution. In addition to the Vlasov equation, defect dynamics (Balmforth
et al., 1996) falls into this category. In analogy to Vlasov theory, one can
have homogeneous equilibria or the more complicated case of BGK-like
equilibria.

4.1.2. Euler-like
For this case, h̄1 ≡ 0 and h̄2 = h̄2(π−π′, χ−χ′) and we have two momenta
and two difference directions available for Fourier transform techniques.

4.1.3. Others
There are many other cases that possess special properties. The integrable
systems mentioned above; i.e., the Cologero-Moser systems, systems with
Stäckel potential interaction, and the Toda-Vlasov equation would be in-
teresting to analyze.

4.2. LINEARIZATION

Now we suppose that the equilibrium problem has been solved and that we
have found the equilibrium coordinates; i.e., it is assumed that the transfor-
mation (q, p) ←→ (θ, J) is in hand and the function ζe(J) is known. More-
over, it is assumed known that ζe(J) posseses only a continuous spectrum.
Energy-Casimir or Rayleigh-like stability arguments, arguments based on
the Green transform (Hille, 1976), or arguments based on the Nyquist
method (Balmforth & Morrison, 1998) can be used to rule out stable or
unstable discrete spectra.

Setting ζ = ζe(J) + δζ(θ, J, t) and expanding (11) to first order in δζ
gives

∂δζ

∂t
+ [δζ, Ee] + [ζe, δE ] = 0 , (18)

where Ω(J) := dEe/dJ , δE =
∫
Z h2(z, z′) δζ(z′) d2z′ written in terms of

(θ, J), and because these equilibrium coordinates are canonical [f, g] =
fθgJ − gθfJ . Thus, (18) is equivalent to

∂δζ

∂t
+ Ω(J)

∂δζ

∂θ
=

dζe

dJ

∂δE
∂θ

. (19)

Equations of the form of (19) generally possess a continuous spectrum,
which we now turn to.
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10 P. J. MORRISON

5. Spectrum and Integral Transform

5.1. SPECTRUM

To see the origin of the continuous spectrum we insert

δζ =
∑

k

ζk(J) eikθ−ikωt

into (19) and obtain (
Ω(J) − ω

)
ζk = ζ ′e Ek , (20)

where ζ ′e := dζe/dJ and Ek is given by the following expression

Ek(J) =
∑

k′

∫
Hk,k′(J, J ′) ζk′(J ′) dJ ′ , (21)

which is obtained from δE by changing to equilibrium coordinates and
Fourier expanding in the angles. (Note that Hk,k′ depends upon h2 and
ζe.) Equation (20) is an eigenvalue problem for the eigenvalue ω.

The left hand side of (20) vanishes for values of J such that ω =
Ω(J), and this singularity is recognized in plasma physics and fluid me-
chanics as the origin of the continuous spectrum. In plasma physics it
corresponds to wave-particle resonance, while in the fluid mechanics of
shear flow it is called the critical layer (or line) and it corresponds to the
matching of a background equilibrium shear velocity to the phase velocity
of a perturbation.

Following Van Kampen (1955) we write a solution of (20) in the form:

ζk = λk δ(Ω − ω) + P ζ ′e Ek

Ω − ω
, (22)

where δ is the Dirac distribution and P denotes Cauchy principal value.
Equation (22) is of the form of a continuum eigenfunction corresponding to
the continuous eigenspectrum labeled by ω. We assume Ω(J) is monotonic.
Thus the eigenfunction labeled by ω can equally well be labeled by Jω where
ω = Ω(Jω).

Note, the eigenfunction of (22) is indeterminate because the parameter
λk is unknown and because it is self-referential in that Ek depends on ζk. The
parameter λk is determined by a normalization condition, e.g.

