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Abstract. 
This report is concerned with plasma edge turbulence and its relation to anomalous particle transport in tokamaks. First, 

experimental evidence of turbulence driven particle transport and measurements of the gradients of the equilibrium profiles 
in the Brazilian tokamaks TBR and TCABR are presented. Next, diffusion in a two drift-wave system is discussed. In this 
nonintegrable system, particle transport is associated with the onset of chaotic orbits. Finally, numerical evidence suggesting 
that a nonlinear three-mode interaction could contribute to the intermittent plasma fluctuations observed in tokamaks is 
presented. 
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INTRODUCTION 

In tokamaks, the plasma is necessarily out of equilibrium 
due to the radial confinement. The observed particle flow 
limits the plasma confinement and remains as one of the 
key issues in tokamak research [1,2]. 

The causes and the time rates of the cross-field trans
port have been one of the main themes in the study of 
plasma confinement in tokamaks [3]. Various theoreti
cal models have been devised to identify the underly
ing plasma turbulence mechanisms thought to cause this 
anomalous transport [2, 4, 5]. Plasma turbulence often 
displays a broad fluctuation spectra with maxima at the 
longest measured scales (small wave vectors and high 
frequencies) [1]. 

In this work, we present experimental evidence of 
particle transport driven by the electrostatic turbulence 
observed in tokamaks. Moreover, we show that chaotic 
guiding center trajectories may significantly contribute to 
the observed particle transport. Furthermore, we present 
evidence that three-coupled unstable waves may generate 
intermittent fluctuations similar to those observed at the 
plasma edge in tokamaks. 

TRANSPORT INDUCED TURBULENCE 
IN TOKAMAKS 

In tokamaks, the plasma edge behavior depends on the 
anomalous particle transport caused by electrostatic tur
bulence. Langmuir probes measure fluctuations in the 

plasma edge parameters, such as density and plasma po
tential, and these measurements can be used to obtain the 
turbulence induced transport or to provide input for sim
ulations like those presented in this work. 

In this section we present some experimental results 
about the relationship between plasma transport and 
plasma turbulence, obtained in Ohmic discharges in the 
TBR and TCABR Brazilian tokamaks. 

These measurements were performed with a multipin 
Langmuir probe system that provided simultaneous and 
local measurements of equilibrium and fluctuating val
ues of density, potential, and temperature. For the TBR 
tokamak the major radius R = 0.30 m, the plasma ra
dius a = 0.08 m, the toroidal field B0 = 0.40 T, the 
plasma current F = 10 kA, and the plasma core den
sity no « 7 x 10*8 m~3. The radial profiles of the mean 
density, potential, and electron temperature have been 
measured (Fig. 1) [6, 7]. The relative density gradient, 
which has been identified as the turbulence energy reser
voir [1, 2, 8], can be estimated as 

1 
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For an edge temperature Te « 10 eV, ps := cs/(QCj = 
y^Te/mi/(0Ci « 10~3 m, where cs is the sounds speed, 
(DCi is the ion cyclotron frequency, and a working gas of 
Hydrogen is used. Below, frequencies are measured in 
units of CS/LN. 

From two-point estimates we obtain poloidal wave 
number spectra, as well as mean wave number spectra, k, 
and spectral widths, a^. A typical spectrum of potential 
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fluctuations at r/a = 1.05 (for a chosen time interval of 
1.02 ms) of TCABR [9, 10], which has R = 0.61 m, 
a = 0.18m,£0 = 1.1 T, IP « lOOkAand^o- 1 x 1019 

m~3, is shown in Fig. 2. As can be seen in this figure, 
the plasma turbulence displays a broadband spectrum in 
both frequency and wave number. 

