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a b s t r a c t

The Caldeira–Leggett Hamiltonian describes the interaction of a discrete harmonic oscillator with a
continuous bath of harmonic oscillators. This system is a standard model of dissipation in macroscopic
low temperature physics, and has applications to superconductors, quantum computing, andmacroscopic
quantum tunneling. The similarities between the Caldeira–Leggett model and the linearized Vlasov–
Poisson equation are analyzed, and it is shown that the damping in the Caldeira–Leggett model is
analogous to that of Landau damping in plasmas (Landau, 1946 [1]). An invertible linear transformation
(Morrison and Pfirsch, 1992 [18]; Morrison, 2000 [19]) is presented that converts solutions of the
Caldeira–Leggett model into solutions of the linearized Vlasov–Poisson system.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In 1946 Landau [1] theoretically predicted the collisionless
damping of the electric field in a plasma governed by the
Vlasov–Poisson system. This result has been of great importance in
the field of plasma physics, and indeed collisionless or continuum
damping, as it is sometimes called, occurs in a wide variety
of kinetic and fluid plasma models that possesses a continuous
spectrum. For example, such damping occurs in the context of
Alfven waves in magnetohydrodynamics (see e.g. Chap. 10 of [2])
and has been proposed as a mechanism for plasma heating in
response to electromagnetic waves.

Many other systems also undergo Landau damping, both
inside and outside of plasma physics. It is not surprising that
Landau damping exists in stellar dynamics governed by the
Jeans equation [3] because this equation is of Vlasov type but
with an attractive interaction potential. In fact, Landau damping
occurs in collisionless kinetic theories with a rather large class
of potentials, and recently has been proven rigorously to exist in
the nonlinear case [4,5]. Landau damping exists in the context of
the fluid mechanics of shear flow (see e.g. [6,7] which contains
a list of original sources over a period of more than 50 years)
and the description of wind driven water waves. It also appears
in multiphase media [8] and has been established for systems
containing large numbers of coupled oscillators, most notably
the Kuramoto model. This has implications for biological models
describing the synchronization or decoherence of the flashing of
fireflies and chirping of crickets as well as other phenomena in
mathematical biology [9].
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Another class of continuum systems involves the interaction of
a discrete oscillator with a continuous bath of oscillators. In these
systems the oscillator can be a particle or one mode of some field,
and the bath often represents thermal fluctuations or radiation.
One of the first detailed treatments of such a system is due to
Dirac [10], but early on Van Kampen also used such a model to
describe the emission and absorption of light by an atom [11].
The single wave model of plasma physics, which describes both
beam plasma and laser plasma interaction physics [12–14], is
also an example. The example of interest in this paper is the
Caldeira–Leggett model [15].

The Caldeira–Leggett model was invented in order to study
quantum tunneling in the presence of dissipation and the quantum
limit of Brownian motion [16]. A model of this type was
deemed necessary because quantum mechanics is incompatible
with frictional forces. However, the Caldeira–Leggett model is
a Hamiltonian system that exhibits dissipation by coupling to
a continuum, i.e., it has Landau damping. The Caldeira–Leggett
Hamiltonian is the sum of the Hamiltonian of a classical harmonic
oscillator, the Hamiltonian of a continuous bath of harmonic
oscillators, and a linear coupling term between the discrete and
continuous degrees of freedom. The discrete degree of freedom
corresponds to a macroscopic system and the bath of oscillators
represent the environment. The coupling causes the discrete
oscillator to damp by transference of energy to the continuum.
This system has become a standard model for studying the
physics of low temperature quantum systems, and it has numerous
applications ranging from the understanding of superconducting
circuit elements to qubits in quantum computers [17].

We analyze the classical Caldeira–Leggett model using a
procedure analogous to that used by Landau to analyze the
Vlasov–Poisson system of plasma physics. Following Landau, the
initial value problem can be solved using the Laplace transformand
the rate of decay can be derived in the weak damping limit. This
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paralleling of Landau’s original calculation suggests a connection
between this system and the Vlasov–Poisson system. In fact, we
will show that both systems can be mapped into a normal form
that is common to a large class of infinite-dimensionalHamiltonian
systems that have a continuous spectrum [18,19,7,20].

The Caldeira–Leggett model, like all Hamiltonian systems in
the class, has a continuous spectrum that is responsible for
the damping through phase mixing (filamentation) and the
Riemann–Lebesgue lemma. Because this structure is shared by
a number of important physical systems, it is interesting to
determine the nature of their similarities. It is well known that
the properties of linear ordinary differential equations are closely
tied to the spectra of their time evolution operators. In fact, for
given spectra there are a number of normal forms. Any linear
finite-dimensional Hamiltonian system can be reduced to one of
these normal forms (ODEs) through an appropriate transformation,
and in this sense the behavior of such systems is completely
understood. The theory of normal forms for infinite-dimensional
Hamiltonian systems is not nearly as well developed as that
for finite-dimensional systems, but for some systems much is
known. For systems with continuous spectra, the analogue of
diagonalization is conversion into a multiplication operator. If
the original system is ḟ = Lf , then a transformation T such that
TLT−1 is a multiplication operator would diagonalize the system.
Any two systems that have the same normal form would thus be
equivalent through some linear transformation.

