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Abstract
The nonlinear dynamics of a two-dimensional (2D) model for collisionless magnetic reconnection is investigated
both numerically and analytically. For very low values of the plasma β, parallel magnetic perturbations tend to
be proportional to the vorticity perturbations, but as β increases, detachment of these quantities takes place. The
subsequent difference between the structure of the vorticity and the parallel magnetic perturbations can be explained
naturally in terms of the ‘normal’ field variables that emerge from the noncanonical Hamiltonian theory of the model.
A three-dimensional extension of the reconnection model is also presented, its Hamiltonian structure is derived, and
the corresponding conservation properties are compared with those of the 2D model. A general method for extending
a large class of 2D fluid plasma models to three dimensions, while preserving the Hamiltonian structure, is then
presented. Finally, it is shown how such models can also be extended, while preserving the Hamiltonian structure,
to include externally applied fields, that can be used, for instance, for modelling resonant magnetic perturbations.

PACS numbers: 52.65.Kj, 96.60.Iv, 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic reconnection is believed to play a key role in many
phenomena occurring in fusion plasmas, such as sawtooth
oscillations in tokamaks and relaxation in reversed field
pinches (see, e.g., [1, 2]). In high temperature tokamak
plasmas with low collision frequencies, electron inertia can
provide an effective mechanism for breaking the frozen-
in condition of magnetohydrodynamics and thereby allow
magnetic reconnection to take place. In order to understand
the nonlinear dynamics of this kind of magnetic reconnection
driven by electron inertia, a three-field fluid model for
collisionless plasmas was obtained by Schep, Pegoraro and
Kuvshinov (SPK) [3]. A two-dimensional (2D), two-field
version of this model has been intensively investigated in

[4–6] and a 3D extension has been analysed in [7]. Many
of the obtained results have relied on knowledge of the
noncanonical Hamiltonian structure (see, e.g., [8]) of the model
equations [3, 9]. Indeed, the Hamiltonian formulation led
to the discovery of infinite families of Casimir invariants,
associated with Lagrangian invariants. These invariants have
made it possible to interpret and explain the formation of small
scale structures in the plasma vorticity and current density [5].

A 2D, four-field model extension of the SPK model was
obtained by Fitzpatrick and Porcelli (FP) in [10]. Unlike
the SPK model, this model allows for magnetic and velocity
perturbations in the direction of a guide field and also allows
for finite β regimes, where as usual β is the ratio of the plasma
and magnetic pressures. The Hamiltonian formulation of this
model, derived in [11], proved to be useful for obtaining
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stability criteria [12], providing an unambiguous definition
of negative energy modes [11], and interpreting numerical
simulations [13, 14].

This paper is a continuation of this line of research, it
being devoted to the investigation of magnetic reconnection
in collisionless plasmas, while taking advantage of the
Hamiltonian formalism. The purpose of the paper is twofold:
first, results from a numerical investigation of the nonlinear
dynamics of the parallel magnetic perturbations, perturbations
that are not taken into account in the SPK model but are present
in the FP model, are described. Second, it is shown how to
extend a large class of 2D fluid models (which includes the
FP model) to 3D Hamiltonian models with the inclusion of
externally applied fields. The motivation for the latter is to
include, within the fluid Hamiltonian framework, for instance,
the effect of resonant magnetic perturbations that can have an
important impact on turbulent fluctuations and transport (see,
e.g. [15–17]).

The paper is structured as follows. In section 2 the
FP model and its Hamiltonian structure are briefly recalled.
Results of the numerical simulations are then presented and
their interpretation in terms of Hamiltonian ‘normal fields’
is given. In section 3, the 3D extension of the FP model is
presented and its Hamiltonian structure is discussed. Next, the
conditions for extensions of 2D models to 3D, with externally
applied fields, are presented and a specific example is given.
Finally, we conclude in section 4.

