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The Charney–Hasegawa–Mima equation is an infinite-dimensional Hamiltonian system with
dynamics generated by a noncanonical Poisson bracket. Here a first principle Hamiltonian
derivation of this system, beginning with the ion fluid dynamics and its known Hamiltonian form,
is given. © 2009 American Institute of Physics. �DOI: 10.1063/1.3194275�

I. INTRODUCTION

When dissipative terms are dropped, all of the important
models of plasma physics are described by partial differential
equations that possess Hamiltonian form in terms of nonca-
nonical Poisson brackets. For example, this is the case for
ideal magnetohydrodynamics,1–3 the Vlasov–Maxwell
equations,4–6 and other systems �see Refs. 7–9 for review�.
Among these, there exist several reduced fluid models whose
Hamiltonian structure has been derived a posteriori. These
include the four-field model for tokamak dynamics of Hazel-
tine et al.,10 models for collisionless magnetic reconnection
derived and investigated by Schep et al.,11 Kuvshinov et
al.,12 and Tassi et al.;13 and the recent gyrofluid model of
Waelbroeck et al.14 The noncanonical Hamiltonian formula-
tion has also been adopted to investigate the electron tem-
perature gradient driven mode15 and convective-cell forma-
tion in plasma fluid systems.16 In addition to these fluid
models, the Hamiltonian structure of kinetic and reduced ki-
netic equations has also been highlighted, for example, in
guiding-center theory and gyrokinetics �see Refs. 17–21 for
review�.

This Hamiltonian form originates from the Hamiltonian
and action principle forms of the basic electromagnetic inter-
action, i.e., the Hamiltonian form possessed by the equations
that describe a system of charged particles coupled to Max-
well’s equations �see, e.g., Ref. 9 for discussion�. It is now
well established that there exist numerous advantages of
such a Hamiltonian formulation, among which are the iden-
tification of conserved quantities �that are important for the
verification of numerical codes�, the study of stability, the
use of techniques for Hamiltonian systems like averaging
and perturbation theory, etc. Here we perform a perturbative
derivation within the noncanonical Hamiltonian context,
which means the Poisson bracket as well as the Hamiltonian
must be expanded.

In a nutshell, a Hamiltonian system is a system whose
dynamics of any observable F �depending on a finite or in-
finite number of variables� can be written using a Hamil-
tonian �scalar� function H and a Poisson bracket �· , ·� as

�F

�t
= �F,H� ,

where the Poisson bracket satisfies the following properties:
bilinearity, antisymmetry, Leibniz rule, and Jacobi identity.
Given a reduced model whose dynamics is given by a partial
differential equation, it is in general difficult to guess
whether or not the model is a Hamiltonian system, and if it
is, finding the Hamiltonian and the Poisson bracket may be
similarly difficult. There are basically two methods for find-
ing Hamiltonian structure: the first method is to use physical
intuition to obtain the Hamiltonian �energy� and to construct
a general class of antisymmetric operators which, when act-
ing on the gradient of the Hamiltonian, produces the equa-
tions of motion. Then, the Jacobi identity is used to select
from the class the desired operator that is the essence of the
noncanonical Poisson bracket. This method has been used to
obtain a large number of basic and approximate Poisson
brackets for fluid and plasma dynamics, examples being the
reduced fluid models cited above. The second method begins
from a known or postulated action principle, in the latter case
obtained by using physical intuition to obtain the “energies”
of the Lagrangian. Usually associated with the action prin-
ciple is a canonical Hamiltonian description, which can be
written by means of the chain rule in terms of physical vari-
ables of interest �e.g., Refs. 5 and 9� resulting in a nonca-
nonical Poisson bracket.

If one begins from some Hamiltonian parent model,
some basic starting point in the derivation, and introduces
crude approximations suggested, e.g., by physical consider-
ations of some experimental setup, then the Hamiltonian
structure can be easily destroyed. The Hamiltonian form of
the resulting system must therefore be verified, in particular,
the Jacobi identity for the Poisson bracket. Given this veri-
fication, the reduced model is naturally equipped with a
Hamiltonian structure since the Poisson bracket and the
Hamiltonian function are provided by the derivation process
�for an example of this derivation process, see Ref. 22�.

In this paper we consider the derivation of the Charney–
Hasegawa–Mima �CHM� equation,23,24 which describes both
the dynamics of Rossby waves of geophysical fluid dynam-
ics �see, e.g., Ref. 25� and drift waves in inhomogeneous
plasmas �see, e.g., Ref. 26�. We focus on the derivation in the
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plasma physics context but our analysis can be easily
adapted to the geophysical context. In particular, we show
how the Hamiltonian structure is preserved in the derivation
of the CHM equation starting from a fluid parent model. In
the present approach the Hamiltonian structure is provided
by the derivation process and the Jacobi identity need not be
checked.