∫
ζk dJ = 1,

and the following equation for Ek is obtained by inserting (22) into (21):

Ek(J, Jω) =
∑

k′
Hk,k′(J, Jω) +

∑

k′

∫
Ek′(J ′, Jω)Fk,k′(J, J ′, Jω) dJ ′ , (23)
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HAMILTONIAN DESCRIPTION OF FLUID AND PLASMA 11

where the kernel

Fk,k′(J, J ′, Jω) :=
[Hk,k′(J, J ′) −Hk,k′(J, Jω)

Ω(J ′) − Ω(Jω)

]
ζ ′e(J

′)

is well-behaved enough to apply the Fredholm theory of integral equations.
(See Morrison & Pfirsch (1992), Morrison (2000), and Balmforth & Mor-
rison (2002) for more details in the context of the Vlasov and 2D Euler
equations.)

More rigorous statements regarding the spectrum are made in a Ba-
nach space, B, setting. In the remainder of this subsection we make a few
comments in this regard and leave serious analysis for a possible future
publication. To this end we write

Lkζk := Ω(J)ζk − ζ ′e Ek[ζk] = ω ζk , (24)

where the linear operator Lk : B → B is our concern. We partition the
spectrum of Lk as follows: σ = σp ∪σc ∪σr. An eigenvalue ω is in the point
spectrum, σp, if Lk − ωI is not one-one, where I is the identity operator.
If ω is such that the range of Lk − ωI is not dense in the Banach space of
interest, then ω is in the residual spectrum σR, and if ω is such that the
inverse of (Lk − ωI), defined on its range, is unbounded, then ω is in the
continuous spectrum σc. We find this partition convenient because if σr is
null, then the approximate or Weyl spectrum corresponds to σp∪σc. (Note,
there are other commonly used decompositions of the spectrum (e.g. Reed
& Simon, 1980; Riesz & Nagy, 1955.)

In Sec. 4.2 we made some comments on how, for a given kernel, an
equilibrium can be ensured to have no discrete modes, i.e., ensured to have
a null point spectrum. We assume this has been arranged, i.e. we know
Lk − ωI is one-one.

The operator Lk is the sum of a multiplication operator and an in-
tegral operator that under mild conditions is bounded. It is well-known
that a multiplication operator possesses a continuous spectrum and early
theorems by Friedrichs and others (e.g. Kato, 1966) state conditions under
which this continuous spectrum survives perturbation by the addition of an
integral operator. For example, an operator that is composed of a bounded
self-adjoint piece perturbed by the addition of a compact piece retains its
continuous spectrum.

One interpretation of the diagonalization procedure we are attempting
here is akin to the diagonalization of matrices by coordinate changes. Our
goal is to transform the operator Lk into a pure multiplication operator
by a coordinate change. This procedure is described in Reed & Simon
(1980) for bounded self-adjoint operators, but it is not confined to such
operators. A sum over eigenfunctions of the form of (22) suggests a form
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12 P. J. MORRISON

for the diagonalizing transform that converts (24) into a pure multiplication
operator. We turn to this now.

5.2. INTEGRAL TRANSFORM

The general form of the integral transform that diagonalizes the continuous
spectrum of our class of Hamiltonian systems is given by

G[g](J) = ε(J) g(J) + P
∫

ζ ′e(J)
E(J, Jω) g(Jω)
Ω(J) − Ω(Jω)

dJω , (25)

where g is the function that is being transformed, and the functions ε and
E (given below) are determined by the functions h1 and h2 that define
our system, as well as the equilibrium being studied, ζe. In this way the
transform is tailored to the problem at hand. Here, for clarity, we have
suppressed the dependence on k to display that the transformation is the
sum of a multiplication operator, a multiplication of g by a function ε, and
an integral part that involves the Cauchy principal value, a generalization
of the Hilbert transform with a kernal given by Eζ ′e.