2. 2D four-field model

2.1. Four-field review

In this section we first consider the cold-ion four-field model
for magnetic reconnection in collisionless plasmas presented
in [10]. This model is formulated in Cartesian coordinates
(x, y, z), it assumes the presence of a strong guide field
of amplitude B(0) directed along the ignorable coordinate z,
and a constant background electron pressure P0. The model
equations, in a dimensionless form, are

∂(ψ − d2
e ∇2ψ)

∂t
+ [ϕ, ψ − d2

e ∇2ψ] − dβ[ψ, Z] = 0, (1)

∂Z

∂t
+ [ϕ, Z] − cβ[v, ψ] − dβ[∇2ψ, ψ] = 0, (2)

∂∇2ϕ

∂t
+ [ϕ, ∇2ϕ] + [∇2ψ, ψ] = 0, (3)

∂v

∂t
+ [ϕ, v] − cβ[Z, ψ] = 0, (4)

where the bracket [, ] is defined by [f, g] = ẑ · (∇f × ∇g).
Equations (1)–(2) describe the evolution of the fields ψ and
Z, which determine the magnetic field through the expression
B(x, y, t) = ∇ψ×ẑ+(B(0)+cβZ)ẑ, where cβ = √

β/(1 + β),

with β = (5/3)P0/B
(0)2

. The plasma velocity field v is
determined by a stream function ϕ and a parallel component
v by the expression v(x, y, t) = −∇ϕ × ẑ + vẑ. The time
evolution of the velocity follows from equations (3)–(4). The
parameter de, appearing in (1), is the electron skin depth and is
associated with the term responsible for breaking the frozen-in

condition. The parameter dβ is defined as dβ = dicβ , with di

corresponding to the ion skin depth.
Equations (1)–(4) can be derived starting from a two-fluid

description of a plasma. More precisely, equation (1) origi-
nates from the electron momentum equation, equation (2) from
the electron vorticity equation, whereas equations (3) and (4)
can be obtained from the plasma vorticity and parallel momen-
tum equations, respectively.

The system (1)–(4) has a noncanonical Hamiltonian
formulation [11, 18], the Hamiltonian functional being
given by

H = 1

2

∫
D

d2x (d2
e J 2 + |∇ϕ|2 + v2 + |∇ψ |2 + Z2), (5)

with J = −∇2ψ , corresponding to the parallel current density
and D indicating the spatial domain of interest. The quantity
(5) corresponds to the total energy of the system and it naturally
possesses a kinetic energy part, corresponding to the first three
terms in (5), and a magnetic energy part, given by the remaining
two terms. The noncanonical Hamiltonian formulation of the
FP model is completed by a Poisson bracket, whose rather
lengthy expression, in terms of the variables ψ −d2

e ∇2ψ , ∇2ϕ,
Z and v, can be found in [11]. We recall that this bracket
has four infinite families of the so-called Casimir invariants,
which are defined as functionals C of the field variables, that
satisfy the relation {F, C} = 0, where {, } is the Poisson bracket
and F is any functional of the field variables. Because they
commute with any Hamiltonian functional, Casimir invariants
are constants of motion for the system. The families of
Casimirs for the FP model are

C1 =
∫

d2xH(D), (6)

C2 =
∫

d2xζF(D), (7)

C3 =
∫

d2xg̃+ (T+) , (8)

C4 =
∫

d2xg̃− (T−) , (9)

where H, F , g̃+ and g̃− are arbitrary functions and

D = ψe + div, (10)

ζ = ∇2ϕ +
di

cβd2
Z, (11)

T+ = d2
i

2cβd3de
ψe − dide

2cβd3
v − di

2cβd2
Z, (12)

T− = − d2
i

2cβd3de
ψe +

dide

2cβd3
v − di

2cβd2
Z, (13)

where ψe = ψ − d2
e ∇2ψ and d =

√
d2

i + d2
e .