This procedure has been performed for the linearized Vlasov–
Poisson equation [19], andwhen the spectrum is purely continuous
the time evolution operator is equivalent to the multiplication
operator x. This discovery led to the discovery of an entire
class of transformations diagonalizing linear infinite-dimensional
Hamiltonian systems of a certain form [20]. In fact, it is always
possible to perform such a transform in the special case of a
bounded, self-adjoint operator [21]. The operators dealt with
here are usually unbounded and non-normal (even if they did
exist in a Hilbert space), as is often the case when dealing
with continuous Hamiltonian matter models. A precursor to the
discovery of such transformations is existence of a complete basis
of singular eigenfunctions of the original equation, a treatment that
is common for systems with continuous spectra that dates back to
Dirac [10]. In fact these methods have been developed in parallel
within the field of plasma physics beginning with the work of Van
Kampen [22] and within condensed matter physics through the
work of Dirac and later Fano [23]. Caldeira and his collaborators
developed a diagonalization method for the Caldeira–Leggett
model [24], although they were primarily interested in the time
evolution of the discrete degree of freedom and thus did not write
down the full inverse of their transformation. In this paper we
complete the treatment of the Caldeira–Leggett system. Then, we
note that the normal form is the same as that of the Vlasov–Poisson
system and that the models are thus equivalent through the use of
an integral transform.

Specifically, in Section 2 we review the Caldeira–Leggett model
and then, in the spirit of [1], present its Laplace transform
solution in Section 3. This is followed by obtaining the singular
eigenfunctions, in the spirit of [22,10], and the invertible integral
transform akin to that of [19] for transforming to the normal form.
In Section 5 we show explicitly how the Caldeira–Leggett model
is equivalent to a case of the linearized Vlasov–Poisson system.
Finally, in Section 6 we conclude.

2. Caldeira–Leggett Hamiltonian

As noted above, the Caldeira–Leggett model is an infinite-
dimensional Hamiltonian system describing the interaction of
a discrete degree of freedom with an infinite continuum of

modes [16]. The continuum is typically referred to as the environ-
ment. The Caldeira–Leggett model has the following Hamiltonian:

HCL[q, p;Q , P] =
Ω

2
P2

+
1
2


Ω +

∫
R+

dx
f (x)2

2x


Q 2

+

∫
R+

dx
 x
2
(p(x)2 + q(x)2) + Qq(x)f (x)


, (1)

which together with the Poisson bracket

{A, B} =


∂A
∂Q

∂B
∂P

−
∂A
∂P

∂B
∂Q


+

∫
R+

dx


δA
δq

δB
δp

−
δA
δp

δB
δq


(2)

produces the equation of motion for observables in the form Ḟ =

{F , H}, where F is any functional of the discrete, (Q , P), and con-
tinuum, (q, p), coordinates and momenta. Note, it is assumed that
f (x) is chosen so that the integrals of (1) exist. The coefficient of
Q 2 includes a frequency shift term that is used to make the Hamil-
tonian positive definite. We take p and q to be functions on the
positive real line, R+, and P and Q to be real numbers. Hamilton’s
equations for the Caldeira–Leggett system are thus,

q̇(x) = xp(x) (3)
ṗ(x) = −xq(x) − Qf (x) (4)

Q̇ = ΩP (5)

Ṗ = −


Ω +

∫
R+

dx
f (x)2

2x


Q −

∫
R+

dx q(x)f (x). (6)

This system was originally introduced by Caldeira and Leggett
in 1981 [15]. They initially considered a very massive harmonic
oscillator coupled to a large number of light harmonic oscillators
with varying frequencies, and then studied the limit of the light
oscillators becoming a continuous spectrum. The coupling causes
Q to decay to zero with time, and therefore the system can
be used to model dissipation. This makes it an ideal system
to model the effects of dissipation in quantum mechanics and
especially quantum tunneling. It has been extensively studied and
is frequently mentioned in the condensed matter literature. There
have been some controversies about the physics of the damping
and the physicality of the initial conditions [17]. Connecting this
system with plasma physics, where much intuition has been
developed over the years about wave-particle interactions, can
help to improve the understanding of its behavior. For example, a
clear picture of filamentation can be viewed in the numerical work
of [25].

Systems with continuous spectra exhibit phase mixing or fil-
amentation. A wide variety of systems have this property, and of
course most famously the Vlasov–Poisson system for which Lan-
dau first discovered his damping. We will demonstrate explic-
itly that the damping mechanism of the Caldeira–Leggett model
is Landau damping. Furthermore we will derive a transforma-
tion that converts the Caldeira–Leggett model into the equation
describing the time evolution of a single mode of the linearized
Vlasov–Poisson system. Two copies of the Caldeira–Leggett model
will be canonically equivalent to the time evolution of a pair
of opposite k Fourier modes of the linearized Vlasov–Poisson
equation.

3. The Landau solution and Landau damping

One of the classical calculations in plasma physics is the
solution of the linearized Vlasov–Poisson equation using the
Laplace transform. This yields a formula for the solution of the
initial value problem and also facilitates the derivation of the
damping rate for the electric field. It is possible to do the same
thing for the Caldeira–Leggett model. We begin with the set of
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Hamilton’s equations that were written down in the previous
section and eliminate the two momenta to derive a pair of second
order equations for the coordinates,

q̈(x) = −x2q(x) − Qxf (x) (7)

Q̈ = −Ω2
c Q − Ω

∫
R+

dx f (x)q(x), (8)

where for convenience we use the corrected frequency,

Ω2
c := Ω2

+ Ω

∫
R+

dx f (x)2/2x. (9)

Defining the Laplace transform of the coordinates by

q̃(x, s) =

∫
R+

dt q(x, t)e−st (10)

Q̃ (s) =

∫
R+

dt Q (t)e−st (11)

results in the following set of algebraic equations:

s2q̃(x, s) = −x2q̃(x, s) − Q̃ (s)xf (x) + sq(0, x) + q̇(0, x) (12)

s2Q̃ (s) = −Ω2
c Q̃ (s) − Ω

∫
R+

dx q̃(x, s)f (x) + sQ (0) + Q̇ (0), (13)

which can be easily solved for Q̃ (s),

Q̃ (s) =

[
−Ω

∫
R+

dx
f (x)(sq(0, x) + q̇(0, x))

s2 + x2
+ sQ (0) + Q̇ (0)

]
÷

[
s2 + Ω2

c − Ω

∫
R+

dx
xf (x)2

s2 + x2

]
. (14)

