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Renormalization for breakup of invariant tori
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Abstract

We present renormalization group operators for the breakup of invariant tori with winding numbers that are quadratic irrationals.
We find the simple fixed points of these operators and interpret the map pairs with critical invariant tori as critical fixed points.
Coordinate transformations on the space of maps relate these fixed points, and also induce conjugacies between the corresponding
operators.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Area-preserving maps have been used extensively as low-dimensional models for physical systems, e.g., magnetic
field lines in tokamaks, experimental devices designed for confining hot plasmas to produce fusion energy. Maps
that are not too far away from being integrable, the map version of the existence of action-angle variables, exhibit
phase space plots with several different types of orbits:periodic orbits, which are discrete sets of points that are
invariant under map iterations,invariant tori, which are one-dimensional curves that traverse phase space, and
chaotic orbits, which randomly sample regions of phase space.

Of particular interest from a physics viewpoint are the invariant tori, because they aretransport barriers, i.e., orbits
with initial conditions on one side of an invariant torus will remain on that side under an arbitrary number of map
iterations. Mathematical KAM theory guarantees the existence of a dense set of invariant tori for small perturbations
away from integrability, but large perturbations destroy most or all of these tori. Here we are interested in the behavior
of a certain kind of map under perturbations that push the system far away from the integrable limit.
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Numerical studies[1,2] of invariant tori that are pushed to the point of break-up, so-calledcritical invariant tori,
have found universal scaling behavior (i.e., the same behavior for different maps and different winding numbers) of
the torus and its phase space vicinity (see further below for details). This motivated the introduction of renormal-
ization techniques, analogous to those used in the study of phase transitions in condensed matter physics, for the
study of area-preserving maps[1,3,4]. In contrast to KAM theory, the renormalization group approach addresses the
problem of destruction of an invariant torus with a specific winding number under strong perturbation. The detailed
implementation is based onGreene’s residue criterionfor which we refer the reader to, e.g.,[6].

An interesting and still open problem is the question of universality in the break-up of invariant tori: What classes
of area-preserving maps show the same scaling behavior of tori at break-up for a specific winding number? For a
specific map, what classes of winding numbers of invariant tori show the same scaling behavior at break-up?

In renormalization group language these questions are rephrased in terms of fixed points of renormalization
group operators (RGOs) defined on the space of area-preserving maps. There are two kinds of fixed points:simple
fixed points andcritical fixed points. In the case of area-preserving maps one arrives at the following interpretation:
A simplefixed point is an integrable map, and its basin of attraction contains all the maps for which the invariant
torus exists. Acritical fixed point is a map for which the invariant torus under consideration is at criticality, i.e., at
the point of break-up. All the maps in its basin of attraction exhibit the same universal behavior at break-up.

The most studied renormalization group operator (RGO) is that for the winding number 1/γ, whereγ = (1 +√
5)/2 is the golden mean[3,4]. The purpose of the present work is to construct RGOs for other winding numbers, to

describe coordinate transformations on the space of maps that relate fixed points of RGOs, and to describe conjugacy
relations between RGOs. The RGO for 1/γ2 was previously constructed[5,6] using the method presented here.
The RGOs we construct are similar to those of[7], which have been applied extensively to study renormalization
in Hamiltonian flows. In the remainder of this section we review the RGO for 1/γ, as both a means of introduction
and to set our notation.

An area-preserving mapM of a cylinder,M : T × R → T × R, can be represented by its liftM ′, which is a map
of R

2 to itself that commutes withR(x, y) = (x − 1, y), M ′R = RM ′. Commutation implies thatn iterations ofM ′
followed by an appropriate number of applications ofR is equivalent ton iterations ofM. Thus, instead of studying
M, we can equivalently study the pair of commuting maps (R,M ′) of R

2 to itself. The RGOs are defined on the
space of such commuting map pairs. The introduction of commuting map pairs is convenient because it removes
complications associated with spatial rescaling and periodicity (of the cylinder)[4,8].

