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Chapter 13

Continuum Hamiltonian Hopf Bifurcation II

Building on the development of Chapter 12, bifurcation of unstable modes that
emerge from continuous spectra in a class of infinite-dimensional noncanonical
Hamiltonian systems is investigated. A bifurcation called the continuum Hamiltonian
Hopf (CHH) bifurcation is main significance, which is an infinite-dimensional analog
of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to
spectra, structural stability, signature of the continuous spectra and normal forms are
described. The theory developed is applicable to a wide class of 2+1 noncanonical
Hamiltonian matter models, but the specific example of the Vlasov-Poisson system
linearized about homogeneous (spatially independent) equilibria is discussed in
detail. For this example, structural (in)stability is established in an appropriate
functional analytic setting, and two kinds of bifurcations are considered, one at
infinite and one at finite wave number. After defining and describing the notion of
dynamical accessibility, Krein-like theorems regarding signature and bifurcation are
proven. In addition, a canonical Hamiltonian example, composed of a negative
energy oscillator coupled to a heat bath, is discussed and our development is
compared to previous work in this context. A careful counting of eigenvalues , with
and without symmetry, is undertaken, leading to the definition of a degenerate
continuum steady-state (CSS) bifurcation . It is described how the CHH and CSS
bifurcations can be viewed as linear normal forms associated with the nonlinear
single-wave model described in [BAL13], which is a companion to the present work
and that of Chapter 12.

Chapter written by George 1. HAGSTROM and Philip 1. MORRISON.
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13.1. Introduction

Bifurcations of unstable modes from the continuous spectrum underlie pattern
formation in a wide variety of physical systems that can be described by Hamiltonian
2+ I field theories. These patterns take the form of vortices in phase space , and are
referred to as "BGK modes" (Bernstein, Greene, Kruskal) in plasma physics
[BER 58] and "Kelvin cat's-eye" vortices in two-dimensional, inviscid ,
incompressible fluid mechanics, and possess analogs in condensed matter physics,
geophysical fluid dynamics and astrophysics. The equations that describe these
physical systems all share crucial features : a formulation as a noncanonical
Hamiltonian system [MOR 82, MOR 98] and that stable equilibria possess
continuous spectra. Before nonlinear patterns form in these systems, unstable modes
bifurcate from their continuous spectra, a linear bifurcation we call the CHH
bifurcation that is an analog of the usual HH bifurcation of finite-dimensional
systems. In this chapter, we describe some mathematical aspects of the CHH
continuing on from the material presented in Chapter 12.

Perturbation of point spectra in canonical, finite-degree-of-freedom Hamiltonian
systems is described by Krein's theorem [KRE 50, KRE 80, MOS 58] , which states
that a necessary condition for an HH bifurcation is to have a collision between
eigenvalues of opposite signature. A different situation arises in the
infinite-dimensional case if the linear Hamiltonian system has a continuous spectrum.
A representative example of such a Hamiltonian system is the Vlasov-Poisson
equation [MOR 80], which when linearized about stable homogeneous equilibria
gives rise to a linear Hamiltonian system with pure continuous spectrum that can be
brought into action-angle normal form [MOR 92, MOR 94a, MOR 94b, MOR 00]. A
definition of signature was given in these works for the continuous spectrum. The
primary example here will be the Vlasov-Poisson equation, but the same structure is
possessed by a large class of equations [MOR 03], examples being Euler's equation
for the two-dimensional fluid, where signature for shear flow continuous spectra was
defined [BAL 99, BAL 01] , and likewise for a model for electron temperature
gradient turbulence [TAS 11]. Modulo technicalities, the behavior discussed here, is
expected to cover a large class of systems.

In section 13.2, we present the mathematical structure that we use to describe
CHH bifurcations; in particular, we define structural stability and discuss the
definition of signature for the continuous spectrum. One of the crucial parts of this
framework is the choice of the norm on the perturbations to the time evolution
operator, a step that requires selection of a Banach space to be the phase space for
solutions of the linearized system. In section 13.3, we apply this framework to the
Vlasov-Poisson equation, presenting without proof the results that appeared in
[HAG 11b]. We show that the plasma two-stream instability is a CHH bifurcation
that can be viewed as a zero-frequency mode interacting with a negative energy
continuous spectrum to bifurcate to instability so that the continuous spectrum
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provides the "other" mode in the CHH bifurcation. We show that if in the chosen
Banach space, the sup of the Hilbert transform, is an unbounded operator, then
equilibria of the Vlasov-Poisson equation are always structurally unstable. Two
examples of such Banach spaces are W 1,1(JR) and CO (JR) n L1(JR). If we restrict
perturbations to those that are dynamically accessible [MOR 98], which precludes
the possibility of altering the signature of the continuous spectrum, we prove that
equilibria with positive signature only are structurally stable.

Section 13.4 contains a description of the differences between canonical and
noncanonical systems; in particular, comparison to the work of KreIn [DAL 70] on
canonical Hamiltonian systems is made and a simple demonstration of a bifurcation
to instability in such a canonical system is described. In section 13.5, we present the
idea that a certain mean field Hamiltonian system, the single-wave model
[TEN 94, DEL 98, BAL 13], is a nonlinear normal form for the CHH bifurcation that
describes the eventual nonlinear saturation of the resulting instability near criticality.
We note that this model is derived by means of matched asymptotic expansions of a
Hamiltonian 2+1 mean field theory near a marginally-stable equilibrium, and also by
comparison with the results of numerical simulations [BAL 13]. Finally, in
section 13.6, we summarize and conclude.

13.2. Mathematical aspects of the continuum Hamiltonian Hopf bifurcation

In section 12.3.2.1 of Chapter 12, we presented a specific example of the CHH
bifurcation, the plasma two-stream instability. This theory gives a necessary
condition for structural instability: collision of eigenvalues of opposite signature. We
present a framework for bifurcations in noncanonical Hamiltonian systems with
continuous spectra. The key notion will be the generalization of signature to the
continuous spectrum, which is prevalent in the linear infinite-dimensional
Hamiltonian systems that undergo the CHH bifurcation. We first set the stage by
discussing structural stability.