The Laplace transform is inverted using the Mellin inversion
formula,

Q (t) =
1

2π i

∫ β+i∞

β−i∞
ds Q̃ (s)est , (15)

where β is any real number that ensures Q̃ (s) is analytic
for Re(s) > β . This integral is usually evaluated using Cauchy’s
integral formula, whence asymptotically in the long-time limit
the behavior of the solution is given by the poles of Q̃ (s). Thus,
the solution will be dominated by an exponentially decaying term
arising from the pole of Q̃ (s) closest to the real axis. We assume
the closest pole is indeed close to the real axis and that there
are no poles with a positive real part, i.e., that the solutions are
stable. This assumption is well justified in this model because
the Hamiltonian is positive definite. We intend to explore the
ramifications of modifications to the Caldeira–Leggett model that
break this property in future work. Similar questions have been
investigated by Bloch et al. [26]. This is the weak damping limit.
As long as f (x) is Hölder continuous, the poles of Q̃ (s) come from
the zeros of the denominator, so we are interested in the roots of
the equation

0 = s2 + Ω2
c − Ω

∫
R+

dx
xf (x)2

s2 + x2

= s2 + Ω2
c − Ω

∫
R
dx

f (|x|)2
−

2(x − is)
. (16)

Here f (|x|)2
−

is the antisymmetric extension of f (x2) defined by
f (|x|)2

−
= sgn(x)f (|x|)2. Making the substitution ω = is yields

the dispersion relation, which in the limit ω tends to the real axis
becomes

ω2
− Ω2

c +
Ω

2
−

∫
R
dx

f (|ω|)2
−

x − ω
+

iπΩ

2
f (|x|)2

−
= 0, (17)

where−


denotes the Cauchy principal value integral. For quantities

not yet integrated, we will denote this by PV. This equation can be
viewed as the dispersion relation in the weak damping limit. Let
ωc be a real solution to the real part of the above equation. Then let
ω be a root of the previous equation, assume γ = Im(ω) is small,
and solve for γ to first order; i.e. 0 = 2iωcγ + iπΩf (|ωc |)

2
−
/2

or

γ = −
πΩ

4|ωc |
f (|ωc |)

2. (18)

There are a large number of methods used to derive damping of
Q for thismodel. The standard approach is to attempt to prove that
after suitable approximations Q satisfies the equation of motion
of a damped harmonic oscillator. The treatment here is almost
identical to the method that was used to treat the Vlasov–Poisson
equation by Landau, and agrees with other derivations of the
damping rate in the weak damping limit [15].

4. Van Kampenmodes: diagonalization of the Caldeira–Leggett
model

The Laplace transform method is just one way to treat the
Vlasov equation. Another way is to write the solution as a
superposition of a continuous spectrum of normal modes, a
method attributed to Van Kampen [22]. Such modes of the Vlasov
equation are called the Van Kampen modes, and we will see that
they exist for the Caldeira–Leggett model as well. We formally
calculate the Van Kampen modes for this system and use them
to motivate the definition of an invertible integral transform, akin
to those of [18,19,7,20], that maps the Caldeira–Leggett model
to action-angle variables, the normal form for this Hamiltonian
model. The nature of the transformation depends on the coupling
function f (x). In the present treatment wewill assume that f (0) =

0, but that f does not vanish otherwise. We will also assume that
the dispersion relation does not vanish anywhere. This excludes
the possibility of discrete modes embedded in the continuous
spectrum. The case where the Caldeira–Leggett model possesses
such modes will be treated in future work. As stated above, the
normal form of the Caldeira–Leggett Hamiltonian will be seen to
be equivalent to that for the Vlasov–Poisson system through the
integral transformation introduced in [18,19].

The first step is to obtain a solution with time dependence
exp(−iut) and derive equations for the amplitudes of a single
mode (qu, pu,Qu, Pu). To this end consider

iuqu(x) = −xpu(x)
iupu(x) = xqu(x) + Quf (x)
iuQu = −ΩPu

iuPu =


Ω +

∫
R+

dx
f (x)2

2x


Qu +

∫
R+

dx qu(x)f (x). (19)

Note, although we use the subscript, u ∈ R is a continuum label.
Eliminating the momenta from Eq. (19) yields

(u2
− x2)qu(x) = Quxf (x) (20)

(u2
− Ω2

c )Qu = Ω

∫
R+

dx qu(x)f (x), (21)

where Ωc is defined by (9). Of these, (20) is solved following Van
Kampen (a generalized function solution that dates to Dirac [10])
giving the general form for qu

qu(x) = PV
Quxf (x)
u2 − x2

+ CuQuδ(|u| − x). (22)
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Substitution of (22) into (21) determines Cu,

u2
− Ω2

c = Ω−

∫
R+

dx
xf (x)2

u2 − x2
+ ΩCuf (|u|) (23)

Cu =
u2

− Ω2
c

Ωf (|u|)
− −

∫
R
dx

f (|x|)2
−

2(u − x)f (|u|)
. (24)

Therefore we can specify an initial condition on the amplitudes
Qu and compute the corresponding coordinates and momenta by
an integral over the real line. Each mode oscillates with a different
real frequency, with the expression for the solution given by

q(x, t) = −

∫
R
du

Quxf (x)
u2 − x2

e−iut
+

∫
R
du CuQuδ(|u| − x)e−iut (25)

Q (t) =

∫
R
du Que−iut , (26)

were Qu acts an amplitude function that determines which Van
Kampen modes are excited.

The Caldeira–Leggett model can be diagonalized and solved by
making use of the integral transform alluded to above. Previously,
Caldeira et al. [24] derived a transformation that diagonalizes the
Caldeira–Leggett model. However, they were interested in solving
for the evolution of the variable Q and therefore did not attempt
to write down the full inverse of the operator (except in a special
case where they made use of the evolution of the reservoir). We
will extend their results by deriving the inverse map that we will
use to establish the equivalence with the Vlasov–Poisson system.

