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Abstract

The breakup of the shearless invariant torus with winding number o = +/2 — 1 is studied numerically using Greene’s residue criterion in the
standard nontwist map. The residue behavior and parameter scaling at the breakup suggests the existence of a new fixed point of the renormaliza-
tion group operator (RGO) for area-preserving maps. The unstable eigenvalues of the RGO at this fixed point and the critical scaling exponents of

the torus at breakup are computed.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Area-preserving nontwist maps are low-dimensional models
of physical systems whose Hamiltonians locally violate a non-
degeneracy condition (see below) as described, e.g., in Refs. [1-
3]. Some applications are the study of magnetic field lines in
toroidal plasma devices [4—10] and stellarators [11,12] (plasma
physics), and traveling waves [13], coherent structures, self-
consistent transport [14] (fluid dynamics), and particle accel-
erators [15]. Nontwist regions have also been shown to appear
generically in the phase space of area-preserving maps that have
a tripling bifurcation of an elliptic fixed point [16,17]. Addi-
tional references can be found in Refs. [1,3].

Of particular interest from a physics perspective is the
breakup of invariant tori, consisting of quasiperiodic orbits with
irrational winding number,' that often correspond to transport
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U An orbit of an area-preserving map M is a sequence of points
{(xg, yi)}?i_oo such that M (x;, y;) = (x;+1,yi+1). The winding number »
of an orbit is defined as the limit w = lim; _, o (x; /i), when it exists. Here the
x-coordinate is “lifted” from T to R. A periodic orbit of period n is an orbit
M"™(x;,y;) = (x; +m, y;), Vi, where m is an integer. Periodic orbits have ratio-
nal winding numbers w = m/n. An invariant torus is a one-dimensional set C,
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barriers in the physical system, i.e., their existence determines
the long-time stability of the system. In nontwist maps, the in-
variant tori that appear to be the most resilient to perturbations
are the so-called shearless tori, which correspond to local ex-
trema in the winding number profile of the map.

Invariant tori at breakup exhibit scale invariance under spe-
cific phase space re-scalings, which are observed to be universal
for certain classes of area-preserving maps. To interpret these
results, a renormalization group framework has been developed
(see, e.g., Refs. [2,18-20]). For twist maps, it is well understood
which fixed point, cycle, or strange attractor of the renormaliza-
tion group operator (RGO) is encountered within a given class
of maps, depending on properties of the winding number of the
critical torus (see Ref. [21] for a recent review). For nontwist
maps, however, only results for the single class of shearless crit-
ical noble tori, i.e., shearless critical tori with winding numbers
that have a continued fraction expansion tail of 1’s, are known.
The result reported in this Letter represents the first new fixed
point for nontwist maps.

A tool for studying the breakup of a torus with given winding
number is Greene’s residue criterion, originally introduced in

a curve, that is invariant under the map, C = M (C). Orbits belonging to such
a torus generically have irrational winding number.



438 K. Fuchss et al. / Physics Letters A 366 (2007) 437-441

the context of twist maps [22]. This method is based on the nu-
merical observation that the breakup of an invariant torus with
irrational winding number  is determined by the stability of
nearby periodic orbits. Some aspects of this criterion have been
proved for nontwist maps [23].

To study the breakup, one considers a sequence of peri-
odic orbits with winding numbers ¢, /p, converging to w,
lim,,—, o0 gn/ Pn = ®. The elements of the sequence converging
the fastest are the convergents of the continued fraction expan-

sion of w, i.e., [n] := g,/ pn = lag, a1, ..., a,], where
1
w=lag,ai,a,...]=a0+ ————. (D
ar+ -

The stability of the corresponding orbits is determined by their
residues, R, = [2 — Tr(DMPr)]/4, where Tr is the trace and
DMPn is the linearization of the p, times iterated map M
about the periodic orbit: An orbit is elliptic for 0 < R, < 1,
parabolic for R, =0 and R, = 1, and hyperbolic otherwise.
The convergence or divergence of the residue sequence as-
sociated with the chosen periodic orbit sequence then deter-
mines whether the torus exists or not, respectively: If the -
torus exists, lim,_~ |R,| = 0; if the w-torus is destroyed,
lim,,_, o | R, | = 00. At the breakup, different scenarios can be
encountered, depending on the class of maps and winding num-
ber of the invariant torus considered.

In nontwist maps, the residue criterion was first used in
Ref. [1] to study the breakup of the shearless torus of in-
verse golden mean 1/y = («/5 - 1/2=1[0,1,1,1,...] wind-
ing number in the standard nontwist map. The residue sequence
was discovered to converge to a six-cycle. Similar studies were
conducted for other noble shearless tori of winding numbers
w=1/y? (Refs. [2,24]), 0 =[0,2,2,1,1,1,...] (Ref. [25]),
and w = [0,1,11,1,1,1,...] (Ref. [26]), and the same six-
cycle was found for all tori in the same symmetry class.