We consider a plasma under the influence of a constant
and uniform magnetic field B=Bẑ. The relevant dynamics
occurs in the �two-dimensional� transverse plane whose co-
ordinates in a given basis are denoted by x and y. Under
some assumptions, the CHM equation gives the following
evolution of the electrostatic potential ��x ,y , t� generated by
the plasma:

�

�t
�� − ��� = ��,�� + �� , �1�

where the bracket �· , ·� is given by

�f ,g� =
� f

�x

�g

�y
−

� f

�y

�g

�x
= ẑ · �f � �g ,

and � is any function of x and y �related to the equilibrium
configuration�. The infinite-dimensional phase space is com-
posed of the variables ��x ,y� for any point �x ,y� in the trans-
verse plane. The space of observables, F, for this system is
composed of functionals of �. It has been shown in Ref. 27
that this equation possesses an infinite-dimensional Hamil-
tonian structure where the Hamiltonian is

H��� =
1

2
� d2x��2 + ����2� ,

and the noncanonical Poisson bracket is

�F,G� = −� d2x�� − �� − ����1 − ��−1F�,�1 − ��−1G�� ,

�2�

where F� denotes the functional derivative of the functional
F with respect to the variable �. This Hamiltonian structure
was found ad hoc in Ref. 27 by an educated guess in analogy
with the vorticity equation for two-dimensional incompress-
ible flow �see, e.g., Ref. 7�. This analogy is rather straight-
forward if we consider the dynamics for the field
q=��−�+�, which is given by the Hamiltonian

H =
1

2
� d2x�q − ���1 − ��−1�q − �� ,

and the Lie–Poisson bracket

�F,G� =� d2xq�Fq,Gq� ,

which is of the same form as that for the Vlasov–Poisson
system4 and a quite general class of systems.28 In what fol-
lows, we start by considering a Hamiltonian formulation for
the fluid equations for the ions �in Sec. II� and derive the
above Hamiltonian and Poisson bracket from this formula-
tion �in Sec. III�.

II. ION FLUID EQUATIONS AS A HAMILTONIAN
SYSTEM

We start the derivation of the CHM equation from two
dynamical equations: one describing the transverse dynamics
of the ion velocity field v�x ,y , t� and the other describing the
dynamics of the ion density field n�x ,y , t�,

M�v̇ + �v · ��v� = − e � � + ev � B , �3�

ṅ = − � · �nv� , �4�

where the dot indicates the partial derivative with respect to
time t. The electrostatic potential � is obtained from the
dynamics of the electrons: by neglecting their inertia, the
electron density obeys the Boltzmann law,

ne = n0 exp�e�/T� , �5�

where T is the electron temperature and n0=n0�x ,y� is the
electron density at equilibrium. From the quasineutrality
condition, we obtain that n=ne. The total energy of the ions,
given by the sum of their kinetic energy plus the potential
energy provided by the electric field, is a conserved quantity
that is also a good candidate for the Hamiltonian of the sys-
tem of Eqs. �3� and �4�. This Hamiltonian is written as

H�n,v� =� d2x	n
v2

2
+

T

M
n
ln
 n

n0
� − 1�� . �6�

The dynamics is determined by the Poisson bracket

�F,G� = −� d2x	Fv · �Gn − Gv · �Fn

− 
� � v

n
+

�c

n
ẑ� · �Fv � Gv�� , �7�

where �c=eB /M. The bracket of Eq. �7� is identical to a
portion of that of Ref. 1 with the inclusion of an additional
“vorticity” term, �cẑ /n; consequently, it is known to satisfy
the Jacobi identity. It is easy to verify that the ion momentum
equation is obtained from the bracket of the velocity field
with the Hamiltonian �6�:

v̇  �v,H� = − �v · ��v −
T

M
� ln
 n

n0
� + �cv � ẑ ,

and, similarly, the ion continuity equation is given by

ṅ  �n,H� = − � · �nv� .

III. CHARNEY–HASEGAWA–MIMA EQUATION

Without loss of generality we write the vector field
v�x ,y , t� in terms of two scalar fields � and � as

v = ẑ � �� + �� , �8�

where one function is related to � ·v and the other to ��v
by the relations: ��= ẑ ·��v and ��=� ·v. In fact, we find
it more convenient to consider a related change of variables
�n ,v�� �ñ ,q ,D� defined by
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ñ = n ,

q =
ẑ · � � v + �c

n
,

D = � · v .