In order to define the transform,we introduce a number of other
important maps and introduce our notation. Extensive use will be
made of the Hilbert transform, which is defined for a function g(x)
on R by

H[g](v) =
1
π

−

∫
R
dx

g(x)
x − v

.

We also need some Hilbert transform identities [27,19]. Let g, g1,
and g2 be functions of x ∈ R and suppose that all the expressions
we write down are well defined, then the following hold:
H[H[g]] = −g (27)
H[g1H[g2] + g2H[g1]] = H[g1]H[g2] − g1g2 (28)

H[vg] = vH[g] +
1
π

∫
R
dx g. (29)

Next we define two functions, ϵR and ϵI by

ϵI = π f (x)2 and ϵR = 2
x2 − Ω2

c

Ω
+ πH[f (|x|)2

−
]. (30)

These togetherwith |ϵ|2 := ϵ2
I +ϵ2

R are used to define the following
integral transforms:

Definition. For functions h(x) on R+, the transform

T+[h](u) := ϵRh(|u|) + ϵIH[h(|x|)](u),

whileT+[h](u) :=
ϵR

|ϵ|2
h(u) −

ϵI

|ϵ|2
H[h(|x|)](u),

Related to the above transforms are two more transforms,

T−[h](u) := ϵRh(|u|) + ϵIH[sgn(x)h(|x|)](u),

andT−[h](u) :=
ϵR

|ϵ|2
h(u) −

ϵI

|ϵ|2
H[sgn(x)h(|x|)](u).

Using the transform T+ it is possible to write the map from
the amplitudes of the Van Kampen modes Qu to the functions
(q(x),Q ). To see this consider the expression for q(x) in terms
of the amplitude function Qu, and simplify it using the Hilbert

transform as follows:

q(x) = −

∫
R
du

Quxf (x)
u2 − x2

+

∫
R
du CuQuδ(|u| − x)

= −

∫
R
du

xf (x)Qu

2u


1

u − x
+

1
u + x


+ CxQx + C−xQ−x

= πxf (x)

H

[
Qu

2u

]
(x) + H

[
Qu

2u

]
(−x)


+ 2Cx(Qx + Q−x). (31)

Next, decompose Qu into its symmetric and antisymmetric
parts: Qu = Q+u + Q−u and observe that the antisymmetric parts
vanish from both sides of (31),

q(x) = πxf (x)H[Q+u/u](x) + 2CxQ+x

= π f (x)H[Q+u] +


2
x2 − Ω2

c

Ωf (x)

− −

∫
R
dx′

f (|x′
|)2

−

(x − x′)f (x)


Q+x, (32)

where the second line follows from the third Hilbert transform
identity combined with the fact that Qu+/u is antisymmetric and
thus has a vanishing integral. Now multiply both sides of (32) by
f (x) and find

f (x)q(x) = π f (x)2H[Q+u]

+


2
x2 − Ω2

c

Ω
− −

∫
R
dx′

f (|x′
|)2

−

(x − x′)


Q+x

= ϵIH[Q+u] + ϵRQ+x

= T+[Q+u]. (33)

Now we are set to define a transformation.

Definition. Let Q+u be a function on R+, then the map

Ic[Q+] :=


1

f (x)
T+[Qu+], 2

∫
R+

du Qu+


.

The map Ic[Q+], a map from the Van Kampen mode amplitudes
to the original dynamical variables, has an inverse. To see this note
that ϵR = S + H[ϵI ], where S = 2(x2 − Ω2

c )/Ω , and let g be a
function on R+. Then,

H[Sg(|x|)] = SH[g(|x|)] +
4u
πΩ

∫
R+

dx g,

where we have used our Hilbert transform identities to move the
x2 outside of the Hilbert transform of g . Using this, consider the
following sequence of identities:T+[T+[g]] =

ϵR

|ϵ|2
(ϵRg + ϵIH[g]) −

ϵI

|ϵ|2
H[ϵRg + ϵIH[g]]

=
ϵ2
R

|ϵ|2
g +

ϵRϵI

|ϵ|2
H[g] −

ϵIS
|ϵ|2

H[g]

−
ϵI

|ϵ|2
H[H[ϵI ]g + ϵIH[g]] −

ϵI

|ϵ|2

4u
πΩ

∫
R+

dx g

=
ϵ2
R

|ϵ|2
g +

ϵRϵI

|ϵ|2
H[g] −

ϵIS
|ϵ|2

H[g]

−
ϵI

|ϵ|2
(H[ϵI ]H[g] − gϵI) −

ϵI

|ϵ|2

4u
πΩ

∫
R+

dx g

= g +
ϵRϵI

|ϵ|2
H[g] −

ϵIS
|ϵ|2

H[g] −
ϵI

|ϵ|2
H[ϵI ]H[g]

−
ϵI

|ϵ|2

4u
πΩ

∫
R+

dx g
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= g +
ϵRϵI

|ϵ|2
H[g] −

ϵI

|ϵ|2
H[g](S + H[ϵI ])

−
ϵI

|ϵ|2

4u
πΩ

∫
R+

dx g

= g +
ϵRϵI

|ϵ|2
H[g] −

ϵRϵI

|ϵ|2
H[g] −

ϵI

|ϵ|2

4u
πΩ

∫
R+

dx g

= g −
ϵI

|ϵ|2

4u
πΩ

∫
R+

dx g, (34)

where in each step use has been made of the various identities
above. Because the integral of Q+ is equal to Q/2, we can define
the inverse of I as follows:Ic[q(x),Q ] = T+[f (x)q(x)] +

2u
πΩ

ϵI

|ϵ|2
Q .