The fluctuation driven particle flux can be obtained 
from 

/~Ee\ £* 150 

where ft and EQ are the fluctuating density and poloidal 
electric field, respectively. The particle flux at each fre
quency, T(f), can be derived from the cross correlation 
between ft and 0. Using this procedure, the following ex
pression can be obtained [6] 

n/) 
2 •*( / )• p-M -sin\e~r(f) np\ 

Bo 
(2) 

where k{f) is the wave number of the fluctuating 
plasma potential, P-^ (f) and O-^z (/) are, respectively, 
the crosspower spectrum and the phase angle between 
the plasma potential and density fluctuations. Figure 3 
shows the particle flux spectrum during a TCABR Ohmic 
discharge. As expected, this is also a broadband spectrum 
with the power concentrated on the observed electrostatic 
wave frequency and wave number range. 
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FIGURE 1. Edge plasma profiles of density, potential and 
temperature in the TBR tokamak (from [7]). 
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FIGURE 2. Contour plots of spectra, S(k,f), for potential 
fluctuations at r/a = 1.05. 

FIGURE 3. Induced particle transport spectra at r/a = 1.05. 

TRANSPORT DUE TO LINEAR DRIFT 
WAVES 

Drift waves play a key role in our understanding of 
anomalous particle transport in tokamaks, where the 
presence of sufficiently steep density gradients in the 
plasma edge gives rise to drift waves and transport across 
the magnetic surfaces, i.e., a net flux of particles along 
the density gradient [1,8]. 

The particle transport driven by these waves can be 
calculated considering the guiding center trajectories. We 
obtain these trajectories from the drift velocity of the 
guiding centers given by [11]: 

ExB 
(3) 

where E = — V$. The guiding center equations are a 
Hamiltonian system with the Hamiltonian 

H(x,y,t)-
Bo 

where, as before, (j) is the fluctuating plasma potential 
and Bo is the toroidal field. 

Here we consider the drift caused by two waves. Us
ing dimensionless variables in a frame moving with the 
plasma phase velocity of the first wave, we obtain the 
hamiltonian 

H(x,y,t) = (UE - ui)x + A\ sin(&Xlx) cos(kyiy) + 

+A2 sin(&X2x) cos(ky2 (y - ut)), (4) 
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A,/A, = 0.8 

FIGURE 4. Diffusion coefficient as function of the trapping 
parameter for a fixed value A2/A1 =0.8. 

where UE := EQ/BQ, U = a>i/ky2 — (0\ jkyx is the phase ve
locity difference between the second and the first waves, 
u\ = CQ\/kyi, the term (UE — u\)x is the equilibrium po
tential, and x and y correspond to the radial and poloidal 
coordinates, respectively. 

When the system has only a single wave (A2 = 0), 
the Hamiltonian system is integrable and all guiding cen
ter trajectories are confined. In this case there is a single 
relevant dimensionless parameter called the trapping pa
rameter U: 

(5) U -
A]k 1% 

However, for two waves, the system is not integrable 
and chaotic trajectories transport particles in the x and y 
directions. This effect can be confirmed by calculating 
the diffusion coefficient in the radial direction for a set 
of TV initial conditions JC,-(0) [12]: 

D(t) 
1 

2tN 5>(/)-*(0)]2 (6) 

This diffusion coefficient depends strongly on the trap
ping parameter U. High values of D are obtained for 
U & 0, when one of the phase velocities and the drift 
velocity are about the same (Fig. 4). 

TRANSPORT AND MODE COUPLING 

Because instabilities occur for a finite range of the spec
trum, nonlinear mechanisms such as the nonlinear three-
mode interaction have been proposed to explain the 
broadband plasma turbulence observed in tokamak dis
charges [14, 15]. 

Hasegawa and Mima [16] derived a nonlinear partial 
differential equation for the drift-wave potential in order 

to explain the turbulence scenario produced in such a 
situation. 

Horton and Hasegawa [1] considered a spectral de
composition for the Hasegawa-Mima equation, resulting 
in an infinite set of coupled ordinary differential equa
tions for the complex Fourier mode amplitudes. They 
truncated this system by retaining three modes, subjected 
to a given resonance condition. The resulting system is 
intended to be a "building block" for obtaining the drift 
turbulence spectrum, in the sense that this system, al
though low-dimensional, is able to exhibit complex dy
namics [17]. 