Let (U, T ) be a pair of commuting maps. Theorbit of a pointz = (x, y) ∈ R
2 is the set of points{UmTnz}

for m, n ∈ Z. An orbit has thewinding numberω if for some sequence{pi/qi} of rationals withqi → ∞ and
pi/qi → ω, the sequence (πUpiT qiz)/qi → 0. (Hereπz = x is the projection fromR

2 to R.) An orbit isperiodicof
type (p, q) if UpT qz = z and (p, q) are the smallest such integers. Such periodic orbits have winding numberp/q.
An invariant torusis a curve that extends fromx = −∞ to +∞ that is invariant under bothU andT. Generically,
invariant tori have irrational winding numbers.

Invariant tori with irrational winding numbersω are studied numerically by finding the periodic orbits with
winding numbers that approximateω. To facilitate calculation it is important to find the sequence of rationals that
converges the fastest toω. The convergents obtained by successive truncations of the continued fraction expansion
of ω provide such a sequence. Also, as we shall see, such sequences of convergents are intimately connected to
renormalization.

The convergents obtained by truncating the continued fraction expansion of 1/γ = [0,1,1,1, . . .] =: [0,1]
(where we use standard continued fraction notation as in, e.g.[9]) areFi/Fi+1 whereFi are the Fibonacci numbers
defined by

F0 = 0, F1 = 1, and Fi = Fi−1 + Fi−2. (1)

Numerical studies of the break-up of invariant tori (see, e.g.,[2,4,6] and[16]) have discovered two important
features of the phase space near a critical torus:
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1. The torus itself is invariant under rescaling of phase space, i.e., if (x, y) lies on the torus, then so does (αx, βy)
for the specific values ofα, β ∈ R that depend on the universality class under consideration.

2. The lower order periodic orbits that approximate the torus coincide with the higher order ones after rescaling
phase space by exactly the same factorsα andβ.

Thus, in renormalization group language, the map at criticality is on the stable manifold of a critical fixed point of
the RGO.

These observations motivate the explicit construction of the RGOs in Section2. To give a simple example, the
RGO for tori of winding number 1/γ, R1/γ , maps a pair (U, T ) of commuting maps onto a new pair (U ′, T ′) as
follows:

U ′ := B1/γ ◦ T ◦ B−1
1/γ , T ′ := B1/γ ◦ U ◦ T ◦ B−1

1/γ , (2)

where ‘◦’ denotes composition. For convenience this is written compactly as(
U ′

T ′

)
= R1/γ

(
U

T

)
:= B1/γ

(
T

UT

)
B−1

1/γ . (3)

This operator has two parts:

• Space renormalization, which is achieved by the coordinate changeB1/γ onR
2, which rescales the phase space

coordinates (x, y) by (x, y) → B1/γ (x, y) = (αx, βy).
• Time renormalization, which is achieved by the specific combination ofU andT that maps a periodic orbit with

period equal to a convergent of 1/γ onto another one with period equal to a lower order convergent. To be
specific, an orbit of (U, T ) with winding numberFi/Fi+1 is also an orbit of (U ′, T ′) = (T,UT ) with winding
numberFi−1/Fi:

(U ′)Fi−1(T ′)Fi = (T )Fi−1(UT )Fi = UFiT Fi−1+Fi = UFiT Fi+1. (4)

The time renormalization also keeps the torus with winding number 1/γ invariant, i.e., ifz lies on the 1/γ-torus
of (U, T ), then it also lies on the 1/γ-torus of (U ′, T ′).

This paper is organized as follows. In Section2, we present the construction of RGOs for winding numbers
that are quadratic irrationals. The main idea is to construct an operator such that the time renormalization part
maps into each other those periodic orbits that have winding numbers that are convergents of desired irrationals.
We find the coordinate transformations, on the space of maps, that relate the fixed points of these operators. These
transformations, presented in Section3, also induce conjugacy relations between the different RGOs. In Section4.1,
we find the simple (integrable) fixed points of the RGOs. In Section4.2, the critical maps for various winding numbers
are interpreted as critical fixed points of these RGO operators. Finally, in Section5 we summarize and indicate
directions for further studies.