The above transform ignores the (p, P) variables and only
produces the symmetric part of the Van Kampen modes. We
derive the other half of the transformation from a mixed variable
generating functional. To this end, define Q+ = Q̄ and Q− = P̄
and rescale the coordinate part of the transformation by choosing
Q = 2


R+

du Q̄


ϵI/(π |ϵ|2):

Q̄ =


π |ϵ|2

ϵI


T̂+[f (x)q(x)] +

2u
πΩ

ϵI

|ϵ|2
Q


=I[q(x),Q ] (35)

(Q , q(x)) =


2

∫
R+

du Q̄


ϵI

π |ϵ|2
,

1
f (x)

T+

[
ϵI

π |ϵ|2
Q̄

]
= I[Q̄ ]. (36)

Then we introduce the mixed variable type-2 generating func-
tional

F [q,Q , P̄] =

∫
R+

du P̄I[q(x),Q ],

which produces the transformations in the usual way:

p(x) =
δF

δq
= f (x)T Ď

+


π |ϵ|2

ϵI
P̄

 (37)

P =
δF

δQ
=

∫
R+

du
2uP̄
Ω


ϵI

π |ϵ|2
. (38)

Calculating the adjoint ofT simplifies the resulting expression
for p(x), viz.,

p(x) =
1

f (x)
T−

[
ϵI

π |ϵ|2
P̄
]

. (39)

Now, analogous to I we define the operator J[P̄] = (p(x), P) by

J[P̄] =


1

f (x)
T−

[
ϵI

π |ϵ|2
P̄
]

,

∫
R+

du
2uP̄
Ω


ϵI

π |ϵ|2


, (40)

which can be inverted through the use of the Hilbert transform
identities. Define P̄c = P̄


π |ϵ|2/ϵI , and consider the expression

ϵR

|ϵ|2
p(x) −

ϵI

|ϵ|2
H [sgn(x)p(|x|)]

=
ϵR

|ϵ|2
(ϵIH[sgn(u)P̄c] + ϵRP̄c)

−
ϵI

|ϵ|2
H[sgn(x)ϵIH[sgn(u)P̄c] + sgn(x)ϵRP̄c]. (41)

Paralleling the method used to invert the map from Q̄ to
(q,Q ), we see a difference occurs when evaluating the term
ϵIH[sgn(x)ϵRP̄]/|ϵ|2, i.e.

ϵI

|ϵ|2
H[sgn(u)u2P̄c] = x2

ϵI

|ϵ|2
H[sgn(u)P̄c] +

2
π

ϵI

|ϵ|2

∫
R+

du uP̄c

= x2
ϵI

|ϵ|2
H[sgn(x)P̄c] +

Ω

π

ϵI

|ϵ|2
P. (42)

With this expression we can directly use the inversion calculation
for the (q,Q ) case to obtain the following expression for the full
transformation:

P̄ =


π |ϵ|2

ϵI

T−[f (x)p(x)] +
2
π

ϵI

|ϵ|2
P


(43)

Q̄ =


π |ϵ|2

ϵI

T+[f (x)q(x)] +
2u
πΩ

ϵI

|ϵ|2
Q


. (44)

Applying this transformation toHamilton’s equations yields the
equations for a continuumof harmonic oscillators. This can be seen
directly for both P̄ and Q̄ .

˙̄Q =


π |ϵ|2

ϵI

T+[f (x)q̇(x)] +
2u
πΩ

ϵI

|ϵ|2
Q̇



=


π |ϵ|2

ϵI

T+[xf (x)p(x)] +
2u
π

ϵI

|ϵ|2
P


=


π |ϵ|2

ϵI


ϵR

|ϵ|2
uf (u)p(u) −

ϵI

|ϵ|2
H[|x|f (|x|)p(|x|)]

+
2u
π

ϵI

|ϵ|2
P


=


π |ϵ|2

ϵI


ϵR

|ϵ|2
uf (u)p(u) −

ϵI

|ϵ|2
uH[sgn(x)f (|x|)p(|x|)]

+
2u
π

ϵI

|ϵ|2
P


= uP̄. (45)

Similarly, for P̄ ,

˙̄P =


π |ϵ|2

ϵI

T−[f (x)ṗ(x)] +
2
π

ϵI

|ϵ|2
Ṗ


=


π |ϵ|2

ϵI

T−[−xf (x)q(x) − f (x)2Q ] −
2Ωs

π

ϵI

|ϵ|2
Q

−
2
π

ϵI

|ϵ|2

∫
R+

dx f (x)q(x)


=


π |ϵ|2

ϵI


−uT+[f (x)q(x)] +

2
π

ϵI

|ϵ|2

∫
R+

dx f (x)q(x)

−T−[f (x)2]Q


−
2Ωs

π

ϵI

|ϵ2|
Q −

2
π

ϵI

|ϵ|2

∫
R+

dx f (x)q(x)

=


π |ϵ|2

ϵI


−uT+[f (x)q(x)] −

ϵR

|ϵ|2
f (x)2 Q

+
ϵI

|ϵ|2
H[sgn(x)f (|x|)2]Q −

2Ωs

π

ϵI

|ϵ|2
Q



=


π |ϵ|2

ϵI


−uT+[f (x)q(x)] −

2u2

πΩ

ϵI

|ϵ|2
Q


= −u Q̄ . (46)
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Let this full map be called If and consider If as a map from the
Banach space Lp × Lp × R2, p > 1, to the Banach space Lp × Lp.
The operator If is a bounded linear functional between these two
spaces, because each term is either amultiplication operator that is
bounded on Lp, an Lp function, or a bounded functionmultiplied by
the Hilbert transform, which is another bounded operator. In order
to establish the equivalence with the normal mode it is important
to specify the phase space of the dynamical variables. Using this
map we can simply choose each functional space to be Lp and
have a well defined map in each case. This map demonstrates how
the Caldeira–Leggett model can be written as a superposition of a
continuous spectrum of singular eigenmodes.