We introduced into the Horton-Hasegawa model phe-
nomenological growth and decay rates of the three 
Fourier modes, so as to describe energy redistribution 
among different modes [13]. Such energy transfer pro
cesses are key for explaining the observed broadband 
spectrum of the drift-wave turbulence in the tokamak 
plasma edge [2]. In our numerical simulations we use 
growth and decay rates obtained from measurements of 
plasma edge turbulence [14]. 

Drift waves are low-frequency phenomena, and thus 
we assume the propagation of an electrostatic wave at 
a frequency co much smaller than the ion cyclotron fre
quency coCj. We assume the toroidal magnetic field B 
lies in the z-direction and assume that the phase veloc
ity co/kz is less (greater) than the electron (ion) thermal 
velocity, with a scale length ps of the order of the ion cy
clotron radius. In the drift-wave approximation it suffices 
to consider a cold ion plasma ( j ; « 7 e ) such that the ion 
dynamics are described by the fluid velocity v. We also 
assume that within the length scale ps, the quasineutrality 
hypothesis holds: n « ne = no exp (e(j)/Te). 

In the presence of a density gradient, the electro
static potential of the drift-wave, E = — V0, satisfies the 
Hasegawa-Mima equation 

dt (vV •0 ) - [ (V0xz ) .V] V20- ln 
(OCT 

= 0, 

(7) 
where V is the gradient in the directions transversal to 
the magnetic field. The above equation involves only 
nondimensional quantities, since the coordinates x and 
y and time have been divided by the length scale ps, time 
t by the inverse of (0Cj, and (j) by Te/e. The linearized 
Hasegawa-Mima equation allows plane wave solutions 
of the form (j) = (j)o exp(/k- r — iCQkt), where the drift-wave 
dispersion relation is 

(Ok 
1 

l+k2 (kxz).Vlnf^ 
\<*>ci 

(8) 

The partial differential equation (7) has an infinite 
number of degrees of freedom which, in Fourier space, 
are the electrostatic modes obtained by a Galerkin ex-
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pansion of the potential in the form 

*(x,0 = ^£«k(0^'x + cc., (9) 
1 k=\ 

which when substituted into (7) results in an infinite 
number of coupled ordinary differential equations, from 
which three modes (we write (j)j = (j)^ and (Oj = a\j) are 
retained: 

01+1(0101 = A2,3<fe*<fe* + 7l01 (10) 

fc + rtDzfc = A3,i<fe*01* + 72<fe (11) 

fa + i(D3<h = Ai,20i*<fe* + 73<fe, (12) 

where the linear mode frequencies are given by (8) and, 
together with the wave numbers, satisfy resonance con
ditions 

(O2-(0\ -ft>3 ^ 0 (13) 

k i + k 2 + k 3 = 0 . (14) 

The coupling coefficients A ĵW are determined by the 
wave numbers. 

Because we are chiefly interested in describing the 
tokamak edge region, it is justifiable to use here an 
approximate rectangular geometry, where x, y, and z 
stand for the radial position from wall, and the rectified 
poloidal and toroidal angles, respectively. Because k/z is 
small, we set k/z = 0, and so the resonance condition (14) 
defines a vector triangle in a plane perpendicular to the 
toroidal direction. 

The numerical simulations we have performed used 
parameters values from the Brazilian tokamak TBR. The 
mean poloidal wave number of potential fluctuations was 
estimated at k$ ~ 0.5 cm - 1 , and the spectrum of potential 
fluctuations is more pronounced at ft) ^ 50 kHz. The 
other wave vector components were estimated assuming 
linear relations between them that obeying the resonance 
condition (14). 

The phenomenological growth coefficients 7 were in
troduced by supposing that the "pump" mode, 02, in
duces the process of energy redistribution among the 
"daughter" modes, (j)\ and fa. Hence we assigned a pos
itive growth rate for mode 2, whereas the modes 1 and 
3 have negative growth rates. The numerical values for 
these growth rates were adjusted to fit potential fluctu
ations in the —50V to +50V range observed in experi
ments: 71 = 73 < 0 and 72 = 0.01. 