2. RGO for quadratic irrational winding numbers

Any quadratic irrationalω has an eventually periodic continued fraction expansion[9]. Here we choose 0< ω <

1. Then

ω = [0, q1, q2, . . . , ql, p1, p2, . . . , pk], (5)
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wherepi, qi ∈ N. For such winding numbers, the RGO is defined as follows:(
U ′

T ′

)
= Rω

(
U

T

)
:= Bω

(
UrT t

UsT u

)
Bω

−1, (6)

whereBω is a coordinate change on phase space. Herer, s, t, u ∈ Z, with |ru − st| = 1, are the elements of a matrix
that relates approximants ofω. In particular, convergents obtained by truncating the continued fraction expansion
of (5) are related to each other by a matrix as follows:(

mi+k

ni+k

)
=
(
r s

t u

)(
mi

ni

)
for i > l + 1. (7)

The existence of such a matrix was noted in[7]. A method for constructing it in the present context is given in
Appendix A.

It can be verified easily thatRω maps ami/ni-periodic orbit fori > l + 1 to ami+k/ni+k-periodic orbit. Letz
be ami+k/ni+k-periodic orbit of (U, T ), i.e.,

Umi+kT ni+kz = z. (8)

Then

U ′miT ′niBωz = (BωU
rT tBω

−1)mi (BωU
sT uBω

−1)niBωz = BωU
rmi+sniT tmi+umiBω

−1Bωz = Bωz.

Thus,Bωz is ami/ni-periodic orbit of (U ′, T ′). We can also verify that the torus with winding numberω is invariant
(up to a coordinate changeBω) under this operator, i.e., ifz lies on theω-torus of (U, T ) thenBωz lies on theω-torus
of (U ′, T ′).

The operatorRω is of the same form as that given for maps associated with Hamiltonian flows in Proposition
1.1 of Koch[7]. We also note thatRω defined here is slightly different from the one originally defined by MacKay
[3]. MacKay introduced an operatorNm defined by(

U ′

T ′

)
= Nm

(
U

T

)
:= B

(
T

TmU

)
B−1. (9)

with the property that an orbit of (x, y) has the winding numberω = [m,m1,m2, . . .] under (U, T ) iff B(x, y) has
winding numberω′ = [m1,m2, . . .] under (U ′, T ′). As a consequence (U, T ) has an invariant curve of winding
numberω iff (U ′, T ′) has an invariant curve of winding numberω′, whereω andω′ are related byω = m + 1/ω′.

The key difference between MacKay’s operator and the one used here is that in his case the winding number of
the orbit under consideration changes after each application ofNm, while the operatorRω preserves the winding
number. As a consequence, in each step of the renormalization a differentNm is used, while here thesameRω is
applied every time. For numbers of the formω = [0, p̄], the two operators coincide. On the other hand, the use
of Nm is not restricted to quadratic irrational winding numbers. The operatorNm has been further studied in, e.g.
[10–12]and references therein.

For later use, we also write down the RGOs for winding numbers of the form

Ωl = [0, q1, q2, . . . , ql, p̄]. (10)

Let us denote

ωp = [p̄] = p +
√
p2 + 4

2
. (11)
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Then,

Ωl = a + bωp

c + dωp

, (12)

wherea, b, c, d ∈ Z are given by

a
c

= [0, q1, q2, . . . , ql−1], b
d

= [0, q1, q2, . . . , ql] (13)

andδ := ad − bc = (−1)l [9]. The relation between the successive approximants ofΩl is given by(
mi+1

ni+1

)
=
(
A B

C D

)(
mi

ni

)
for i > l + 1, (14)

where

A = (1/δ)(bd − ac − bcp), B = (1/δ)(a2 − b2 + abp), C = (1/δ)(d2 − c2 − cdp),

D = (1/δ)(ac − bd + adp), (15)

andAD − BC = −1 (seeAppendix A). The RGO for this winding number is given by

RΩl

(
U

T

)
= BΩl

(
UATC

UBTD

)
B−1
Ωl

. (16)

Thus, for the winding numberΩ0 = 1/ωp = [0, p̄],

R1/ωp

(
U

T

)
= B1/ωp

(
T

UTp

)
B−1

1/ωp
. (17)

3. Conjugacy relations between the RGOs

In this section, we find the coordinate changes, on the space of commuting map pairs, that induce conjugacies
between the RGOs of different winding numbers that have the same periodic ‘tail’ of the continued fraction expan-
sion. For simplicity, we will work with numbers of the form given in Eqs.(10)–(12). This can be generalized easily
to numbers with arbitrary periodic tails if we replaceωp byω0 = [pk, pk−1, . . . , p1].