The above equations are incomplete because they do not
possess a unique inverse. However, a unique inverse is de-
fined by the following:

n = ñ ,

v = ẑ � ��−1�qñ − �c� + ��−1D ,

where

�−1F = −
1

2�
� d2x� ln�x − x��F�x�� .

In terms of the new variables �ñ ,q ,D�, Hamiltonian �6� be-
comes

H�ñ,q,D� =� d2x	ñ
 ���−1�qñ − �c��2

2

+ ��−1�qñ − �c�,�−1D� +
���−1D�2

2
�

+
T

M
ñ
ln
 ñ

n0
� − 1�� , �9�

since �ẑ��f �2= ��f �2 for any function f of x and y and
bracket �7� becomes

�F,G� = −� d2x
− �FD · �Gñ + �GD · �Fñ

+
Gq

ñ
� FD · �q −

Fq

ñ
� GD · �q − q	Fq

ñ
,
Gq

ñ
�

− q�FD,GD�� .

It should be noted that Casimir invariants of such a bracket,
which are the functionals that Poisson commute with all the
other functionals ��C ,G�=0 for all functionals G� are given
by

C =� d2xñF�q� ,

where F is any function of q.
We first assume that the variables evolve slowly with

time, which is equivalent to adding a factor of 1 /� in front of
the Hamiltonian,

H�ñ,q,D� =
1

�
� d2x	ñ
 ���−1�qñ − �c��2

2

+ ��−1�qñ − �c�,�−1D� +
���−1D�2

2
�

+
T

M
ñ
ln
 ñ

n0
� − 1�� ,

then we introduce an �-ordering for the dynamical variables.
The hypothesis is that the system of interest is near an equi-
librium state whose spatial variations are of the order of �,

n�x,t� = n0��x� + �n1�x,t� ,

v�x,t� = �v1�x,t� ,

which translates into an assumption on the new variables
�ñ ,q ,D� and, in particular, on the definition of new dynami-
cal variables �ñ1 ,q1 ,D1�,

ñ = ñ0 + �ñ1,

q = q0 + �q1,

D = �D1,

where q0=�c / ñ0 and ñ0=n0�0,0� are constant �the spatial
variations of n0 are included in ñ1�. Notice that the potential
energy can be rewritten as

ñ
ln
 ñ

n0
� − 1� = ñ
ln
 ñ

ñ0
� − 1� − ñ ln

n0

ñ0

,

with the following expansion:

ñ
ln
 ñ

n0
� − 1� = − ñ0 − ñ0 ln

n0

ñ0

+ �2 ñ1
2

2ñ0

− �ñ1 ln
n0

ñ0

+ O��3� .

The term −�ñ1 ln�n0 / ñ0� is of the order of �2, due to the
spatial variations of n0, which can be seen by writing n0

= ñ0+�	n0,

− �ñ1 ln
n0

ñ0

= − �2 ñ1	n0

ñ0

+ O��3� .

Next, we expand the Hamiltonian and the Poisson bracket:
the Hamiltonian is

H = �� d2xñ0	 ���−1�q1ñ0 + q0ñ1��2

2
+

���−1D1�2

2

+
T

2M

ñ1
2 − 2ñ1	n0

ñ0
2 � + O��2� ,

since �d2xñ0��−1�q1ñ0+q0ñ1� ,�−1D1�=0 and the Poisson
bracket is

�F,G� =
1

�2� d2x��FD1
· �Gñ1

− �Fñ1
· �GD1

�

−
1

�
� d2x
Gq1

ñ0

� FD1
· �q1 −

Fq1

ñ0

� GD1
· �q1

− q1	Fq1

ñ0

,
Gq1

ñ0
� − q1�FD1

,GD1
�� + O��0� .

Thus the dynamics emerges to leading order at �−1 �which
gives the dynamics on a time-scale of order �� and to next
order at �0 �whose influence happens on a time-scale of order
one�.
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First we study the dynamics given by the leading order.
It should be noticed that q1 is constant, since the leading
order Poisson bracket does not contain any functional deriva-
tives with respect to q1, and that

ṅ̃1 =
1

�2�HD1
+ O���

= −
ñ0

�
D1 + �ñ1,�−1�q1ñ0 + q0ñ1�� − � · �ñ1 � �−1D1�

+ O��� ,

Ḋ1 = −
1

�2�Hñ1
+

1

�
� · 
Hq1

ñ0

� q1� +
1

�
�HD1

,q1� + O��� .