13.2.1. Structural stability

Now, we consider structural stability of linear noncanonical Hamiltonian systems
with continuous spectrum. The dynamical variable Sis assumed to be a member of a
function space ~. We are given a Hamiltonian functional H (HL of Chapter 12), which
is (typically) an unbounded quadratic functional on ~, and a noncanonical Poisson
bracket {. , .}, which will be bilinear, antisymmetric, and satisfy the Jacobi identity
and which in this chapter will always be of Lie-Poisson form, see [MOR 98, MAR 99].
Hamilton's equations are (see Chapter 12)

structure that we use to describe
ictural stability and discuss the
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oof the results that appeared in
instability is a CHH bifurcation

teracting with a negative energy
;0 that the continuous spectrum Sf = {S,H} = 'IS· [13.1]



286 Nonlinear Physical Systems

Here, '1' is the time evolution operator, which by assumption is a linear operator
from /18 to itself. This equation can also be written as

[13.2]

where J is the cosymplectic operator of the bracket {' ,'}, and s.2l is a linear operator
derived from H using the bracket. Care must be taken when using this formulation as
the operator s.2l is often not defined as an operator on /18, and only the product Js.2l = '1'
takes values in /18. The process of canonization, which reformulates equation [13.2]
in terms of a canonical cosymplectic operator Je, which is bounded and invertible,
eliminates this difficulty.

The operator '1' (and hence the linear Hamiltonian system) is spectrally stable if
the spectrum of '1' is contained in the imaginary axis, <J"('T) E iJR. This is equivalent to
the condition that the spectrum is in the closed lower half plane, i.e. Re( <J"('T)) :::; 0,
because the spectrum satisfies the property A E <J"('T) implying XE <J"('T), a property
that comes from the Hamiltonian structure. Solutions of spectrally stable systems grow
at most sub-exponentially.

We consider now a family of Hamiltonian systems that depend continuously on
some parameter and look for changes in the stability of the Hamiltonian system as
the parameter varies. Such a family can be generated in many ways. One common
scenario is for the linear Hamiltonian system to come from the linearization of some
nonlinear Hamiltonian system about an equilibrium solution. In that case, the bracket
and Hamiltonian functional come from linearizations of the original Hamiltonian
system, and both will depend on the equilibrium fa (see Chapter 12). Both the
bracket J and Hamiltonian H are subject to change, however, and this malleability of
the bracket gives the bifurcation theory of noncanonical Hamiltonian systems a
different character than that of canonical Hamiltonian systems.

Bifurcations to instability occur when a spectrally stable system becomes
spectrally unstable. The following definitions depend on our definition of the size of
a perturbation, and we will have to choose some set of perturbations and a measure of
this size in order to proceed. Assuming that we have made this choice, we say that
the spectrally stable time evolution operator '1' is structurally stable if there exists
some £ such that for all perturbations 8'1' satisfying 11 8'1' 11 < e, the operator '1' + 8'T
is spectrally stable, where II . II is our chosen measure for perturbations of 'T.
Otherwise, we say that '1' is structurally unstable.

The theory will depend on the choice of allowable perturbations and norm. Let
the family of Hamiltonian systems be parametrized by a parameter A so that the time
evolution operator for each system is '1'A' The continuity properties of the family 'TA
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by assumption is a linear operator
as

[13.2]

will typically come from an induced norm from the Banach space in which solutions
to the equations live. For instance, one choice would be that 'I - 'IA, is a bounded
operator. Other choices are relatively compact/bounded perturbations (considered in
[GRI 90] in the context of canonical systems) or the more general class of unbounded
perturbations based on the gap, given by [KAT 66].

13.2.2. Normalforms and signature

The linear theory of finite-dimensional Hamiltonian systems is organized around
normal forms , and the proof of Krein's theorem is based on the theory of normal
forms. Though the situation can be more complex in the infinite-dimensional case , for
many important cases, it is possible to find the appropriate normal form. The simplest
normal forms arise when the time evolution operator of the Hamiltonian system is
diagonalizable, in which case the Hamiltonian can be written in terms of action-angle
variables (e(u),J (u)) and a canonical Poisson bracket, for instance

Some of the most physically interesting families of systems come from
linearizing a Hamiltonian system about a member of a continuous family of
equilibrium states. If this is the context of our physical problem, it makes sense to
only consider perturbations that leave this Hamiltonian structure unchanged, for
instance restricting ourselves to perturbations that change the equilibrium state only.
Our most important example will be the two-stream instability described by the
Vlasov-Poisson system, which is of this type. A further restriction is to choose to
perturb to equilibria that are dynamically accessible from the original equilibrium,
which restricts us to perturbations that can be produced using Hamiltonian forces .

The Krein signature is essential in the description of HH bifurcations as the
collision between positive and negative energy modes is a necessary condition for the
existence of a HH bifurcation. It is straightforward to compute the energy signature
of modes in the finite-dimensional case as we can simply use the Hamiltonian
function. In the infinite-dimensional case, this is complicated by the presence of the
continuous spectrum. The continuous analogs of discrete eigenmodes, the so-called
generalized eigenfunctions, are distributions whose Hamiltonian is not defined, and
another approach, based on the theory of normal forms, is required to attach a
signature to the continuous spectrum.

[13.3]H = rdu <J"(u) m(u )J(u) = ~ rdu o («) m(u) (Q(u) 2+P(u )2) ,Jr 2 Jr
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where I" c JR, and in the second equality, we introduce the alternative form in terms of
the canonically conjugate oscillator variables Q(u) and P(u). Here, to E JR>ofor all u E

rand <J"(u) E {±I} defines the signature of the continuous spectrum corresponding
to im(u).
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The ability to define the signature for a given Hamiltonian system is directly
related to the ability to bring the system into a normal form, i.e. to canonize and
diagonalize it. Diagonalization is equivalent to finding a transformation that converts
the time-evolution operator of the system into a multiplication operator, viz., to
finding a linear operator .£ such that .£'I.£-l is a multiplication operator. The systems
described in this chapter all tend to have non-normal time-evolution operators; so, it
may be surprising that it is ever possible to define such a transformation since the
spectral theorem does not apply, but it turns out that for many important cases, the
time evolution operators are diagonalizable. Operators with this property are called
spectral operators [DUN 88]. By definition, a spectral operator possesses a family of
spectral projection operators <E( (5) defined on Borel subsets <5 c C that commute
with the time evolution operator 'I and reduce its spectrum, i.e. cr('I<E((5)) c <5.