Because the transformation to the normal formwas a canonical
one, the normal form Hamiltonian should be the original Hamilto-
nian of the Caldeira–Leggettmodelwritten in the new coordinates.
We will verify this by direct substitution. For convenience we
introduce the quantities

A =
Ω

2
P2

+
1
2

∫
R+

dx xp(x)2

B =
Ωs

2
Q 2

+

∫
R+

 x
2
q(x)2 + f (x)q(x)Q


dx,

where Ωs = Ω2
c /Ω . Evidently, HCL = A + B. Then,

A =
Ω

2
P

∫
R+

du
2uP̄
Ω


ϵI

π |ϵ|2

+
1
2

∫
R+

du xp(x)f (x)T Ď
+


π |ϵ|2

ϵI
P̄


= P

∫
R+

du uP̄


ϵI

π |ϵ|2

+
1
2

∫
R+

duT+ [xp(x)f (x)]


π |ϵ|2

ϵI
P̄

= P
∫

R+

du uP̄


ϵI

π |ϵ|2

+
1
2

∫
R+

du uT− [f (x)p(x)]


π |ϵ|2

ϵI
P̄

=
1
2

∫
R+

du uP̄


π |ϵ|2

ϵI

T−[f (x)p(x)] +
2
π

ϵI

|ϵ|2
P


=
1
2

∫
R+

du uP̄2. (47)

Similarly,

1
2

∫
R+

dx xq(x)2 =
1
2

∫
R+

du


ϵI

π |ϵ|2
T Ď

+

[
xq(x)
f (x)

]
Q̄

=
1
2

∫
R+

du Q̄


ϵI

π |ϵ|2


u
ϵRq(u)
f (u)

− uH
[

ϵI(|x|)q(|x|)
f (|x|)

]
− 2

∫
R+

dx f (x)q(x)


= −
1
2

∫
R+

dx Qf (x)q(x)

+
1
2

∫
R+

du Q̄u


π |ϵ|2

ϵI
T+ [f (x)q(x)] . (48)

Now, analyzing the entire expression for B in a sequence of
steps,

B =
1
2

∫
R+

dx Qf (x)q(x) +
1
2

∫
R+

du Q̄u


π |ϵ|2

ϵI

×T+ [f (x)q(x)] +
Ωs

2
Q 2

=
1
2

∫
R+

du Q̄u


π |ϵ|2

ϵI
T+ [f (x)q(x)] + ΩsQ

∫
R+

du

× Q̄


ϵI

π |ϵ|2
+

Q
2

∫
R+

dx T+

[
ϵI

π |ϵ|2
Q̄

]

=
1
2

∫
R+

du Q̄u


π |ϵ|2

ϵI
T+ [f (x)q(x)] +

Q
2

∫
R+

dx

×


2u2

Ω
Q̄ + πH[sgn(x)f (|x|)2]Q̄

 
ϵI

π |ϵ|2

+ ϵIH
[

ϵI

π |ϵ|2
Q̄

]

=
1
2

∫
R+

du Q̄u


π |ϵ|2

ϵI
T+ [f (x)q(x)] +

2u
Ω


ϵI

π |ϵ|2
Q


=

1
2

∫
R+

du uQ̄ 2. (49)

With (47) and (49) we obtain HCL =


R+
duu


Q̄ 2

+ P̄2

/2—the

Hamiltonian for a continuous spectrumof harmonic oscillators and
the normal form for the Caldeira–Leggett model.

5. Equivalence to the linearized Vlasov–Poisson equation

The treatment of the Caldeira–Leggett model of Section 4 is
similar to an analysis of the linearized Vlasov–Poisson equation
performed in [19,28]. In those papers an integral transform was
presented that transforms the Vlasov equation into a continuous
spectrum of harmonic oscillators. The two systems are identical
except the spectrum of the Caldeira–Leggett model only covers the
positive real line. Nowwe explicitly produce a transformation that
takes one system into the other.

The Vlasov equation describes the kinetic theory of a colli-
sionless plasma. Spatially homogeneous distribution functions are
equilibria, and linearization about such states are often studied in
plasma physics. In the case of one spatial dimension and an equi-
librium distribution function f0(v), the linearized Vlasov–Poisson
equation around f0 is given by
∂ f
∂t

+ v
∂ f
∂x

−
e
m

∂φ

∂x
f ′

0 = 0 (50)

∂2φ

∂x2
= −4πe

∫
R
dv f (51)

where f ′

0 = df0/dv. These equations inherit the noncanonical
Hamiltonian structure of the full Vlasov–Poisson system [29] and
have a Poisson bracket given by

{F ,G}L =

∫∫
dxdv f0

[
δF
δf

,
δG
δf

]
. (52)

This bracket is of a form that is typical for Hamiltonian systems
describing continuous media (cf. e.g. [30,31]). The Hamiltonian is
given by

HL = −
m
2

∫∫
dvdx v

f 2

f ′

0
+

1
8π

∫
dx


∂φ

∂x

2

, (53)

and the Vlasov–Poisson equation can be written as ḟ = {f ,HL}L.
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The spatial dependence of the Vlasov–Poisson equation can
be removed by performing a Fourier transform. This allows the
potential to be explicitly eliminated from the equation

∂ fk
∂t

− ikvfk −
4π ie2

mk
f ′

0(v)

∫
R
dv fk = 0. (54)

The Hamiltonian structure in terms of the Fourier modes has the
new bracket

{F ,G}L =

∞−
k=1

ik
m

∫
R
dv f ′

0


δF
δfk

δG
δf−k

−
δG
δfk

δF
δf−k


. (55)

and the Hamiltonian functional is simply (53) written in terms of
the Fourier modes.

One way to canonize this bracket is with the following scalings:

qk(v, t) = fk and pk(v, t) =
mf−k

ikf ′

0
, (56)

where k > 0. In terms of these variables the Poisson bracket has
canonical form, i.e.