We will show that forΩl andωp as defined in Eqs.(10) and (11), the following conjugacy holds between the
operatorsR1/ωp andRΩl

:

RΩl
= C−1 ◦R1/ωp ◦ C, (18)

where

C

(
U

T

)
= S

(
UaT c

UbT d

)
S−1, C−1

(
U

T

)
= S−1

(
Ud/δT−c/δ

U−b/δT a/δ

)
S, (19)

andS is a particular phase space coordinate change.
To prove the above statement, note that the RHS of Eq.(18)acting on (U, T ) yields

C−1 ◦R1/ωp ◦ C
(
U

T

)
= C−1 ◦R1/ωp

(
SUaT cS−1

SUbT dS−1

)

= (S−1B1/ωpS)

(
U(bd−ac−bcp)/δT (d2−c2−cdp)/δ

U(a2−b2+abp)/δT (ac−bd+adp)/δ

)
(S−1B1/ωpS)

−1
,
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while the LHS of Eq.(18)yields:

RΩl

(
U

T

)
= BΩl

(
UATC

UBTD

)
B−1
Ωl

. (20)

Thus, ifS−1B1/ωpS = BΩl
, then Eq.(18)holds.

We have presented the operators for winding numbers 0< ω < 1. The operator forω > 1 can be shown to be
conjugate to that for 0< 1/ω < 1 by

Rω = I−1 ◦R1/ω ◦ I, (21)

where

I

(
U

T

)
= SI

(
T

U

)
S−1
I , I−1

(
U

T

)
= S−1

I

(
T

U

)
SI. (22)

If ω < 0, then we can writeω = −p + ω̃, where 0< ω̃ < 1 andp ∈ N. The operator forω is conjugate to that for
ω̃ by

Rω = N−1 ◦Rω̃ ◦N, (23)

where

N

(
U

T

)
= SN

(
U

TU−p

)
S−1
N , N−1

(
U

T

)
= S−1

N

(
U

TUp

)
SN. (24)

In Eqs.(22) and (24), SI andSN are phase space coordinate changes.
The important consequence of Eq.(18) is that the fixed points (UΩl

, TΩl
) and (U1/ωp, T1/ωp ) ofRΩl

andR1/ωp ,
respectively, are related by the coordinate changeC on the space of maps, i.e.,

C

(
UΩl

TΩl

)
=
(
U1/ωp

T1/ωp

)
. (25)

Recall that there are two kinds of fixed points of these RGOs:simpleandcritical. A simplefixed point is an
integrable map, and its basin of attraction contains all the maps for which the invariant torus exists. Acritical fixed
point is a map for which the invariant torus under consideration is at criticality. All the maps in its basin of attraction
exhibit the same universal behavior at critical breakup. The relation(25) also implies that the maps corresponding
to the fixed points (UΩl

TΩl
) and (U1/ωpT1/ωp ) belong to the same universality class, and exhibit the same universal

critical behavior. In general, since the maps with critical invariant tori of winding number with the same continued
fraction expansion tail are related to each other by coordinate transforms on the space of maps, they belong to the
same universality class.