The signature of the subset <5 is then defined by the sign of the Hamiltonian
operator restricted to members of <E( (5)88, which can be positive , negative or
indefinite. For a given point u E C, this is defined by taking limits of sets <5 that
contain u. If a diagonalization is known, the application of this definition can be
straightforward . Consider equation [13.3] with crm(u) = u, u E IR>o. Then, <E(<5)88 is
equal to the functions with support on IR n (-i<5) and the energy is clearly positive.
An equivalent definition involves the sign of the operator .J on the spectrum but the
definition involving signature is more intuitive physically.

13.3. Application to Vlasov-Poisson

Now, consider the Vlasov-Poisson system of section 12.3.2.1 of Chapter 12, as an
example of the Hamiltonian 2+1 field theories that exhibits the CHH bifurcation . Here,
we are interested in the properties of the equations linearized around a homogeneous
equilibrium fa. These equations , repeated for completeness, are

by II <5f~ II in the norms for W 1,1 ane
is a bounded operator from those s

If we were to consider L2 (IR) , 1

would have to use some other meal
Kato [KAT 66]).

As mentioned earlier, the lim:
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where 6[f] operating on a function

and the Hilbert Transform is define

[13.4] £ [g]= ~1 dp g(p) ,
nJR p-u

Our goal is to understand how the spectrum of 'Ik changes under changes in fa·
To this end, we consider perturbations of the equilibrium function fa + <5 fa. The time
evolution operator of the perturbed system is 'Ik+ <5'Ik, where

where the expression :hR stands fc
linearized Vlasov-Poisson equatior

[13.5]
dgk
- -v ikugv =0
dt '

We use the operator norm induced by the norm on 88 to measure the size of <5'Ik'
which requires restriction to function spaces in which <5'Ik is bounded, for instance,
the Sobolev spaces WI ,1 (IR) and en (IR) nL 1 (IR). The quantity II <5'IkII can be bounded

Which gives a representation of the

Using this G-transform and the
canonize and diagonalize the Iii
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by 118f~ IIin the norms for WI,1 and en nL1 because the integral operator fIRdPSk (p,t)
is a bounded operator from those spaces to IR

If we were to consider L2(IR), then 8'Ik would be an unbounded operator and we
would have to use some other means of determining its size (see Grillakis [GRI 90] or
Kato [KAT 66]).

[13.6]

[13.7]and

As mentioned earlier, the linearized Vlasov-Poisson system has a continuous
spectrum. Morrison [MOR 00] constructed a transformation that diagonalizes the
linearized Vlasov-Poisson system, converting the time evolution operator to a
multiplication operator and determining the signature of the continuous spectrum
(see [MOR 03] for a generalization of this method to other 2+ 1 Hamiltonian field
theories). This is based on the G-transform, which for stable equilibria fa with no
discrete modes is defined as follows:

i by the sign of the Hamiltonian
ich can be positive, negative or
ed by taking limits of sets 8 that
olication of this definition can be
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[13.9]

: 'Ik changes under changes in fa.
brium function fa + 8fo. The time
S'Ik, where

where the expression fJR. stands for the Cauchy principal value. If !k satisfies the
linearized Vlasov-Poisson equation, then gk = O[fk] satisfies

[13.5]
[13.10]

on 36' to measure the size of 8'Ik,
rich 8'Ik is bounded, for instance,
re quantity 118'Ik ll can be bounded

which gives a representation of the solution upon back-transforming.

Using this G-transform and the theory of generating functions, it is possible to
canonize and diagonalize the linearized Vlasov-Poisson system. Canonization
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proceeds by transforming the Poisson bracket of equation [12.35] of Chapter 12
according to

where o'(u) = sgn( UtI) is the sigr
OJ = Ikul.

The canonically conjugate pair (22k(p), &k(p) are real due to the reality of the
distribution function f = fa + S, and the Poisson bracket in terms of them is

r (8F 8G 8G 8F)
{F,G} = JIR dp 822 8& - 822 8& '

wherein, and often henceforth, we suppress the kEN dependence.

[13.11]

[13.12]

The Hamiltonian of [13.17],
oscillators, is the normal fonn 1
transformation can be defined only
always be made true by Galilean ~

the sign of uf~ changes. To illustn

of a Maxwellian distribution, fa =
fa = e-(P-Pl)2 + e-(p+pd2 (where

distribution has one maximum, ant
other hand , the bi-Maxwellian has
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Diagonalization is achieved using a mixed-variable generating function involving
the G-transfonn, a transformation that was inspired by Van Kampen's formal
expression for continuum eigenmodes [VAN 55] 0.8

0.6

'Ik"Y(U ,p ) = iku"Y(u,p). [13.13]
0.4

where 0.2

Positive Signature
01---------.---

-0.2
[13.14]

1
"Y(u,p) := tI(p)PV- + tR(p)8(u - p) ,

u-v

which clearly bares the mark of the G-transform. Diagonalization proceeds from the
following mixed-variable generating functional [MOR 00]
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which leads to a transformation to the new variables (Q,P)
Figure 13.1. Signature [c

Under direct substitution into the Hamiltonian and making use of identities
derived in [MOR 92, MOR 00] (see also [MOR 07]) in terms of the new variables,
the Hamiltonian becomes

Q = 8.%2 = 0[22]
8P

[13.16]

[13.17]
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rf equation [12.35] of Chapter 12 where a(u) = sgn(ut]) is the signature of the continuous spectrum with frequency

to> Ikul·

[13.11]

I) are real due to the reality of the
rracket in terms of them is

[13.12]

:: N dependence.