{F ,G}L =

∞−
k=1

∫
R
dv


δF
δqk

δG
δpk

−
δG
δqk

δF
δpk


. (57)

From this point it is possible to derive a canonical transforma-
tion that diagonalizes the Hamiltonian. We make the following
definitions:

εI(v) = −
4π2e2f ′

0

mk2


R f0dv
εR(v) = 1 + H[εI ], (58)

Gk[f ] = εRf + εIH[f ] Gk[f ] =
εR

|ε|2
f −

εI

|ε|2
H[f ]. (59)

It was proven in [19] that Gk = Gk
−1

.
A transformation to the new set of variables (Qk, Pk) that

diagonalizes the system will be given in terms of the variables
(qk, pk). To this end we first introduce the intermediate variables
(Q′

k, P ′

k) defined by

qk = Gk[Q
′

k] and Q′

k = Gk[qk]. (60)

The corresponding momentum portion of the canonical transfor-
mation is induced by the followingmixed variable generating func-
tional:

F [qk, P ′

k] =

∞−
k=1

∫
R
duP ′

k
Gk[qk], (61)

whence we obtain via Q′

k = δF /δP ′

k and pk = δF /δqk,

Q′

k = Gk[qk] and pk = Gk
Ď
[P ′

k]. (62)

Then, the variables (Qk, Pk) are defined as

Qk =

Q′

k − iP ′

k


/
√
2 and Pk =


P ′

k − iQ′

k


/
√
2, (63)

in terms of which the Vlasov–Poisson Hamiltonian has the form
of a continuum of harmonic oscillators (see [28] for an explicit
calculation),

HL =

∞−
k=1

∫
R
duku


Q2

k + P 2
k


/2. (64)

Thus, for a single value of k, this is the same normal form as that
of the Caldeira–Leggett model, with the exception that the integral
here is over the entire real line instead of just the half line. If we
consider two copies of the Caldeira–Leggettmodel the normal form
would be the same as that for a single k value of the linearized

Vlasov–Poisson system. By composing the transformation that
diagonalizes the Caldeira–Leggett model with the inverse of the
transformation that diagonalizes the Vlasov–Poisson system we
obtain amap that converts solutions of one system into solutions of
the other system. Explicitly suppose thatwe have two copies of the
Caldeira–Leggett Hamiltonian, with the same coupling function
f (x). Then set the normal form of the second copy equal to the
normal form of the Vlasov equation on the negative real line. Let
(q1(x), p1(x),Q1, P1) be one set of solutions to the Caldeira–Leggett
model and let (q2(x), p2(x),Q2, P2) be another and let Θ(x) be the
Heaviside function. Then we can write a solution to the linearized
Vlasov–Poisson equation using the following map:

fk(v, t) = Gk

 1
√
2

Θ(u)


π |ϵ|2

ϵI

T+[f (x)q1(x)] +
2u
πΩ

ϵI

|ϵ|2
Q1

 (65)

+ Θ(−u)


π |ϵ|(−u)2

ϵI(−u)

T+[f (x)q2(x)](−u) +
−2u
πΩ

ϵI(−u)
|ϵ(−u)|2

Q2

 (66)

+ iΘ(u)


π |ϵ2|

ϵI

T−[f (x)p1(x)] +
2
π

ϵI

|ϵ|2
P1


(67)

+ iΘ(−u)


π |ϵ(−u)|2

ϵI(−u)

T−[f (x)p2(x)] +
2
π

ϵI(−u)
|ϵ(−u)|2

P2

 (68)

f−k(v, t) =
kf ′

0

m
GĎ
k

 1
√
2

Θ(u)


π |ϵ|2

ϵI

T+[f (x)q1(x)] +
2u
πΩ

ϵI

|ϵ|2
Q1

(69)

+ Θ(−u)


π |ϵ|(−u)2

ϵI(−u)

T+[f (x)q2(x)](−u) +
−2u
πΩ

ϵI(−u)
|ϵ(−u)|2

Q2

 (70)

− iΘ(u)


π |ϵ2|

ϵI

T−[f (x)p1(x)] +
2
π

ϵI

|ϵ|2
P1


(71)

− iΘ(−u)


π |ϵ(−u)|2

ϵI(−u)

T−[f (x)p2(x)] +
2
π

ϵI(−u)
|ϵ(−u)|2

P2

. (72)

This map is invertible using the formulas presented earlier in
the paper. Given a single mode of the linearized Vlasov–Poisson
system, fk(v, t), we canwrite two solutions to the Caldeira–Leggett
model as follows:

(q1(x, t),Q1(t)) = I
[
1
2
ℜ(Ĝ[fk](u, t) + Ĝ[fk](−u, t))

]
(73)

(p1(x, t), P1(t)) = J
[
1
2
ℑ(Ĝ[fk](u, t) − Ĝ[fk](−u, t))

]
(74)

(q2(x, t),Q2(t)) = I
[
1
2
ℑ(Ĝ[fk](u, t) + Ĝ[fk](−u, t))

]
(75)

(p2(x, t), P2(t)) = J
[
1
2
ℜ(Ĝ[fk](−u, t) − Ĝ[fk](u, t))

]
. (76)

Therefore one would expect the solutions of the Caldeira–
Leggett model to share the same properties as the solutions of the
Vlasov–Poisson system.

It was remarked earlier that both systems exhibit damping.
In the Vlasov–Poisson case the electric field decays, and in
the Caldeira–Leggett model it is the discrete coordinate Q . The
existence of the transformation between the two systems gives us
a way to understand what determines the damping rate in each
case. In the standard calculation of the Landau damping rate for
the Vlasov equation, it is clear that the rate depends only on the
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location of the closest zero in the lower half complex plane of the
dispersion relation, which only depends on the equilibrium f0. The
same is true for the Caldeira–Leggett model, where the damping
of Q depends on the coupling function f . It is clear that integral
transformations change the rate of damping, as all the instances
of the Vlasov equation and the Caldeira–Leggett model share the
same normal form but generally have different damping rates.