4. Fixed points and cycles of RGOs for specific maps

In this section, we present some specific cycles of the RGOs presented above. The form of the simple cycles we
find is the same as the simple fixed point and the simple two-cycle ofR1/γ found in[3] and[13], respectively. This
specific form is motivated by the integrable (k = 0) limit of the following widely studied maps:

y′ = y − k
2π sin(2πx), x′ = x + y′, (26)
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and

y′ = y − k sin(2πx), x′ = x + a(1 − y′2), (27)

where (x, y) ∈ T × R anda, k ∈ R are parameters. We refer the reader to[3,5,14]for a detailed discussion of these
maps. Here we only recall that a mapM is said to satisfy thetwist conditionif

∂x′

∂y
�= 0, where (x′, y′) = M(x, y). (28)

The former is thestandard map, the most common example of a twist map while the latter is thestandard non-twist
map[15].

In Section4.1, we find the simple fixed points [with linear twist as in Eq.(26)] and two-cycles [with quadratic
twist as in Eq.(27)] of RΩl

. In Section4.2, we find the critical nontwist 12-cycles for the RGOs for a few noble
winding numbers and find the critical conjugacy relations between them.

4.1. Simple fixed points and two-cycles

In this section, we present the integrable fixed points and two-cycles ofRΩl
(Eq. (16)). Motivated by the maps

of Eqs.(26) and (27), we find the twist fixed point (UΩl
, TΩl

) and nontwist two-cycle (UΩl±, TΩl±) of the following
form:

UΩl
(x, y) = (x + ey + f, y) andTΩl

(x, y) = (x + gy + h, y)

UΩl±(x, y) = (x + e±y2 + f±, y) andTΩl±(x, y) = (x + g±y2 + h±, y)
(29)

by solving the following equations

BΩl
UA
Ωl
TC
Ωl
B−1
Ωl

(x, y) = UΩl
(x, y), BΩl

UB
Ωl
TD
Ωl
B−1
Ωl

(x, y) = TΩl
(x, y), (30)

and

BΩl
UA
Ωl±T

C
Ωl±B

−1
Ωl

(x, y) = UΩl∓(x, y), BΩl
UB
Ωl±T

D
Ωl±B

−1
Ωl

(x, y) = TΩl∓(x, y), (31)

whereBΩl
(x, y) = (αΩl

x, βΩl
y) is the space renormalization. We also tried to find the nontwist fixed point and

twist two-cycle. They are not presented here because the winding number for the nontwist fixed point is found to
be constant (as a function ofy), which we refer to as an integrablenon-twistmap and the twist two-cycle is simply
a multiple of the twist fixed point.

Let us introduce some notation for representing the solutions. We will use Eqs.(10)–(12), and (15). The quadratic
equation satisfied bys := −1/Ωl can be shown to be the following:

B2s2 + (2D − p)s + (D2 − Dp − 1) = 0. (32)

Let us denote bỹs the other solution of this equation. The following relation can be established:

s = −Cωp

1 + Aωp

and s̃ = C

ωp − A
. (33)

Solving Eqs.(30), we get four fixed points: two of these are trivial because the winding number is a constant;
one of them has̃s as the winding number of they = 0 orbit. Thus, the only one which has the winding numberΩl

aty = 0 is

UΩl
(x, y) = (x + ey + f, y), TΩl

(x, y) = (
x + e

s̃
y − Ωlf, y

)
, BΩl

(x, y) = (−ωpx,−ω2
py). (34)
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This is really a two-parameter family of fixed points. Using the definitionU
p

Ωl
T
q

Ωl
(x, y) = (x, y) of a periodic orbit

of winding numberp/q, we obtain the winding number as a function ofy:

w(y) = −
e
s̃
y − Ωlf

ey + f
= Ωl

(
1 − e

s̃Ωlf
y

)(
1 + e

f
y

)−1

= Ωl

[
1 −

(
1 + 1

Ωls̃

)
e

f
y +O

(
y2
)]

.

We see that the invariant torus aty = 0 has the winding numberΩl, and the winding number changes linearly with
y. Thus, this is the twist fixed point ofRΩl

.
Solving Eqs.(31)results in 16 two-cycles: half of these are trivial because they have constant winding numbers;

four of them havẽs as the winding number of they = 0 orbit; for two of them,UΩl+ (respectivelyTΩl+) differs from
UΩl− (respectivelyTΩl−) only in the constant termsf± (respectivelyh±). Thus, the only non-trivial two-cycles
with the winding numberΩl aty = 0 are

UΩl±(x, y) = (x ± ey2 + f, y), TΩl±(x, y) = (x ± e
s̃
y2 − Ωlf, y), BΩl

(x, y) = (−ωpx,±ωpy).