To simplify matters we will assume the momentum and energy coor-
dinates coincide so that h̄ = h̄(J, J ′, θ − θ′). Consequently (21) and (23)
become

Ek(J) =
∫

hk(J, J ′) ζk(J ′) dJ ′ , (26)

and

Ek(J, Jω) = hk(J, Jω) +
∫

ζe(J ′) Ek(J ′, Jω)
[hk(J, J ′) − hk(J, Jω)]

Ω(J ′) − Ω(Jω)
dJ ′ ,

(27)
respectively. For this choice of interaction Hk,k′(J, J ′) = δk,k′ hk(J, J ′).

Many properties of transforms of the form of (25) can be proven by
techniques similar to those used in Hilbert transform theory (e.g. Stein &
Weiss (1971) and other works on Calderón-Zygmund theory). Under mild
conditions it can be shown that G is a bounded linear operator on suitable
Banach spaces (Lp and C0,α). With more difficulty, the inverse can be con-
structed, and it is of the same general form as (25). In addition there exist
identities which can be used to show that the transform diagonalizes the
Hamiltonian. The justification of these statements follows closely those for
the Vlasov (Morrison, 2000) and shear flow (Balmforth & Morrison, 2002)
cases. Below we list the results, but present their justification elsewhere.
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HAMILTONIAN DESCRIPTION OF FLUID AND PLASMA 13

5.2.1. Transform and its Inverse
Multiplying (24) by an amplitude, gk(Jω), and integrating over Jω moti-
vates the following form for the transform as a sum over eigenfunctions:

Gk[gk](J, t) := ε
(r)
k (J) gk(J, t) + P

∫
ζ ′e(J)Ek(J, Jω)
Ω(J) − Ω(Jω)

gk(Jω, t) dJω . (28)

Observe we have explicitly displayed the t dependence to reinforce the idea
that this is a coordinate change. Now, specifically, we define

ε
(r)
k (Jω) := 1 − P

∫
ζ ′e(J)Ek(J, Jω)
Ω(J) − Ω(Jω)

dJ (29)

and Ek(J, Jω) is the solution to (23).
The inverse of (28), under our assumed conditions of monotonicity and

no discrete spectrum, is given by the following:

Ĝk[fk](Jω, t) :=
1

|εk(Jω)|2
[
ε
(r)
k (Jω)fk(Jω, t) + P

∫
ζ ′e(Jω)Ek(J, Jω)
Ω(J) − Ω(Jω)

fk(J, t) dJ

]
,

(30)
where |εk(J)|2 := (ε(r)k )2 + (ε(i)k )2 and

ε
(i)
k (Jω) := πEk(Jω, Jω)

ζ ′e(Jω)
Ω′(Jω)

. (31)

That Ĝ is the inverse of G is is most simply shown by making use of the
Poincaré-Bertrand theorem on the interchange of the order of integration
for singular integrals.

5.2.2. Transform Identities
We record two identities for (30) that will be needed below.

Ĝk[Ω ζk](Jω) = Ω(Jω)Ĝk[ζk](Jω)+
ζ ′e(Jω)

|εk|2(Jω)
P

∫
ζk(J, t) Ek(J, Jω) dJ , (32)

and

Ĝk[ζ ′eEk](Jω) =
ζ ′e(Jω)

|εk|2(Jω)
P

∫
ζk(J) Ek(J, Jω) dJ . (33)

These are shown by techniques similar to those used for verifying the
inverse.
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6. Linear Canonization and Diagonalization

6.1. LINEAR HAMILTONIAN FORM

In the energy-Casimir method (Holm et al., 1985; Morrison & Eliezer, 1986;
Morrison, 1998) one chooses the Casimir invariant C of (12) such that
the vanishing of the first variation of the quantity F := H + C gives the
equilibrium of interest, and then (modulo some technicalities) one examines
the second variation δ2F for positive definiteness in order to prove stability.
Physically, δ2F corresponds to the energy content of a perturbation away
from equilibrium, and it serves as the Hamiltonian for the linear dynamics.
From (4) and (12), it is seen to be given by

δ2F = δ2H +
1
2

∫
C′′(ζe) (δζ)2 dθdJ = δ2H − 1

2

∫ E ′
e(J)

ζ ′e(J)
(δζ)2 dθdJ . (34)

Because δ2F is the Hamiltonian for the linear dynamics we rename it HL.
It, together with the linear Poisson bracket,

{F, G}L =
∫

ζe(J)
[

δF

δδζ
,
δG

δδζ

]
dθdJ ,

generates the linear dynamics as follows:

∂δζ

∂t
= {δζ, HL}L .