The Hamiltonian of [13.17], that for a continuum of uncoupled harmonic
oscillators , is the normal form for the linearized Vlasov-Poisson system. This
transformation can be defined only in reference frames where f~(O) = 0, which can
always be made true by Galilean shift. Therefore, the signature changes only when
the sign of uf~ changes. To illustrate this signature, consider two special cases, that

of a Maxwellian distribution, fo = e-
p2, and that of a bi-Maxwellian distribution,

fo = e -(p-p\)2 + e-(p+pd
2

(where normalization is not important). The Maxwellian
distribution has one maximum, and therefore, it has only positive signature. On the
other hand, the bi-Maxwellian has three extrema (see Figure 13.1) and two signature
changes .
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es (Q,P)
Figure 13.1. Signature for a bi-Maxwellian distribution function

"[Pl · [13.16]

ian and making use of identities
)7]) in terms of the new variables ,

[13.17]

The Penrose criterion, which was introduced in Chapter 12, clearly demonstrates
the role that signature plays in transitions to instability for the linearized Vlasov­
Poisson system. This criterion is that the winding number of the image of the real
line under the map tR + it] is equal to 0 when fo is stable. Suppose that we have a
family of equilibria that depend continuously on some parameter, and is stable for
some values of the parameter and unstable for others . In order for the stability to
change , the Penrose plot must increase its winding number from 0 to 1. For this to
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happen, the Penrose plot must cross the origin at the bifurcation point. We call these
crossing points critical states.

A simple technique to compute the winding number is to draw a ray from the
origin to infinity and to count the number of intersections with the contour, accounting
for orientation by adding 1 for a positive orientation and subtracting 1 for a negative
orientation. We count the number of zeros of C[ for which CR < 0 and add them with a
positive sign if f6' is positive, a crossing of the Penrose plot from the upper half plane
to the lower half plane; a negative sign if f~ is negative, a crossing from the lower
half plane to the upper half plane; and zero if u is not a crossing of the real axis, a
tangency.

13.3.1. Structural stability in the space en(IR) nL l (R)

The first critical state occurs w
At such a point, the addition of a
plot to intersect the real axis trar
cause instability. If the system is
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a bifurcation at k =I- O.
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transversely intersects the real axi:
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Figure 13.3 is a critical Penrose pl
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for some constant e independent of 8 f6. Therefore, for fixed k, any stable fa that does
not contain a discrete mode is structurally stable as the Penrose plot will be a fixed
distance from the origin.

Furthermore, the other part of the Penrose plot, 1 - nk- 2£ [f6] , is bounded in a
similar way because the sup norm of the Hilbert Transform of 8 f6 is bounded by the
en norm of 8f6, viz

We begin by choosing the phase space of the linearized Vlasov-Poisson system to
be en(R) nL1(iR). In this phase space, the induced norm on 8'I is proportional to the
sup of 8 f6. This choice puts a restriction on the ability of perturbations to affect the
signature of f6; at a point u, a perturbation must have norm at least f6(u) to induce a
signature change at u, viz Consider the k =I- 0 bifurcatior

frequency mode. Then, we claim t
JCRI Ju<O. This is demonstrated :
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Csup 1£[8f6] I ::; II 8'Ik II ,

When fa has an embedded mode , it is possible to have transitions to instability.
We identify two critical states for the Penrose plots that correspond to the transition to
instability. In each of these states, there is an embedded mode inside the continuous
spectrum. In the first state , the embedded mode is a so-called inflection point mode
[SHA 94], which means there is some rocIk = Uc such that CR(uc ) = C[(uc ) = 0 and
f6' (uc ) = O. We refer to this state as the bifurcation at k =I- 0 because changing the
value of k would not cause a bifurcation. In the other state, f6' =I- 0, which we call the
bifurcation at k = O. This is named so that in a system with infinite spatial extent, the
unstable mode first appears at k = O.
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The first critical state occurs when 16(u) = 0, 16'(u) = °and 1- nk-2£ [/6] = 0.
At such a point, the addition of a generic function <510 to 10 will cause the Penrose
plot to intersect the real axis transversely, and such a perturbation can be used to
cause instability. If the system is perturbed so that the tangency becomes a pair of
transverse intersections, then the winding number of the Penrose plot would jump to 1
and the system would be unstable. Figure 13.3.1 illustrates a critical Penrose plot for
a bifurcation at k i- 0.

Another critical state occurs when 1 - nk-2£[/6] = °at a point where 16
transversely intersects the real axis. If the Hilbert transform of 16 is perturbed, there
will be a crossing with a negative £[/6], and the winding number will be positive.
Figure 13.3 is a critical Penrose plot corresponding to the bi-Maxwellian distribution
with the maximum stable separation.

To understand and interpret these bifurcations, we must understand the signature
of the embedded modes at the critical state and also of the continuous spectrum. The
energy signature of an embedded mode with frequency U = (j)Ik is given by
sgn(udcrldu) [MOR 92, SHA 94].

Consider the k i- °bifurcation. Assume that the embedded mode is not a zero
frequency mode. Then, we claim that if Uc > 0, then dCRIdU > °and if Uc < 0, then
dCRI dU<O. This is demonstrated in [HAG lIb] using the analyticity of the plasma
dispersion function c. Suppose the opposite were true, that Uc > °and dCRIdu < 0,
then a small perturbation would generically decrease the winding number rather than
increase it. This would imply the existence of poles in the upper half plane, violating
the analyticity of the plasma dispersion function. This implies that the signature of
the inflection point mode is always the same as the signature of the surrounding
continuous spectrum. The fact that this bifurcation occurs when there is only positive
signature may seem counterintuitive, but it is due to the fact that negative signature
can be added in the neighborhood of the inflection point mode with an infinitesimal
perturbation. When we restrict ourselves to dynamically accessible perturbations,
which we do in a later section, this bifurcation will disappear.