(35)

This again is a two-parameter family of two-cycles. As above, we obtain the winding number

w±(y) = −± e
s̃
y2 − Ωlf

±ey2 + f
= Ωl

[
1 ∓

(
1 + 1

Ωls̃

)
e

f
y2 +O

(
y4
)]

. (36)

We see thaty = 0 is the torus with winding numberΩl andw±(y) has an extremum aty = 0. Thus, this is the
non-twist two-cycle ofRΩl

.
ReplacingΩl by (1/ωp), i.e., settinga = 1, b = 0, c = 0, andd = 1 gives the integrable twist fixed point and

non-twist two-cycle ofR1/ωp . These are given by

U1/ωp (x, y) = (x + ey + f, y), T1/ωp (x, y) = (x + eωpy − f
ωp

, y), B1/ωp (x, y) = (−ωpx,−ω2
py),

(37)

and

U1/ωp±(x, y) = (x ± ey2 + f, y), T1/ωp±(x, y) = (x ± eωpy − f
ωp

, y),

B1/ωp (x, y) = (−ωpx,±ωpy). (38)

Here, we explicitly verify that the fixed point (two-cycle) ofR1/ωp is related to the fixed point (two-cycle) ofRΩl

by the coordinate changeC of Eq.(19). Thus, we show that

SUa
Ωl
T c
Ωl
S−1(x, y) = U1/ωp (x, y) and SUb

Ωl
T d
Ωl
S−1(x, y) = T1/ωp (x, y). (39)

Evaluating the LHS of each of these equations, we get

SUa
Ωl
T c
Ωl
S−1(x, y) = SUa

Ωl
T c
Ωl

(x/µ, y/ν) = S
(
x
µ

+ c
(
e
s̃
y
ν

− Ωlf
)+ a

(
e
y
ν

+ f
)
,
y
ν

)
= (

x + (
c
s̃
+ a

)
eµ
ν
y + f (a − cΩl)µ

) =:
(
x + e′y + f ′) ,

and

SUb
Ωl
T d
Ωl
S−1(x, y) =

(
x +

(
d
s̃

+ b
)

eµ
ν
y + f (b − dΩl)µ

)
=:
(
x + g′y + h′) .
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For Eqs.(39) to hold, we need thath′/f ′ = −1/ωp andg′/e′ = ωp. Using the relations

s̃ = d − cωp

−b + aωp

, and Ωl = a + bωp

c + dωp

, (40)

we obtain

h′

f ′ = b − dΩl

a − cΩl

=
b − d

a+bωp

c+dωp

a − c
a+bωp

c+dωp

= − 1

ωp

, (41)

and

g′

e′ = d + bs̃

c + as̃
=

d + b
d−cωp

−b+aωp

c + a
d−cωp

−b+aωp

= ωp. (42)

An almost identical calculation shows that the two-cycles ofRΩl
andR1/ωp are also related byC of Eq. (19).

Note that the phase space scalingsBΩl
andB1/ωp for the fixed points ofRΩl

andR1/ωp , respectively, are identical
while the scaling given bySto relate them to each other is undetermined. We will see later that for the critical fixed
points of different winding numbers, the phase space scalings (theBs) are the same whereas the scalings that relate
them to each other (theSs) have different specific values.

4.2. Critical fixed points and their relation to each other

We have studied the breakup of shearless invariant tori in the standard non-twist map for the following winding
numbers:

ω(1) = [0,1,1,1, . . .] = 1/γ,

ω(2) = [0,2,1,1,1, . . .] = 1/γ2,

ω(3) = [0,2,2,1,1,1, . . .] = γ2/(1 + 2γ2).