Upon expanding the angle-like dependence, θ, of ζk in a Fourier sum,
we obtain the following expressions for the linear Hamiltonian and Poisson
bracket, respectively:

HL =
1
2

∑

k,k′

∫ ∫
ζk(J)Hk,k′(J, J ′) ζk′(J ′) dJdJ ′ − 1

2

∑

k

∫ E ′
e(J)

ζ ′e(J)
ζ−kζk dJ

(35)
and

{F, G}L =
∞∑

k=1

ik

∫
ζ ′e

(
δF

δζk

δG

δζ−k
− δG

δζk

δF

δζ−k

)
dJ . (36)

Note, because the sum now extends only over positive integers, ζk and ζ−k

are to be viewed as independent variables. Also, note we have not made
any Fourier expansion in the time variable.
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6.2. CANONIZATION AND DIAGONALIZATION

If it were not for the presence of ikζ ′e in the bracket of (36), ζk would be
the canonical conjugate of ζ−k. If we define

qk(J, t) := ζk(J, t) and pk(J, t) =
ζ−k(J, t)

ikζ ′e
, (37)

then (36) becomes

{F, G}L =
∞∑

k=1

∫ (
δF

δqk

δG

δpk
− δG

δqk

δF

δpk

)
dJ ,

i.e. we have canonized the bracket.
Diagonalization is a more difficult procedure, but formally we can define

the mixed variable generating functional

F [q, P ] =
∞∑

k=1

∫
Pk(J) Ĝ[qk](J) dJ

where Ĝ is defined by (30). This type-2 mixed variable generating functional
effects the canonical transformation from the old field coordinates (qk, pk)
to the new field coordinates (Qk, Pk) according to

pk(J) =
δF [q, P ]
δqk(J)

= Ĝ†[Pk](J) and Qk(J) =
δF [q, P ]
δPk(J)

= Ĝ[qk](J) .

(38)
Making use of (37) and (26) we write the linear Hamiltonian (35) in the

form

HL =
∞∑

k=1

ik

∫
pk

[
ζ ′eEk − qkE ′

e

]
dJ , (39)

into which we insert pk and qk from (38), to obtain

HL =
∞∑

k=1

ik

∫
Pk

(
Ĝ[ζ ′eEk] − Ĝ[E ′

kG[Qk]]
)

dJ , (40)

Using (32) and (33) the new Hamiltonian takes the form

HL = −
∞∑

k=1

∫
ik Ω(J)Qk(J)Pk(J)dJ . (41)

Demonstrating the above achieves our final goal, because transforming from
(41) to (2) is elementary.
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7. Conclusions

It is evident that there are many avenues for future work. In conclusion we
list some of them.

− Investigate the consequences of the signature of the continuous spec-
trum; i.e. prove a Krein-Moser theorem in a Banach space setting.

− Investigate the theory of adiabatic invariants in this infinite dimen-
sional Hamiltonian context by adding explicit time dependence to
the Hamiltonian. Some results for finite systems in the context of
atmospheric models appear in Wirosoetisno & Shepherd (2000).

− Obtain the analog of Birkhoff’s nonlinear normal form theory for our
class of infinite dimensional Hamiltonian systems with continuous spec-
tra. Some results in this direction appear in Yudichak (2001).

− Obtain our class of infinite dimensional Hamiltonian systems by reduc-
tion (Morrison, 1998; Marsden & Ratiu, 1999) of a canonical system
with symmetry.

− Investigate the role played by (25) in attempts to understand the
function phase space tangent bundle geometry.
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