In the k = °bifurcation, the signature of the embedded mode and the continuous
spectrum surrounding it are always indefinite, either the embedded mode is at °
frequency, then the embedded mode has zero energy and the signature surrounding it
is negative (the embedded mode is always in a valley of the distribution function,
which can be seen again using analyticity and the perturbation introduced in the next
section (see [HAG lIb])), or there is a change in the signature of the continuous
spectrum. There is no reference frame in which the signature of the continuous
spectrum and embedded mode are definite.
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13.3.2. Structural stability in Wi ,I

We will prove that if the perturbation function is some homogeneous 810 and the
space is WI ,1 (IR), then every equilibrium distribution function is structurally unstable

Figures 13.4(a) and (b) show t
respectively. In the space WI ,I , (IR)
We choose h = d and £ = O(e- I / h ) ,
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to an infinitesimal perturbation. Under this choice, sup 1£[f6] I is an unbounded
operator, i.e. there exists an infinitesimal 8 fo such that £ [8f6]is order one at a zero
of f6. Such a perturbation can tum any point where f6 = 0 into a point where
Yt'[f6 + 8 f6] > 0 as well - thereby changing the winding number by moving the
zeros of the Penrose plot and causing a bifurcation to instability.
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Figure 13.3. Critical Penrose plotfor a bi-Maxwellian distribution function

We explicitly demonstrate this structural instability for the Banach space Wl ,l (IR)
and, by extension, the Banach space L 1(IR) nCO (IR), and this will imply that every
stable distribution function is structurally unstable, a physically unappealing state of
affairs.

Suppose we perturb fo by a function 8 fo. The resulting perturbation to the
operator T, is the operator mapping Sk to 8 f6 Jdp Sk. In the space Wl ,l (IR) this is a
bounded operator and thus 118f611 ~ 118'Ikll. Yet, it is possible to introduce a class of
perturbations that can be made infinitesimal, but have Hilbert transform of order
unity. For example, consider the function X(p,h,d, £) defined by

Ipl < e
e < Ipl < d-i-e
2h+d+£ > p > d-v e
2h+d+£ > -p > d-i-e
Ipl > 2h+d+£1

hp ie
h sgn(p)

X = h+d/2+£/2- p/2
-h - d/2 - £/2 - p/2
o

0.3

urcation. b) Close-up ofpanel a

s some homogeneous 8 fo and the
,n function is structurally unstable

Figures 13.4(a) and (b) show the graph of X and its Hilbert transform, £ [X ],
respectively. In the space Wl,l , (IR) the function X has norm 2h2 + 2hd + he +4h. If
we choose h = d and e = O(e- l / h ) , then the terms that do not involve £ are all smaller
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than (6h+ s ) log(6h+e). With these choices, X satisfies

X(O) 2 - (h+e- 1
/
h

) log(lh+e-1
/
h I)

+(3h +e- 1
/
h

) log(13h +e- 1
/
h I)

2+0(hlogh). [13.20]
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If we choose d = hand e = e-(I /h), then for any 8, r > 0, we can choose an
h such that Ilxlll,1 < 8 and fdpX/p > 1- O(h) and Ifdpx/(u- p)1 < Ir/ul for
lui> 12h+d+£I·

The perturbation X arbitrarily moves the crossings of the real axis of the Penrose
plot of fo. If we use this perturbation to move crossings from the positive imaginary
axis to the negative real axis, we can increase the winding number of the Penrose plot,
thus causing instability. Therefore the existence of this X implies that any equilibrium
is structurally unstable in both the spaces W 1,1(JR) and L1(JR) n CO (JR).

0.1
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-0.05

-0.1

THEOREM 13.1.- A stable equilibrium distribution fo is structurally unstable under
perturbations of the equilibrium in the Banach spaces WI ,1(JR) and L 1(JR) nCO (JR).

- 1 -0.8 -0.6 -0.4

Thus, we emphasize that we can always construct a perturbation to fo that makes
our linearized Vlasov-Poisson system unstable. For the special case of the
Maxwellian distribution, Figure 13.5(a) shows the perturbed derivative of the
distribution function and Figure 13.5(b) shows the Penrose plot of the unstable
perturbed system. Observe the two crossings created by the perturbation on the
positive axis as well as the negative crossing arising from the unboundedness of the
perturbation.

Theorem 13.1 expresses the fact that in the norm W 1,1, signature changes give
rise to unstable modes under infinitesimal perturbations combined with the fact that a
signature change can be induced in the neighborhood of any maximum of fo. In the
next section, we will demonstrate the role of signature more explicitly by restricting
to dynamically accessible perturbations .

13.3.3. Dynamical accessibility and structural stability

As we have stated, the signature of the continuous spectrum in the
Vlasov-Poisson system is sgn(u£](u)). In W 1,I(JR ), sUPl8f61 is bounded by 1/8f61/,
which means that most points of the continuous spectrum cannot change signature
under infinitesimal perturbations, the exception being near points where f6 vanishes.
All signature changes can be prevented by restricting ourselves to perturbations of fo
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Figure 13.4. a) The perturbati
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tisfies

[13.20]

that are dynamically accessible from fa as we shall explain. The solution of any of
the mean-field Hamiltonian field theories that have been described here can be
written as a composition an initial condition Jwith a symplectic map Z(q,p), where
Z(q,p) describes the single particle characteristics (see [MOR 90]) . We say that two
functions hand h are dynamically accessible from each other if there exists some
symplectic map Z such that fl = h 0 Z, i.e. h is a symplectic rearrangement of I:
and vice versa.
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Figure 13.4. a) The perturbation xfor c = e-1a ,h = d = 0.1. b) The Hilbert
transform ofX

In this chapter, we only study perturbations of fa that preserve homogeneity. It is
impossible to construct a dynamically accessible perturbation of fa in a finite spatial
domain that preserves spatial homogeneity. To see this , we write a rearrangement as
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Figure 13.5. a) Perturbed Maxwellian distribution, f6 +x. b) The Hilbert
transform ofpanel a