It is possible to interpret Landau damping using the normal
forms and canonical transformation. The dynamical variables of
the normal form have a time evolution ∼ exp(−iut). The observ-
ables can then be expressed as some operator on this oscillatory
dynamical variable. The result will be an oscillatory integral over
the real line, and by the Riemann–Lebesgue lemma we know that
such an integrated quantity will decay to zero in the long-time
limit. For the systems at hand, this integral can be deformed into
the lower half complex plane, and Cauchy’s theorem can be used
to see that the behavior is governed by the locations of the poles of
the analytic continuation of the oscillatory integrand. These poles
determine the exponential damping rate. In these systems the
poles are clearly introduced by the continuation (following the
Landau prescription) of the dispersion relation in the integral
transformations, which is therefore the origin of Landau damping.
We will demonstrate this explicitly for the damping of the coordi-
nate Q in the Caldeira–Leggett model.

Starting from the solution,

Q (t) =

∫
R
du (Q̄ (|u|) cos(ut) + sgn(u)P̄(|u|) sin(ut))

f (|u|)
|ϵ|

=

∫
R
du (Î[q̊(x), Q̊ ] cos(ut)

+ Ĵ[p̊(x), P̊]sgn(u) cos(ut))
f (|u|)
|ϵ|

, (77)

we see that each term in the integrand of (77) has an oscillatory
part and has poles at the zeros of |ϵ|2. The damping rate will be
based on the closest zero of |ϵ|, the dispersion relation for the
Caldeira–Leggett model. Likewise, for the Vlasov–Poisson system
we can write a similar expression for the density ρk(t),

ρk(t) =

∫
R
dv Gk[Ĝk[f̊ ]e−iut

]

=

∫
R
du


εR(Ĝk[f̊ ]e−iut) − H[εI ]Ĝk[f̊ ]e−iut


=

∫
R
du Ĝk[f̊ ]e−iut . (78)

The damping rates are given by the poles of Ĝk, and the observed
ratewill be due to the closest zero of |ε|2 to the real axis. Therefore,
mathematically the source of the damping in the Vlasov–Poisson
and Caldeira–Leggettmodels are identical, it being the nearest pole
introduced by the integral transformation that diagonalizes the
system.

6. Conclusion

To summarize, we have shownhow the Caldeira–Leggettmodel
can be analyzed the same way as the Vlasov–Poisson system.
We wrote down the solution using the Laplace transform, an
expression for the time evolution as an integral in the complex
plane over the initial conditions. It was then indicated how
Cauchy’s theorem can be used to derive the time asymptotic
behavior of the solution, and it was described how the long-time
damping rate is equal to the distance from the real axis of the
closest zero of the dispersion relation (when analytically continued
into the lower half complex plane). Thus, the damping of the
Caldeira–Leggett model can be seen to be a rediscovery of Landau

(or continuum) damping. Caldeira and Leggett introduced their
system to study damping in quantum mechanical systems, and it
is now seen to be one of many interesting physical examples of
Hamiltonian systems that exhibit such behavior.

Next we described how to analyze the Caldeira–Leggett model
by means of singular eigenmodes, paralleling Van Kampen’s
well-known treatment of the Vlasov–Poisson system. Here the
solution was written as an integral over a distribution of such
modes, each of which is itself a solution that oscillates with
some real frequency. We described how Hamiltonian systems
with continuous spectra generally have a solution formula in
terms of such an integral over singular eigenmodes. This type
of formal expansion led to an explicit integral transformation
that transforms the original Caldeira–Leggett system into a pure
advection problem, just as is the case for the Vlasov–Poisson
system. It was noted that a general class of such transformations
was written down in [19] and was subsequently extended to a
larger class of Hamiltonian systems [20]. The existence of these
transformations amounts to a theory of normal forms for systems
with a continuous spectrum, analogous to the theory of normal
forms for finite degree-of-freedom Hamiltonian systems. This
enabled us to write down an explicit transformation that converts
the time evolution operator for the Caldeira–Leggett Hamiltonian
into amultiplication operator andwe found the inverse of thismap.
In this way we showed that the Caldeira–Leggett model shares
the same normal form as the Vlasov–Poisson system, along with
a number of other Hamiltonian systems that occur in different
physical contexts.

One reason for investigating Hamiltonian structures is the
existence of universal behavior shared by such systems. For
example, linear Hamiltonian system with the same normal form
are equivalent. This suggests some further avenues for research.
Here we only treated the case where the dispersion relation of
the Caldeira–Leggett model has no roots with real frequency;
i.e. spectrum was purely continuous. When there are roots, the
spectrum is no longer purely continuous and there are embedded
eigenvalues, as is known to be the case for the Vlasov–Poisson
system [32]. Consequently, one obtains a different normal form,
one with a discrete component, and this and more complicated
normal forms could be explicated. We expect that there is a
transformation that takes Vlasov–Poisson system with embedded
modes into the Caldeira–Leggett model with embedded modes.
Also, finite degree-of-freedom Hamiltonian systems are known
to have only certain bifurcations of spectra, for example, as
governed by Krein’s theorem. Since there is a generalization of
this theorem for Vlasov-like systems [33], one could investigate
bifurcations in the context of the Caldeira–Leggett model. Another
possibilitywould be to use the tools developed [28] to do statistical
mechanics over the continuum bath. Lastly, the integral transform
we presented is intimately related to the Hilbert transform, which
is known to be an important tool in signal processing. In the
same vein the integral transform for the Vlasov–Poisson system of
Ref. [19] has been shown to be a useful experimental tool [34,35]
and one could explore experimental ramifications in the context of
the Caldeira–Leggett model.
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