The form of the Casimirs (6)–(9) leads to an alternative
set of field variables, that we call ‘normal’ fields, according to
the terminology introduced in [19], consisting of the variables
D, ζ , T+, T−, which are linear combinations of the original
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variables ψe, ∇2ϕ, Z, v. In terms of the normal fields, the
Poisson bracket of the FP model takes the simple form

{F, G} =
∫

d2x (ζ [Fζ , Gζ ] + D([FD, Gζ ] + [Fζ , GD])

+ T−[FT− , GT− ] + T+[FT+ , GT+ ]), (14)

where subscripts indicate functional derivatives. The
Hamiltonian (5) in terms of the normal fields becomes

H =
∫

D
d2x

[
c2
βd4

d2
i

(T 2
+ + T 2

−) +
D2

2d2

−1

2
(ζ + T+ + T−) ∇−2 (ζ + T+ + T−)

−1

2

(
de

d2
D + cβd(T+ − T−)

)

× L
(

de

d2
D + cβd(T+ − T−)

)]
, (15)

where L is an operator defined by the relation Lψe = ψ .
The normal fields are convenient variables that make the
conservation laws of the system more evident. Indeed, by
making use of the normal fields, the FP model can be written as

∂D

∂t
= −[ϕ, D], (16)

∂ζ

∂t
= −[ϕ, ζ ] + d−2[D, ψ], (17)

∂T±
∂t

= − [
ϕ±, T±

]
, (18)

where we have defined

ϕ± := ϕ ± cβd

de
ψ. (19)

From the compact form of equations (16)–(18), it possible
to see that D and T± are Lagrangian invariants advected by
velocity fields determined by the stream functions ϕ and ϕ±,
respectively. The evolution equation for ζ , on the other hand,
possesses a source term that vanishes when D is a flux function
or when d → ∞.

2.2. Simulation results and interpretation

The noncanonical Hamiltonian formulation and the knowledge
of the Casimir invariants proved to be useful for investigating
the nonlinear dynamics of the SPK reconnection model. From
the knowledge of the Casimirs it was possible to deduce
the conservation of the topology of field lines of the two
Lagrangian invariants G± [4] and to explain the formation of
small scale structures in the plasma vorticity [5]. The two-
field version of the SPK model investigated in [4, 5] can be
obtained from the FP model by taking the limit cβ → 0 and
dβ → ρs, where ρs is the Larmor radius of ions with electron
temperature. In this limit, equation (4) decouples from the
system, whereas Z = −ρs∇2ϕ can be taken as the solution
for Z, provided it is compatible with the initial conditions.
From the expression Bz = (B(0) + cβZ), one sees that the
limit cβ → 0, corresponds to suppressing parallel magnetic
perturbations. The evolution of such perturbations for the FP
model has not yet been investigated, in particular, with regard

to its interpretation in terms of normal fields. In the following,
we investigate the field Z and its dependence on the value of
cβ , in order to see how the nonlinear evolution of Z develops
in regimes with non-negligible values of cβ . Such a regime is
not accessible in the SPK two-field model. Given that the FP
model assumes p = −cβZ, where p is an electron pressure
perturbation, the evolution of Z can also provide information
about the pressure evolution.

Equations (1)–(4) were solved numerically using a code
based on a finite volume scheme. The equations are solved
on a rectangular domain {(x, y): −2π � x � 2π, −π �
y � π}, subdivided into 1024 × 1024 grid points, with
periodic boundary conditions imposed for both the x and
y directions. We chose an initial equilibrium of the form
ψ0(x) = 1/ cosh2(x), ϕ0 = 0, Z0 = 0, v0 = 0,
which is unstable to reconnecting perturbations. We are
mainly interested in seeing how the evolution is modified, in
comparison with the SPK model, when one increases cβ to non-
negligible values. Two cases are considered: the first case has a
very low value of β, with the parameter dβ playing essentially
the role of ρs of the SPK model, while the second case has
higher β. In both cases the value of the normalized electron
skin depth is set equal to 0.24. Note that, due to limitations in
the numerical resolution, the electron/ion mass ratios for the
two cases are slightly different.