(q,p) f-t (q,p), where p is a function of p alone. Because [q,p] = I and p(p) is not
a function of q, we have p'oq/oq = 1 or q = q/ p'. If the spatial domain is finite , this
map is not a diffeomorphism unless p' = 1. For infinite spatial domains, this is not a
problem and these rearrangements exist.
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The reason that all homogeneous equilibria were structurally unstable in the
previous section was because small perturbations could create regions of different
signature near critical points of fa. In fact, the Penrose criterion requires that fa has a
minimum in order for there to be an unstable mode. The perturbation X that was used
to destabilize fa created a distribution function with derivative f~ + X that had a local
minimum at what was previously a local maximum of fa. However, dynamicallY

Dynamical accessibility also elm
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accessible perturbations cannot change level set topology and, consequently, the
number of critical points of fa. Indeed, if (q ,p) is an area preserving diffeomorphism
and p is a homogeneous, i.e. a function of p alone, then the critical points of fa(p)
are the points p-I (Pc), where Pc is a critical point of fa(p). By the chain rule, these
critical points will always be the same type as the corresponding critical point of fa ­
the map Pmust be monotonically increasing in order for it to be invertible.

One implication is that the perturbation X is not dynamically accessible when it
is applied to a local maximum and, consequently, all equilibria fa with only a single
critical point are structurally stable under dynamically accessible perturbations.

If Pc is a non-degenerate critical point of fa such that f~ (Pc) < 0, then the
previous obstruction to the application of X using a dynamically accessible
perturbation does not apply. In [HAG 11b], it is shown that there is a rearrangement
p such that fa(p) fa(p) + J!..oodp' X(p' - Pc) or that
dfa(p)/dp = f6(p) + X(p - Pc). Such a rearrangement can be constructed as long as
the parameters defining X, the numbers h.d ,e, are chosen such that
f6(p) +X(p - Pc) has the same critical points as f6(p). The construction uses Morse
theory to find -a p so that fa(p) = fa(p) + J X + O((p - Pc)3), where O((p - Pc?)
has compact support and is smaller than fa(p) - f6'(pc)(p - Pc)2 /2.

These ideas lead to the following Krein-like theorem for dynamically accessible
perturbations in the WI ,I norm:

THEOREM 13.2.- Let fa be a stable equilibrium distribution function for the Vlasov
equation on an infinite spatial domain. Then, fa is structurally stable under
dynamically accessible perturbations in WI ,I (IR) if there is only one solution of
f6(p) = 0. If there are multiple solutions, fa is structurally unstable and the unstable
modes come from the zeros of f6 that satisfy f6' (p) < 0.

The implication of this result is that in a Banach space where the Hilbert transform
is an unbounded operator, the dynamical accessibility condition makes it so that a
change in the KreIn signature of the continuous spectrum is a necessary and sufficient
condition for structural instability. The bifurcations do not occur at all points where
the signature changes, however. Only those that represent valleys of the distribution
can give birth to unstable modes.

vere structurally unstable in the
could create regions of different
rse criterion requires that fa has a
The perturbation X that was used
derivative f6 +X that had a local

rm of fa. However, dynamically

Dynamical accessibility also clarifies bifurcations to instability of inflection point
modes. Dynamically accessible perturbations cannot eliminate inflection points of fa.
Since f6(uc ) changing sign at some point Uc is necessary for instability, it is
impossible for a dynamically accessible perturbation of an fa that has an inflection
point mode and otherwise only a continuous spectrum with positive signature to be
unstable. This is consistent with the fact that there exists a frame in which the
signature of the continuous spectrum and the signature of the inflection point mode
are both positive.
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13.4. Canonical infinite-dimensional case

There have been some works on structural stability of infinite-dimensional
Hamiltonian systems. The first of these results is again due to Krein and recorded in
his book with DaleckiI [DAL 70] on ordinary differential equations on Banach
spaces. They considered the simplest possible infinite-dimensional Hamiltonian
systems; canonical equations with bounded time evolution operators on Hilbert
spaces. They defined signature in terms of positive and negative splittings of the
canonical symplectic 2-form (Lagrange bracket) on the Hilbert space, the resulting
condition derived in this case is the following: if the part of the spectrum
corresponding to the positive space overlaps with the part of the spectrum
corresponding to the negative case, then there is an infinitesimal perturbation that
causes the system to become unstable. This result applies when there is a continuous
spectrum as well as a discrete spectrum, and is a direct generalization of Krein's
finite-dimensional theorem. The splitting of the spectrum into positive and negative
signature subspaces can be converted into an equivalent splitting in terms of positive
and negative energy, though delicacy is again required when the spectrum is
continuous. In these cases, we look at whether the Hamiltonian operator is positive or
negative definite on the spectral projections onto the targeted parts of the spectrum.
The slightly different definition of signature is useful when the Hamiltonian
functional is allowed to depend on the time t, which was also studied by KreIn, but
otherwise is equivalent to our definition.

The situation is more complican
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13.4.1. Negative energy oscillator (

where J is an anti symmetric unitary operator which without loss of generality can be

assumed to be J = (~ ~I) , and 21 is the self-adjoint operator associated with some

sesquilinear form H[·,.J.Equation [13.21] is a Hamiltonian system with Hamiltonian
functional H[! ,!J. KreIn said this system was strongly stable (structurally stable in
our terminology) if there is some 8 > 0 such that for alll~l - ~I < 8 , the spectrum of
J~1 is contained in the imaginary axis. KreIn was able to prove that the system was
strongly stable if and only if the phase space !Jll splits into two subspaces, !Jll+ and ~- ,

each invariant under the time evolution operator J~ such that J is positive on !Jll+ and
negative on !Jll_. This is equivalent to the Hamiltonian operator ~ being positive on
!Jll+ and negative on !Jll_ , which means that the system is structurally stable as long as
positive energy parts of the spectrum are disjoint from the negative energy parts of the
spectrum. No reference is made to the type of spectrum of the operator J~, and the
sign of the operator ~ on the eigenspace corresponding to some part of the spectrum
defines the signature of that part of the spectrum.