2. Breakup of the ® = +/2 — 1 shearless torus

In this Letter we study the breakup of the w = /2 — 1 =
[0,2,2,2,2,...] shearless torus, which is an example of a non-
noble winding number and leads to the discovery of a new fixed
point of the renormalization group operator of area-preserving
maps. In contrast to twist maps [27], the periodicity of the ele-
ments of the continued fraction expansion has not been linked
to the periodicity of the critical residue sequence and therefore
our new result would not have been predicted. The numerical
methods we use and their accuracy are discussed in Refs. [2,3,
26,28] and we refer the reader to these publications for details.

2.1. The standard nontwist map

As our specific model we use the standard nontwist map
(SNM) M as introduced in Ref. [13],
xipr =2 +a(l =y,
Yi+1 =Yi — bsin(2mx;), 2

where (x, y) € T x R are phase space coordinates and a, b € R
are parameters. This map is area-preserving and violates the

twist condition, 0x;11(x;, yi)/0y; # 0, along a curve in phase
space. Although the SNM is not generic due to its symmetries,
it models the essential features of nontwist systems with a lo-
cal, approximately quadratic extremum of the winding number
profile.

One important characteristic of nontwist maps is the exis-
tence of multiple orbit chains (up and down orbits) of the same
winding number, which can undergo bifurcations when the map
parameters a and b are changed. When two invariant tori col-
lide, the winding number profile shows a local extremum and
the orbit at collision is referred to as the shearless torus. For a
given winding number these collisions occur along bifurcation
curves b, (a) in parameter space [1].

In order to study a shearless invariant torus, its bifurcation
curve is found numerically by approximating it by the bifur-
cation curves, bp,)(a), of nearby periodic orbits with wind-
ing numbers that are the continued fraction convergents of w.
Greene’s residue criterion can then be used to determine where
on b, (a) the shearless torus still exists: At parameter values
a and the best known approximation to b, (a), the residues of
all periodic orbits of convergents that have not collided, here
the orbits [#] with even n, are computed. Their limiting behav-
ior for n — oo reveals the status of the torus. By repeating the
procedure for various values of a, with alternating residue con-
vergence to 0 and oo, the parameter values of the shearless torus
breakup, (a., by (ac)), can be determined to high precision.

The study of the breakup of tori with non-noble winding
numbers is difficult because, due to numerical limitations, only
periodic orbits for a small number of elements of the continued
fraction expansion can be found. Therefore one cannot numer-
ically distinguish between a torus that has 2’s as all entries in
the continued fraction expansion and one that has 2’s until one
reaches the numerical limit, and then 1’s for the tail (i.e., a no-
ble number).

To make a definite prediction for the w = +/2 — 1 torus we
study the breakup of a series of sixteen invariant tori 7;, start-
ing with w=1[0,1,1,1,...]Jupto w=10,2,...,2,1,...] with
fifteen 2’s in the continued fraction expansion.

T T
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Fig. 1. 2-cycle of a. ; and b ; differences in approximating the critical shear-
less torus @ = ~/2 — 1 by noble tori T;. The average (negative) slope has been
added to the data.



K. Fuchss et al. / Physics Letters A 366 (2007) 437441

16 T o T T T T T
\
i
i
A 1 2, pous A a?
14 | N PNy
[N \ AN \
.Iv 1 ! \
& | i \ i \
' i \ i \
12 - L. Voo .
L0 i \
A A A
PN A
TR 8 om R T
10 | i \ FAN .
j .‘. ' = \
i \ ; \
G--m--B--8 \ B 1
i |
~ 8r i SR v
- [:} N} o
~— i ﬁ
an A
G @ °
6L s I 4
i i
2
00 0-0-0-0 "¢ L !
4 o E
&
i
. — A
Ty
—o-
2 Tio .
Tig o
o—o T —e—
1 1 1 1 Il 1
0

Fig. 2. Residue behavior at the shearless 7; torus breakup for down orbits on s .
For clarity the residues of the tori have been shifted upward by 4. (See text for

definition of Tro.)

The breakup parameters (ac;,b. ;) for the tori 7; are
found to converge exponentially to the critical parameters
(@c,00, be,oo) of the w = V2 — 1 torus. Plotting the loga-
rithms of the differences |a.,; — d¢, 00| and |b¢ ;i — b¢ |, cOI-
rected for their average slopes of ¢, = —0.8986 £ 0.0031 and
cp = —0.8984 £ 0.0002, respectively (see Fig. 1), one observes
a period-two oscillation. This result should be compared to
Fig. 5 in Ref. [29], where a similar study was conducted for
the (one-parameter) standard twist map. The plot of parameter
vs i showed a straight line with negative slope.

2.2. Critical residue behavior transition from
w=1[0,2,1,1,...]t0o w=10,2,2,...]

Fig. 2 depicts the behavior of a few of the critical residues
(residues at breakup) on the s; symmetry line? as a function
of [n]. The values for different tori are shifted by 4 along the
y-axis to avoid overlap. The results show that the more 2’s are
included, the further the familiar six-cycle for noble winding
numbers gets pushed towards higher n values. We conjecture
that the emerging pattern for small n values represents the crit-
ical residue pattern of the w = [0, 2, 2, ...] torus. The critical

residues at
(@c.00, be,oo) = (0.446710414656, 0.838135537624831489)

along s1 converge to the single value R, = 0.621723 for the
down orbits, and the single value R, = —0.909118 for the up
orbits. The same result is found along the other symmetry lines.