In figure 1 contour plots of ∇2ϕ and Z, for cβ = 0.01, are
compared. From the plots, it is evident that for these values the
two fields are nearly identical. This is a direct consequence of
considering a very low β with finite dβ ≈ ρs. As anticipated
above, this suppresses the term cβ[v, ψ] in equation (2), which
couples to the parallel dynamics, and allows for the solution
Z = −dβ∇2ϕ. This requires the initial conditions for Z and
∇2ϕ to be identical, which is the case for the simulations under
consideration. It is interesting to note that the detachment of
Z from −dβ∇2ϕ is measured by the amplitude of the normal
field ζ . Indeed, for practical purposes, d ≈ di, and therefore
ζ ≈ ∇2ϕ+Z/dβ . In this regime, in which di is large, the source
term in equation (17) becomes negligible and consequently,
because ζ(x, y, 0) = 0, the value of ζ remains equal to zero
at all times. In other words, the difference between Z and
−dβ∇2ϕ cannot grow. Note also that, if ζ = 0, then

Z = −cβd2

di
(T+ + T−), ∇2ϕ = T+ + T−. (20)

Such a representation in terms of the Lagrangian invariants T±
makes it possible to explain the formation of small scales in
the vorticity and parallel magnetic field. As already explained
in [12, 14] (and earlier in [5] for the two-field model) small
scales are formed because of the stretching and filamentation
of T+ and T−, advected by velocity fields that rotate in opposite
directions.

Figure 2, on the other hand, shows contour plots of ∇2ϕ

and Z for a higher value of β. In this case it is possible to see
that the parallel magnetic field (or, equivalently, the pressure)
and the vorticity follow distinct evolutions. Indeed, Z still
undergoes a filamentation process, again corresponding to the
stretching of the normal fields T+ and T−, whose structures
are now even less regular than in the very low β regime.
The vorticity, on the other hand, on top of the filamented
structures, forms two vertical vortex sheets that collide and
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Figure 1. Contour plots of ∇2ϕ (left column) and Z (right column). The top row refers to t = 50 Alfvèn times and the bottom row to t = 70
Alfvèn times. Values of the parameters are cβ = 0.01, dβ = 0.24 and de = 0.24. From the plots one can see that, because Z0 = ∇2ϕ0 = 0,
in this very low β regime, parallel magnetic perturbations closely track the vorticity perturbations.

Figure 2. Contour plots of ∇2ϕ (left column) and Z (right column). The top row refers to t = 40 Alfvèn times and the bottom row to t = 55
Alfvèn times. Values of the parameters are cβ = 0.3, dβ = 0.72 and de = 0.24. In this higher β regime, the effect of the terms proportional
to cβ is no longer negligible and Z detaches from −dβ∇2ϕ.

create vortices propagating in opposite directions along the
y = 0 line. The superposition of these two types of dynamics
is naturally explained in terms of the normal fields. Indeed,
the relations

Z = −cβd2

di
(T+ + T−), ∇2ϕ = ζ + T+ + T− (21)

make it possible to see that it is the growth of the field ζ that
prevents Z from being proportional to the vorticity in this β

regime. The field ζ , in particular, is the one responsible for
the formation of vortex sheets, that can eventually become
unstable [12, 14, 20]. The pressure and the parallel magnetic
field, on the other hand, do not receive contributions from ζ and
therefore they do not form such localized structures. Instead,
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they continue to transfer energy to smaller and smaller scales,
in a manner similar to what happens in a phase-mixing process.