Here we will not present the details of the numerical results but refer the reader to[6,13,16]. It is observed that the
convergence pattern (the six-cycle) of Greene’s residues[2], spatial scalings, and the eigenvalues of the RGOs at
these fixed points are all the same within numerical accuracy for these three cases. This is expected because they
are all nobles and hence the fixed points (or higher order cycles; in this case, 12-cycles) must be related to each
other by coordinate transformations on the space of maps. Here we present evidence that such is indeed the case.

We discuss in detail the relation between theω(1)-invariant torus and theω(2)-invariant torus. The relation between
theω(1)-invariant torus and theω(3)-invariant torus is the same (except that the numerical values for the scalings are
different). We also note that the operators forω(2) andω(3) are

Rω(2)

(
U

T

)
= Bω(2)

(
U−1T−1

UT 2

)
B−1
ω(2), Rω(3)

(
U

T

)
= Bω(3)

(
U4T−1

U11T−3

)
B−1
ω(2). (43)

Rω(2) was first presented in[5] and[6].
It is observed that the positions (x

(a)
n , y

(a)
n ) of thenth convergent ofω(a) for a = 1–3 scale in the following manner:

x(a)
n = A(a)

n α−2n, and y(a)
n = B(a)

n β−2n, (44)

whereA(a)
n andB(a)

n are period-six functions ofn. Note thatn is a dummy index, i.e., it can be shifted by an integer
without changing the above statement. Also, though the result is true for all the symmetry lines, we will be using the
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Fig. 1. Mapping of critical invariant tori of different winding numbers onto each other. Note that all three tori lie on top of each other but have
been shifted iny for clarity. (Hence the scale ony-axis has not been shown.)

s3 symmetry line in the following discussion (see[13,16] for details about defining symmetry lines and symmetry
line coordinates). It follows from Eq.(44) that

An := x
(1)
n

x
(2)
n

= A
(1)
n

A
(2)
n

(45)

is a period-six function ofn. (Similarly for y andBn.) But we observe numerically thatAn is in fact a constant,A,
independent ofn if, in Eq. (45), we choose thex coordinates of orbits which have the same value of residue. This
is shown inTable 1. We see thatA ≈ 8.14 andB ≈ −3.81.

We also observe that the criticalω(2)-torus maps, locally around thes3 symmetry line, onto the criticalω(1)-torus
under exactly the rescalings (A,B) of the phase space. Numerical investigation shows that the periodic orbits, not
just their positions along the symmetry lines, also map locally onto each other. This is depicted inFigs. 1 and 2.

Table 1
Scaling of periodic orbits approximating tori with winding numbersω(1) andω(2)

q1 x1 y1 q2 x2 y2 A = x1
x2

B = y1
y2

75025 2.012943e−5 3.932996e−6 17711 1.638693e−4 −1.497908e−5 8.140783 −3.808567
196418 4.783568e−6 2.466482e−6 46368 3.894257e−5 −9.393067e−6 8.140903 −3.808286
514229 1.932103e−6 1.874730e−6 121393 1.572945e−5 −7.139952e−6 8.141104 −3.808524

1346269 7.241581e−7 2.572146e−7 317811 5.895735e−6 −9.718763e−7 8.141502 −3.778464
3524578 2.600689e−7 9.238172e−8 832040 2.117285e−6 −3.450858e−7 8.141246 −3.735433
9227465 1.187355e−7 3.614236e−8 2178309 9.667462e−7 −1.319071e−7 8.142016 −3.649653

24157817 6.258871e−8 9.617356e−9 5702887 5.100913e−7 −3.147145e−8 8.149892 −3.272360

(xa, ya) are coordinates of the orbit with periodqa at criticality for breakup ofω(a) torus (a = 1 and 2).
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Fig. 2. Mapping of periodic orbits approximating the three invariant tori. The invariant torus ofω(1) is shown for reference.

This is interpreted as follows: the mapM(1) with critical ω(1)-torus is related to the mapM(2) with critical
ω(2)-torus by the coordinate transformationC (Eq. (19)) on the space of maps:M(2) = CM(1). The phase space
coordinate changeS involved inC is diagonal:S(x, y) = (Ax,By) = (8.14x,−3.81y). We note that the coordinate
transformC provides not only a phase space rescaling but alsoa mapping of periodic orbits of different winding
numbers onto each other. This is necessary because we are relating periodic orbits with winding numbers equal to
convergents ofω(1) to those with winding numbers equal to convergents ofω(2).