In particular, KreIn examined canonical equations of the form

it =J~!, [13.21]
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The situation is more complicated when ~ is allowed to be unbounded. This case
was considered by Grillakis [GRI90], who was interested in studying the stability
of travelling waves in the nonlinear Schrodinger (NLS) equation and other similar
systems. He was also interested in developing a technique for determining the number
of negative eigenvalues, a problem subsequently discussed by a number of authors
[CHU 10, KAP 04]. In the case where there was a negative energy mode embedded in
the continuous spectrum (which had positive signature in those examples), Grillakis
was able to prove structural instability. In the case where all signatures were positive,
under the assumption of relatively bounded perturbations, Grillakis was able to prove
structural stability. It should be noted that in the NLS case, the nature of the continuous
spectrum is different than in the case of Vlasov-Poisson and the other continuous
media field theories that exhibit CHH bifurcations. In the NLS equation, it is due to the
action of a derivative operator on a function space over an unbounded domain rather
than a multiplication operator. In the last section of this chapter, we will argue that the
nonlinear evolution and saturation of the resulting instability of Vlasov-Poisson and
similar equations is described by something called the single-wave model. It would be
interesting to see if there is an analog of the single wave model for systems like NLS,
at least in some sense. This would be related to the greater issue of how the two types
of continuous spectra are related.

13.4.1. Negative energy oscillator coupled to a heat bath

An illustrative example of the CHH bifurcation in the canonical case comes from
a negative energy version of the Caldeira-Leggett model. This case is like that for the
noncanonical equations considered in the bulk of this chapter because the continuous
spectrum arises from a multiplication operator. The Caldeira-Leggett model is a
simple model of a discrete mode embedded into a continuous spectrum. It is used to
introduce dissipation into quantum mechanics [CAL 81, HAG lla] through the
process of phase mixing, essentially realizing the phenomenon of Landau damping in
quantum mechanics. (Landau damping is a symptom of the continuous spectrum,
which leads to highly oscillatory solutions whose moments decay with time as
determined by the Riemann-Lebesgue lemma). By flipping the sign of the signature
of the discrete oscillator, we alter the Caldeira-Leggett model to describe a
gyroscopically stabilized system interacting with a heat bath (see also Bloch
et al. [BLO 04]). This results in structural instability, where the small parameter is
the amplitude of the coupling term. We demonstrate this result through an adaptation
of the Nyquist method, resulting in a Penrose-like criterion for stability.
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The Hamiltonian for this system is

H[Q ,P,q(x),p(x)] Q (2 2) 1 t" 2-2 Q +P +"2 Jo dxx(q(x) + p(xf)

+Q l<Xldx f (x)q(x) . [13.22]

If we divide both sides by ro2+ f)

from the upper half plane, we get the
on the real axis:

ro2 _ Q2
e(ro) = -ro-2 -+-Q-2

If f(x) = 0, the Hamiltonian describes a system consisting of a single harmonic
oscillator with negative energy and a continuous bath of oscillators with positive
energy, where (q(x),P(x)) are coordinates for the bath and here (Q,P) the single
harmonic oscillator. Solutions are stable and consist of independent oscillations of
the discrete oscillators and the continuum. If the discrete oscillator has positive
energy, and we activate the coupling to the continuum, then because the spectrum is
always of positive signature, we will still have stable solutions. In the negative
signature case, we expect the opposite. This can be seen by an argument that is
analogous to the Penrose criterion in the Vlasov equation.

The equations of motion are
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dt = QQ- Jo dxf(x)q(x)

ap(x)-at = -xq(x) - Qf(x) ,

[13.23]

[13.24]

o

o

which have the dispersion relation

[13.25]

Here, we use partial fractions to write the integral on the right hand side of [13.25]
in terms of the Cauchy integral of the anti-symmetric extension of f(x), denoted by
f-(x),

-oAL...-.----------l....---
-0.4
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If we divide both sides by 002 +.Q.2 and take the limit as 00 approaches the real axis
from the upper half plane, we get the following expression for the dispersion relation
on the real axis: .1 (00

2io dxxlq(x)2+p(x)2)

dxf(x)q(x) . [13.22]

002 _.Q.2

£ ( (0) = -00--0-2 -+-.Q.-2 [13.27]
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quation.

Using the argument principle, we find that the number of zeros in the upper half
plane is equal to the winding number of the image of the real line under this mapping
minus the number of poles. Since there is a single pole, where 00 = i.Q. , the number
of zeros is the winding number plus 1. For x > 0, the imaginary part of the image is
negative; for x < 0, it is positive. For generic f (not too large), the winding number
of this contour will be 1, and there will be two zeros of the dispersion relation in the
upper half plane, see Figure. 13.6 for such an example. These zeros emerge due to
an interaction between the continuous spectrum and the discrete mode with opposite
signature, just like in the CHH bifurcations that we have discussed so far.

O.3r------- -,..---------------------,

f(x)q(x )

-Qf(x) ,

[13.23]

[13.24]

o

o

[13.25]
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Figure 13.6. Nyquist plot for the Caldeira-Leggett model with a negative
energy harmonic oscillator at frequency .Q = 1.0 and coupling function

f(x)2 = .4xe-·25x2

13.5. Commentary: degeneracy and nonlinearity

We have given arguments above and in Chapter 12 that the CHH is like the usual
HH except the continuous spectrum plays the role of one of the colliding eigenvalue
pairs in the discrete case. A telltale sign that a continuous spectrum is playing this
role is the presence of an imaginary part in the dispersion relation when evaluated at
real frequencies , as is the case, e.g. for the Vlasov-Poisson system where on the real
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where the function G is real. This is
and imaginary parts

where u = OJ/ k = UR + iuj. Then,
its argument P and splitting the in
symmetric parts yields

e(k ,OJ)