3. 3D four-field model

3.1. Extension of the four-field model

We now assume that the field variables ψ , ϕ, Z and v also
depend on the spatial coordinate z. We introduce a smallness
parameter ε defined as the ratio between the amplitudes of the
poloidal magnetic field and of the strong guide magnetic field.
We then assume the ordering

B(0) = O
(

1

ε

)
� 1,

ψ ∼ ϕ ∼ Z ∼ v ∼ ∂

∂x
∼ ∂

∂y
= O(1),

∂

∂z
= O(ε) � 1,

which is consistent with the ordering of the FP model. If
one then carries out, with these assumptions, the derivation
of the FP model as described in [10], the resulting 3D model
equations are

∂(ψ − d2
e ∇2

⊥ψ)

∂t
+ [ϕ, ψ − d2

e ∇2
⊥ψ] − dβ[ψ, Z]

+
∂ϕ

∂z
+ dβ

∂Z

∂z
= 0, (22)

∂Z

∂t
+ [ϕ, Z] − cβ[v, ψ] − dβ[∇2

⊥ψ, ψ] − cβ

∂v

∂z

−dβ

∂∇2
⊥ψ

∂z
= 0, (23)

∂∇2
⊥ϕ

∂t
+ [ϕ, ∇2

⊥ϕ] + [∇2
⊥ψ, ψ] +

∂∇2
⊥ψ

∂z
= 0, (24)

∂v

∂t
+ [ϕ, v] − cβ[Z, ψ] − cβ

∂Z

∂z
= 0, (25)

where the perpendicular gradient operator is defined by ∇⊥f =
(∂f/∂x)x̂ + (∂f/∂y)ŷ. Note that, with the above assumptions,
the 3D extension of the model is obtained from the 2D version,
by mapping the expressions [f, ψ], for a generic field f ,
into [f, ψ] + ∂f/∂z. The model (22)–(25) can describe
magnetic reconnection in three dimensions, in which case the
Hamiltonian that describes the finite-dimensional system for
magnetic field lines, ψ(x, y, z, t), is in general non-integrable
and can therefore lead to chaotic magnetic field lines (see,
e.g. [21]). The cβ → 0, dβ → ρs limit of (22)–(25) is also
consistent with the 3D version of the two-field SPK model,
which was investigated numerically in [7, 14, 22]. Our 3D
model is consistent with the four-field system recently derived
in [23].

Analogously to the 2D version, this 3D model also admits
a noncanonical Hamiltonian formulation. The latter can be
conveniently expressed by making use of the normal fields of
equations (10)–(13) after replacing ∇ with ∇⊥. Indeed, in
these variables, the bracket for the 3D model has the relatively

compact form

{F, G} =
∫

d3x

(
ζ [Fζ , Gζ ] + D([FD, Gζ ] + [Fζ , GD])

+T−[FT− , GT− ] + T+[FT+ , GT+ ] + Fζ

∂

∂z
GD + FD

∂

∂z
Gζ

+
d2

i

2cβd3de
FT+

∂

∂z
GT+ − d2

i

2cβd3de
FT−

∂

∂z
GT−

)
. (26)

The Hamiltonian, on the other hand, is still given by the
expression of equation (15), with the obvious extension of
the integral and the fields to three dimensions, but with ∇
replaced by ∇⊥.

In terms of the normal field variables the model equations
become
∂D

∂t
= −[ϕ, D] − ∂ϕ

∂z
,

∂ζ

∂t
= −[ϕ, ζ ] + d−2[D, ψ]

+
1

d

∂

∂z

(
D − deL

(
de

d2
D + cβd(T+ − T−)

))
,

∂T±
∂t

= − [
ϕ±, T±

] ± d2
i

2cβd3de

∂

∂z

×
(

2c2
βd4

d2
i

T± − ϕ ∓ cβdL
(

de

d2
D + cβd(T+ − T−)

))
,

from which it transpires that, in 3D, the variables D, ζ , T+ and
T− are no longer Lagrangian invariants.