The three-mode truncation (10)—(12) of the 
Hasegawa-Mima equation is a flow in a six-dimensional 
phase space (since the Fourier modes are complex vari
ables). The presence of growth rates makes this system 
a dissipative one, for which phase space volumes shrink 
in time with a constante rate 2(71 — 72 — 73) < 0. Hence, 
we can expect that a large number of initial conditions 

would generate solutions of Eqs. (10)—(12), represented 
geometrically as trajectories in this phase-space, which 
asymptote to some attractor. The low-dimensional dy
namics in this attractor can exhibit many interesting 
phenomena and some of them may be related to the 
generation of a fully-developed drift-wave turbulence 
that influences the anomalous transport at plasma edge. 

In our numerical simulations, we have fixed all pa
rameters but the decay rate of the daughter mode, j \ , 
which we have taken as our control parameter. In the 
resonance condition (13) we allowed a small mismatch, 
and chose ft>i=ft>2 = ft>3 = 1.31x 10~3. Representative 
examples of periodic and chaotic dynamics for the low-
dimensional system can be obtained for different j \ val
ues. 

In Fig. 5(a), for j \ = —0.211, the basic mechanism of 
mode coupling is observed, with widely different periods 
between consecutive spiking events. This is confirmed by 
the phase space projection depicted in Fig. 5(b), which 
apparently shows a chaotic attractor (in fact, the maxi
mum Lyapunov exponent is positive for the trajectories 
on this attractor, signaling exponential separations for 
initial conditions very close to each other). The dynam
ics is strongly affected by the decay rate of the daughter 
modes. A further dimensional reduction is possibly by 
making a stroboscopic map with the discrete-time vari
able zn := max 1021, which is obtained by sampling the 
local maxima in the time series of | ̂ 21 • This procedure 
makes it possible to analyze the changes in the asymp
totic dynamics of the system as the control parameter j \ 
is varied. 

Figure 6 illustrates, for j \ = —0.192665, another 
chaotic fluctuation, but the time series reveal that the 
chaotic behavior switches in an intermittent way to a 
period-6 motion which, after j \ reaches the critical value 
7c becomes stationary with no further chaotic bursts. 

The average time between two consecutive bursts 
scales with the distance to the bifurcation point \j\ —yc\ 
in the same way as predicted by the theory of type-I in-
termittency [19]. 

CONCLUSIONS 

Experimental evidence in the TBR and TCABR toka-
maks was reviewed and shown to provide evidence that 
particle transport is driven by electrostatic turbulence. 
Particle transport in a two drift-wave system was calcu
lated from the guiding center chaotic trajectories and the 
radial diffusion coefficient was seen to depend strongly 
on the trapping parameter of (5). 

Even though an infinite number of modes would be 
required to describe a fully-developed turbulent cascade, 
where energy is dissipated on ever smaller scales, re
sults from low-dimensional dynamical systems such as 
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FIGURE 5. (a) Time series of the wave amplitudes 10/1 [i = 1 (solid thin line), i = 2 (dashed line), and i = 3 (solid thick line)] 
for j \ = —0.211. (b) Phase space projection |02| versus \(j)\ |. 
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FIGURE 6. Time series of the variable zn := max 102(01 for 
Y\ = —0.192665 < yc, illustrating an intermittent alternation 
between laminar periodic oscillations and chaotic bursts. 

those treated here may shed some light on the mecha
nisms leading to plasma turbulence. For example, in our 
three-wave model the energy goes from a strongly lin
early unstable mode, the pump mode, to two daughter 
modes, with frequencies less and greater than the pump 
mode. Other modes can be introduced but, in view of the 
resonance condition (13), they would enter the model in 
triples, so our three-mode system might be regarded as a 
building block of a more complete theory. 

The intermittency scenario we have described, in a 
special situation of temporal dynamics, is closely related 
to the so-called spatio-temporal intermittency, for which 
the switching between laminar and bursting behavior 
occurs for both temporal and spatial scales. Moreover, 
spatio-temporal intermittency is widely recognized as a 
possible scenario for the transition to fully-developed 

turbulence [20]. This opens an exciting road for future 
theoretical investigations. 
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