5. Conclusions and future work

We have presented renormalization group operators for studying the breakup of invariant tori with any quadratic
irrational winding number. The simple (integrable) cycles were calculated. We also presented coordinate transfor-
mations on the space of maps inducing conjugacies between different RGOs. The evidence for extending this picture
to the critical fixed points is presented for the case of the standard non-twist map.

These results prompt a re-examination of the breakup of tori in twist maps. For example, we note that the
residue behavior for quadratic irrationals for the standard map (see[17] and references therein) can be interpreted
as follows: if a quadratic irrational has periodicityk in its continued fraction expansion [as in Eq.(5)], the residues
of convergents of the continued fraction expansion converge to ak-cycle at criticality. This is interpreted as a critical
fixed point ofRω and not ak-cycle ofRω because the RGOs for such numbers relate theith convergent to the
(i + k)th convergent [see the discussion following Eq.(6)]. Studying twist maps is also useful because the numerical
results for them can be obtained much faster, giving us an opportunity to study a multitude of winding numbers.
Some steps in this direction have been taken.
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Another direction for investigating these RGOs is to study sequences of rationals other than the convergents of
continued fraction expansions such that consecutive elements are still related by the RGO. Preliminary results show
that the residue convergence patterns for such sequences are similar to those of continued fraction convergents, but
the limiting residue values are different[18]. These results will be reported elsewhere. Finally, quoting John Greene,
whose pioneering numerical studies and deep insights peppered throughout his work were a constant motivation
for this investigation, “much work remains to be done”[8].
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Appendix A

Here, we derive the relation(15)and present a method to calculate the integer matrix given byr, s, t, u in (7).

1. To get(15), let gi/hi be the convergents of 1/ωp. Then,(
gi+1

hi+1

)
=
(

0 1

1 p

)(
gi

hi

)
. (A.1)

The convergentmi+1/ni+1 of Ωl, given by

mi+1

ni+1
= [0, q1, . . . , ql, p, . . . , p], (A.2)

wherep appears (i − l + 1) times, is related togi−l+1/hi−l+1 by

mi+1

ni+1
= agi−l+1 + bhi−l+1

cgi−l+1 + dhi−l+1
, (A.3)

where a–d are the same as in Eq.(13) [9]. From Eqs.(A.1)–(A.3) it follows that(
mi+1

ni+1

)
=
(
a b

c d

)(
0 1

1 p

)(
a b

c d

)−1(
mi

ni

)
(A.4)

which leads to(15)by multiplying the matrices above. Note that Eq.(A.3) is valid only fori > l − 1.
2. To get r–u in Eq.(7), let us denote byGi/Hi the convergents of [0, p1, p2, . . . , pk]. Then,(

Gi+k

Hi+k

)
=
(
a′ b′

c′ d′

)(
Gi

Hi

)
, (A.5)

wherea′, b′, c′, d′ ∈ Z are given by

a′

c′ = [0, p1, p2 . . . , pk−1],
b′

d′ = [0, p1, p2, . . . , pk], (A.6)
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anda′d′ − b′c′ = (−1)k. The convergentsmi+k/ni+k of ω are related toGi−l+k/Hi−l+k by

mi+k

ni+k

= aGi−l+k + bHi−l+k

cGi−l+k + dHi−l+k

, (A.7)

where a–d are the same as those in Eq.(13) [9]. From Eqs.(A.5)–(A.7) it follows that(
mi+k

ni+k

)
=
(
a b

c d

)(
a′ b′

c′ d′

)(
a b

c d

)−1(
mi

ni

)
. (A.8)

Multiplying the matrices and comparing with(7) results in explicit, though not very illuminating, expressions
for r–u. We note that

ru − ts = det

(
a′ b′

c′ d′

)
= (−1)k. (A.9)
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