Casimirs for the 3D bracket (26) are functionals C

such that

{F, C} =
∫

d3x

[
Fζ

(
[Cζ , ζ ] + [CD, D] +

∂CD

∂z

)

+ FD

(
[Cζ , D] +

∂Cζ

∂z

)
+ FT+

(
[CT+ , T+] +

d2
i

2cβd3de

∂CT+

∂z

)

+ FT−

(
[CT− , T−] − d2

i

2cβd3de

∂CT−

∂z

)]
= 0

for all functionals F . This implies Casimirs are solutions of
the following system:

[Cζ , ζ ] + [CD, D] +
∂CD

∂z
= 0, (27)

[Cζ , D] +
∂Cζ

∂z
= 0, (28)

[CT+ , T+] +
d2

i

2cβd3de

∂CT+

∂z
= 0, (29)

[CT− , T−] − d2
i

2cβd3de

∂CT−

∂z
= 0. (30)

Equation (28), for instance, is of finite-dimensional
Hamiltonian form, with D playing the role of the Hamiltonian,
z playing the role of time, and the unknown Cζ playing the
role of the dynamical variable. Because we seek a solution
for the case where D depends on z, this is a ‘time-dependent’
Hamiltonian system. For general D there is no solution of this
equation besides the initial conditions, and these are not useful
because they are not isolating, i.e. they do not define surfaces.
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The extension to three dimensions, therefore, eliminates the
infinite families of Casimirs that were present in the 2D version.

Casimir solutions can, however, still be found and are
given by

C1 =
∫

d3x D, C2 =
∫

d3x ζ, C3 =
∫

d3x T+,

C4 =
∫

d3x T−. (31)

The 3D model admits an additional constant of motion that is
not a Casimir given by the functional

h =
∫

d3x

(
ζD + cβde

d3

d2
i

(T 2
+ − T 2

−)

)
, (32)

which, in terms of the original fields, takes the form

h =
∫

d3x

(
∇2

⊥ϕ ψe +

(
di∇2

⊥ϕ +
Z

cβ

)
v

)
. (33)

Note, if Z = −dβ∇2
⊥ϕ, this quantity reduces to the generalized

cross-helicity which is conserved in the 3D two-field SPK
model [9].

3.2. General extensions

The 3D extension carried out for the FP model in section 3.1
follows a path first travelled in [24], where an analogous
extension was carried out for reduced magnetohydrodynamics
(RMHD) [25]. The procedure for going from 2D to 3D
can be formalized and applied to a large class of 2D
models. Of particular interest for plasma physics is a
class of 2D magnetofluid models, where the presence of
a strong guide field is assumed. This class of models
includes, besides the SPK, FP and RMHD, the four-field
model for tokamak dynamics of Hazeltine et al [26], the
model for ion-temperature-gradient driven and drift Kelvin–
Helmholtz modes of Waelbroeck et al [27] or the more recent
electromagnetic gyrofluid model of Waelbroeck et al [19].
Indeed, for all such models, the extension to 3D amounts
to extending a 2D Lie–Poisson bracket by including the
dependence of the fields on the coordinate that was ignorable
in the original 2D version. The general form of the extended
Poisson bracket, for the class that includes all these models,
has the form

{F, G} = {F, G}‖ + {F, G}⊥

=
∫

d3x AijFi∂Gj +
∫

d3x W
ij

k χk[Fi, Gj ] , (34)

where ∂ := ∂/∂z, assuming that z was the ignorable
coordinate, and where χ1, · · · χn indicate the field variables
for an n-field model. Note Aij = Aji and W

ij

k = W
ji

k , which
are required for the bracket to be antisymmetric. The bracket is
thus the sum of the bracket of the original 2D model, {F, G}⊥,
with a bracket that accounts for the 3D extension, {F, G}‖.
Not all antisymmetric bilinear operators of the form (34) are
Poisson brackets, even if {F, G}⊥ is a Poisson bracket. In fact,
a Poisson bracket must also satisfy the Jacobi identity (see,
e.g. [8, 28])

{{F, G}, H } + {{H, F }, G} + {{G, H }, F } = 0, (35)

and this imposes restrictions on the elements of the matrix Aij .
In the following we derive these restrictions.