If we impose the following constraints on the initial condi-
tions:

�Hñ1
= 0,

�HD1
= 0,

then these constraints are preserved by the leading order
flow. These constraints are equivalent to the following:

D1 = 0,

T

M

�ñ1

ñ0

− q0ñ0�q0ñ1 + q1ñ0� = 0.

Note that, from expanding n�x , t�=n0��x�+�n1�x , t� about
�=0, it follows that 	n0 is a linear function of x and, as a
consequence, it does not appear in the equations for the con-
straints. A generalization to the case of non-harmonic 	n0 is,
however, possible. Even if we neglect higher order terms ��2

in the Hamiltonian and �0 in the Poisson bracket�, these con-
straints are not preserved by the Poisson bracket. Therefore,
these quantities are approximately conserved on a time scale
of order �. Next, we approximate the dynamics on a time
scale of order 1 by inserting the constraints on D1 and n1 into
the second order Poisson bracket. By dropping all depen-
dence on D1 and n1, the dynamics is thus equivalently given
by the Hamiltonian

H1 =� d2x
ñ0

2

− �q0ñ1 + q1ñ0��−1�q0ñ1 + q1ñ0�

+
T

M

ñ1
2 − 2ñ1	n0

ñ0
2 � ,

where ñ1 is a function of q1 given by

ñ1 = −
ñ0

q0

1 −

T

M�c
2��−1

q1,

and the Poisson bracket

�F,G�1 =� d2xq1	Fq1

ñ0

,
Gq1

ñ0
� , �10�

which satisfies the properties of a Poisson bracket—in par-
ticular, the Jacobi identity. Using this condition on n1, the
Hamiltonian H1 can be rewritten as

H1 =
Tñ0

2Mq0
2� d2x	q1
1 −

T

M�c
2��−1

q1

− 2�
1 −
T

M�c
2��−1

q1� , �11�

where � contains the spatial variations of the equilibrium
density as follows:

� = −
q0

n0
	n0�x� .

Using the symmetry of the operator �1− �T /M�c
2���−1,

Hamiltonian �11� can be rewritten as

H1 =
Tñ0

2Mq0
2� d2x�q1 − ��
1 −

T

M�c
2��−1

�q1 − �� . �12�

Up to some constants, the Poisson bracket �10� and the
Hamiltonian �12� are indeed the same as those presented in
Ref. 27. Thus we provided a derivation process that leads to
dynamics, on time scales of order 1, which is still generated
by a Hamiltonian and a Poisson bracket.

IV. CONCLUSION

An important issue in the derivation of reduced models
for plasma physics is avoiding the introduction of fake dis-
sipative terms, which may result from uncontrolled approxi-
mations and truncations in the derivation process. In particu-
lar, if the parent model has a Hamiltonian structure, we argue
that the final reduced model should also have a Hamiltonian
structure.

In this paper we examined, in this spirit, the case of the
CHM equation. In particular we showed how the fundamen-
tal elements, i.e., the Hamiltonian functional and the Poisson
bracket, of the Hamiltonian formulation of the CHM equa-
tion, emerge from the Hamiltonian structure of a parent
model, which is the starting point of the derivation com-
monly adopted in the plasma physics literature. The appear-
ance of the Hamiltonian and the bracket of the CHM equa-
tion in the derivation process was seen to be facilitated by
adopting the new set of variables �q , ñ ,D�. In terms of these
variables, the part of the bracket of the parent model that
becomes the CHM bracket can be easily identified. Indeed,
what our paper shows is how the ordering adopted in the
derivation is able to reduce the bracket of the parent model to
the CHM bracket, without compromising the fundamental
properties of a Poisson bracket, such as for instance the Ja-
cobi identity. A further new element of our analysis is the
way the plasma compressibility is treated. Without invoking
the drift approximation and the polarization drift, the
divergence-free condition on the plasma velocity appears as
a solution for the variable D1 on a time scale of the order of
�. Such a solution is used in order to approximate the dy-
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namics of order 1, assuming for such dynamics that an equi-
librium solution exists. A similar argument is used for the
dynamics of ñ1, which at the lowest order is constrained to
be a function of q1 or, more precisely, to be proportional to
the plasma stream function.

We believe that the method adopted in this paper is a
framework for deriving the Hamiltonian structure in other
reduced models of plasma physics, and for deriving new
models while avoiding the risk of introducing fake dissipa-
tive terms.
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