2 A map M is called reversible if it can be decomposed as M = I o I with
12 = 0. The fixed point sets of /; are one-dimensional sets, called the symmetry
lines of the map. For the SNM the symmetry lines are s; = {(x, y) | x =0},
sp=1{(x,y) [x=1/2}, 53 ={(x,y) [x =a(l — y})/2}, and 54 = {(x, y) | x =
a(l—y%/2+1/2}.
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Fig. 3. 4-cycle of b, differences in approximating the critical shearless
®=+/2—1 torus at ac,00 = 0.446710414656 on s7.

As discussed in Refs. [1,26], close to the critical breakup
value, the b,j(a) obey a scaling law

bin) =be,00 + B(n)8; ", 3)
where B(n) is numerically found to be periodic in n as n — oo
with period 4. This period is the same as the period of the
critical fixed cycle of the renormalization group operator R
(RGO),[19] i.e., a critical fixed point of R*.3

The scaling can be observed by plotting

In(bput1) — bpuy) = B(n) —ninédy,

where B(n) =In(B(n + 1)/61 — B(n)) is also periodic in n.
This is shown (on s7) in Fig. 3, where for clarity only the oft-
sets of In(b,41] — byn)) about the average slope are shown. The
slope was calculated from the last 16 difference values by av-
eraging the last 12 slopes [In(b[,+5) — buta) — In(bpry1) —
bn))1/12, withn =6, ..., 17. The periodicity of E(n) makes it
possible to obtain a better approximation for b, (see Ref. [1])
(br221 — brigy) (bp22) — bp21y)

be.oo A bpoy + .
00 T2 (br19) — bpigy) — (bp221 — b21y)

This value is used to find the critical residue pattern labeled T
in Fig. 2. Compared to the critical residue six-cycle for noble
winding numbers [1], the four-cycle of by, differences indi-
cates that the w = +/2 — 1 breakup exhibits a residue two-cycle
along each symmetry line (only half of the periodic orbits exist
at breakup). As discussed above, in each two-cycle, the numer-
ical values of the residues are found to be the same.

2.3. Scale invariance at breakup

As in previous studies, the critical torus exhibits invariance
under local re-scaling of the phase space in the neighborhood
of the symmetry lines. Following Refs. [2,19], we compute the

3 In the context of nontwist Hamiltonian flows, Gaidashev and Koch [30]

guessed that tori with winding numbers like w = +/2 — 1 would exhibit critical
cycles of period 4 or 8. Our result is consistent with that prediction.
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Fig. 4. Two levels of magnification in symmetry line coordinates (x’, y’) of the
® = +/2 — 1 torus at breakup. Also shown are the nearby up and down orbits of
the [7]th (top) and [11]th (bottom) continued fraction convergents.

scaling factors @ and B such that the torus in the vicinity of its
intersection with s3 is invariant under (x’, y') = (@Nx’, V).
(The exponent N is the length of the critical cycle, N =4 for
w=+/2—1and N = 12 for noble winding numbers.) These
factors are found from the limiting behavior of convergent pe-
riodic orbits: Denoting by (%, ., J, 1) the symmetry line coor-
dinates [19] of the point on the up (+) or down (—) orbit of the
[n]th convergent that is located closest to (0, 0), we compute
(see Table 1)

xn,i

~

“4)

. Y= lim

o = lim
XN+ In+N .+

The scaling invariance of the torus at breakup and of the nearby
periodic orbits is illustrated in Fig. 4.

2.4. Eigenvalues of the RGO

As shown in Ref. [19], the numerical data obtained can be
used to compute the unstable eigenvalues, §; and J,, of the
RGO R by

W oo b[n](ac) — b,

Table 1
Universal breakup values for noble tori (N = 12) and w = V2-1(N=4).
Values for noble tori are from Ref. [26]

Tail [....,1,1,1,...] [0,2,2,2,...]
Cycle 12 4
o 1.6179 2.4725
B 1.6579 2.8146
81 2.680 6.311
8 1.584 2.455
and
1 <ac[n+Nl - ac)
— = Jim (ZelnN T Ge ) (6)
Sév n—00 Acln] — dc

where a.[] is the a value at which the w-torus breaks up along
the bp,)(q) bifurcation curve.

Our results are displayed in Table 1. For comparison we also
show the corresponding values for the breakup of tori with no-
ble numbers.

3. Conclusion

In summary, we found a new critical cycle of the renormal-
ization group operator R, a fixed point of R*, which governs
the breakup of the w = /2 — 1 shearless invariant torus. In anal-
ogy with the breakup of tori with noble winding numbers, we
expect this result to be the same for all shearless tori (in the
same universality class) with continued fraction expansion tails
consisting of 2’s, but this has not been verified yet.
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