First, we obviously assume that the W
ij

k have the
commutation properties (see [29]) necessary for the Jacobi
identity of {F, G}⊥, i.e. we assume

{{F, G}⊥, H }⊥ + cyc ≡ 0, (36)

where cyc indicates the addition of the two terms obtained by
cyclic permutation of F , G and H . By a theorem in [28], it
follows for the form of {F, G}‖ given by (34) that

{{F, G}‖, H }‖ + cyc ≡ 0. (37)

Therefore

{{F, G}, H } + cyc = {{F, G}⊥, H }⊥ + {{F, G}⊥, H }‖
+ {{F, G}‖, H }⊥ + {{F, G}‖, H }‖ + cyc. (38)

The first and last terms of (38) vanish by virtue of (36) and
(37). The third term vanishes because

δ{F, G}‖
δχi

=̇ 0, (39)

where =̇ means modulo second variation terms. Thus, it
remains to show what the condition

{{F, G}, H } + cyc = {{F, G}⊥, H }‖ + cyc ≡ 0 (40)

implies. Using

δ{F, G}⊥
δχk

=̇ W
ij

k [Fi, Gj ], (41)

we obtain

{{F, G}⊥, H }‖ + cyc =̇
∫

d3x ArsW ij
r ([Fi, Gj ]∂Hs

+ [Gi, Hj ]∂Fs + [Hi, Fj ]∂Gs). (42)

Integrating the first term of (42) by parts gives

{{F, G}⊥, H }‖ + cyc =̇
∫

d3x ArsW ij
r (−[∂Fi, Gj ]Hs

−[Fi, ∂Gj ]Hs + [Gi, Hj ]∂Fs + [Hi, Fj ]∂Gs). (43)

The first and third terms of (43) give∫
d3x ArsW ij

r (−[∂Fi, Gj ]Hs + [Gi, Hj ]∂Fs)

=
∫

d3x [Gi, Hj ]∂Fs(A
rsW ij

r − ArjWsi
r ), (44)

where the ‘fgh-identity’,
∫

f [g, h] = − ∫
g[f, h], has been

used and indices have been shifted. Similarly, the remaining
two terms of (43) give∫

d3x ArsW ij
r (−[Fi, ∂Gj ]Hs + [Hi, Fj ]∂Gs)

=
∫

d3x [Hi, Fj ]∂Gs(A
rsW ij

r − AriWjs
r ). (45)

Because {{F, G}, H } + cyc ≡ 0 for all functionals F, G, H ,
we obtain from (44) and (45) the following compatibility
conditions on Aij , needed for the Jacobi identity:

ArsWij
r = ArjWsi

r = AriWjs
r . (46)
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In the specific case of the FP model, if we choose

χ1 = D, χ2 = ζ, χ3 = T+, χ4 = T−,

(47)

and then obtain

A =




0 1 0 0

1 0 0 0

0 0 a 0

0 0 0 −a


 (48)

with a = d2
i /(2cβd3de) and the only non-vanishing elements

of W
ij

k are

W 22
2 = W 12

1 = W 21
1 = W 33

3 = W 44
4 = 1. (49)

Therefore, condition (46) is satisfied and (26) is indeed a
Poisson bracket.

3.3. Addition of external field perturbations

The 3D four-field model (22)–(25) can be extended to include
the presence of external perturbations in such a way that
the resulting extended model can be shown to still admit a
Hamiltonian formulation. Indeed, we can obtain a system
driven by an external perturbation by adding to the Hamiltonian
a term of the form

Hext =
∫

d3x χiDijχ
j
ext(x, y, z, t), (50)

where χ
j
ext indicates the external fields and (Dij ) is a constant

matrix. Keeping the same Poisson bracket, the model
equations for the externally perturbed system are then given by

∂χi

∂t
= {χi, H + Hext}. (51)

It is important to note that with this form for the drive, the
Casimir invariants remain constants of motion, because it still
follows that

{C, H + Hext} = 0, (52)

i.e. the drive allows one to reach only dynamically accessible
states. Energy is added to (or subtracted from) the system
according to the following:

dH

dt
= {H, Hext}, (53)

and

�Hext =
∫

dt
dHext

dt
=

∫
dt

(
∂Hext

∂t
+ {Hext, H }

)
. (54)

As an example, we present an extended version of the 3D
four-field model that takes into account the effect of external
magnetic poloidal perturbations and that still possesses the
Hamiltonian structure. This can be obtained by considering
the Hamiltonian

H̄ = H + Hext = 1

2

∫
D

d3x (d2
e J 2 + |∇ϕ|2

+ v2 + |∇ψ |2 + Z2 + ψextψe), (55)

where ψext is the external magnetic perturbation. This leads to
the following model:

∂(ψ − d2
e ∇2

⊥ψ)

∂t
+ [ϕ, ψ − d2

e ∇2
⊥ψ] − dβ[ψ, Z]

+
∂ϕ

∂z
+ dβ

∂Z

∂z
= −dβd2

e [ψext, Z],

∂Z

∂t
+ [ϕ, Z] − cβ[v, ψ] − dβ[∇2

⊥ψ, ψ] − cβ

∂v

∂z
− dβ

∂∇2
⊥ψ

∂z

= −dβ[ψext, ψ] + dβd2
e [ψext, ∇2

⊥ψ] + cβd2
e [ψext, v]

−dβ

∂ψext

∂z
,

∂∇2
⊥ϕ

∂t
+ [ϕ, ∇2

⊥ϕ] + [∇2
⊥ψ, ψ] +

∂∇2
⊥ψ

∂z

= [ψext, ψ] − d2
e [ψext, ∇2

⊥ψ] +
∂ψext

∂z
,

∂v

∂t
+ [ϕ, v] − cβ[Z, ψ] − cβ

∂Z

∂z

= cβd2
e [ψext, Z].

Evidently, there are two kinds of drive here, additive and
multiplicative, and so there are various possibilities. For
example, one can temporally drive a 2D theory additively by
supposing

ψext = z�(x, y, t), (56)

with � some prescribed 2D perturbing magnetic flux.
We point out that such extension to externally driven

Hamiltonian models, obtained by using (50), can be applied to
all Hamiltonian plasma models with Poisson brackets, and in
particular those of the form of (34).

4. Conclusions

In this paper, different aspects of the nonlinear dynamics and
modelling of magnetic reconnection in collisionless plasmas
have been considered. In section 2 we addressed the question
of seeing whether the vorticity phase-mixing process and the
layer formations, which were observed in a simpler model
valid at very low β, persist at higher β values, which can be
accessed by the FP model. Numerical simulations of the FP
model showed that at very low values of β, and when dβ ≈ ρs,
also parallel magnetic perturbations undergo a phase-mixing
process in which energy is transferred to small scales. On
the other hand, we also showed that this process tends to
disappear when higher β regimes are entered. This behaviour
was naturally explained in terms of the growth of the normal
field ζ , which also measures the deviation from proportionality
between the parallel magnetic perturbation and the vorticity.

In section 3, we presented an extension of the FP model
to three dimensions. We proved that the 3D extension still
possesses a Hamiltonian structure, but that the number of
Casimir invariants was dramatically reduced. Next, a condition
was derived for determining 3D extensions for a large class of
2D plasma models, which preserve the Hamiltonian structure.
Finally, we showed how such 3D Hamiltonian models can also
account for externally applied fields.

Numerical simulations of such extended models in the
presence of external fields, and the investigation of the resulting
nonlinear dynamics, will be a subject of future work.
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