u axis e(k,u) := 1 - nk? £[f~](u) ± iJrk- 2f~(u). The two signs occur because the
real axis is a branch cut, which is known to be a consequence of continuous spectra
in systems of this type. Observe that the same occurs for the Caldeira-Leggett model
in [13.27]. After collision, the number of discrete eigenvalues that emerge can be
counted in a straightforward way. For example, consider the Penrose plot of
Figure 13.3.1 that depicts a k =I- 0 bifurcation at criticality. If the fo(p) used for
Figure 13.3.1 is replaced by fT](p) , a one-parameter perturbation that matches fo(p)
at 11 = 0, then when instability sets in, the point of tangency will move with 11 so that
there are two intersections of the real axis giving rise to a winding number of unity,
which signals the instability. Generically, this will give a complex eigenvalue where
OJ = OJR + iy, with both real and imaginary parts of OJ depending on the bifurcation
parameter 11. A similar Penrose argument reveals that there is also a root in the lower
half plane, bringing our eigenvalue count to two, with OJ = OJR - iy corresponding to
decay. In these plots, k is assumed to be fixed, but associated with a given kE N is a
canonical pair, (.!2k, 9 k), which can be traced back to t;k and t;-k. Here, each kEN
labels a degree of freedom, which has two associated eigenvalues: a mode or degree
of freedom, determined by its wave number, has two dimensions, corresponding to
amplitude and phase . Replacing k with -k in e gives the remaining two eigenvalues,
OJ = -OJR ± iy. Thus, the CHH is a bifurcation to a quartet, OJ = ±OJR ± iy, and after
bifurcation, the structure is identical to that of the ordinary HH bifurcation.

Tractability often arises in problems because of assumptions of symmetry, e.g.
the homogeneity of the equilibrium fo simplifies the Vlasov problem and the
symmetry in the Jeans problem of section 12.2.2.3 of Chapter 12 allowed an explicit
solution of the dispersion relation [12.25] . Thus, the question arises, what happens if
we symmetrize the k =I- 0 CHH bifurcation discussed above? If fo(p) = fo(-p), with
the upper portion of Figure 13.3.1 unchanged, then we obtain a plot that is reflection
symmetric about the £ -axis with two osculating points. Under ~ parameter change
to instability, both curves must cross , and using the ray counting procedure discussed
in section 13.3, this causes the winding number to jump by 2. Thus , for symmetric fo
with k =I- 0, bifurcating eigenvalues occur in pairs , and after bifurcation, we have an
octet, characteristic of a degenerate CHH.

Next, consider the k = 0 bifurcation with the imposed symmetry fT] (p) = fT] (-~)
for all control parameter values 11 E IR20 with criticality at 11 = 0 as depicted III

Figure 13.3. Because of the symmetry, fT] (0) = 0 for all 11 near 11 = O. The
bifurcation can be instigated either by fixing k and varying 11 or by setting 11 to a
value for which the crossing of Figure 13.3 becomes negative and then varying k
until e = O. Either way, it follows that with the imposition of this symmetry, the
solution of the dispersion relation, e = 0, must have the following form:

[13.28]
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where the function G is real. This is seen by separating the dispersion relation into real
and imaginary parts

where U = ill / k = UR + iuj. Then, with the assumption that f~ is antisymmetric in
its argument p and splitting the imaginary part of [13.29] into symmetric and anti­
symmetric parts yields
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This expression must vanish when u is a root, which implies that u/ = 0, UR = 0 or
the integral equals zero. If we assume that ut is non-zero, then either UR vanishes or
the integral of [13.30] vanishes. In general, even with the assumed symmetry, we do
not expect the integral to vanish; the condition for the existence of an embedded mode
does not reference this integral in any way, and the imaginary part of the dispersion
relation at criticality for such only depends on the value of f Ti at the frequency of the
mode. Therefore, at the bifurcation point, this integral does not appear.

Note that the case of the degenerate octet discussed above is not forbidden by this
argument due to the potential vanishing of the integral , which would allow for both u/

and UR to be non-zero. From such a state, further variation of f Ti will lead to a branch of
solutions in the upper half plane. Also note that for the Vlasov-Jeans instability, where
the sign of the interaction is reversed, the integral [13.30] has a positive integrand for
the Maxwellian distribution and therefore cannot vanish.

From the above discussion about symmetry, it is clear that at criticality, say at
11 = 0, G(k,O) = 0 implies discrete zero frequency eigenvalues, while as 11 increases,
G(k,11 > 0) < 0 implies two pure imaginary eigenvalues , in?icati~g expo~ential

growth and decay. In fact, the situation is precisely like the dispersion relation of
[12.22] for the multifluid example of Chapter 12. Upon properly counting
eigenvalues as above, we see that after the bifurcation there are in fact two growing
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and two decaying eigenvalues. We note that an attempt to use the usual marginality
relations for determining the eigenvalues,

at OJR = 0, will be indeterminant because both the numerator and denominator of r
vanish. As we have seen in Chapter 12 such degenerate steady-state (SS) bifurcations
happen in finite systems when symmetry is imposed. We call any SS bifurcation in the
presence of a continuous spectrum, a CSS bifurcation.

e/(k,OJR)
aeRIaOJR '

[13.31]
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If we break the symmetry, then generically as T] increases, the k = 0 bifurcation is
a CHH bifurcation. For this case generally, f~ does not vanish and equations [13.31]
apply. Counting eigenvalues gives the CHH quartet. One might be fooled into
thinking a change of frames, a Doppler shift, would make the symmetric and
non-symmetric k = 0 bifurcations identical, but this is not the case. Galilean frame
shifting the degenerate CSS, say by a speed v", replaces [13.28] by a dispersion
relation of the form (OJ - kv*)2 = G(k,T]); thus, unlike the non-symmetric case, the
real parts of the frequencies do not depend on T].

A goal of linearized theories is to predict weakly nonlinear behavior. Indeed,
bifurcation theory in dissipative systems has achieved great success in this regard. In
particular, for finite-dimensional systems rigorous center manifold theorems allow us
to reliably track bifurcated solutions into the nonlinear regime and, in some
instances, obtain saturated values. For infinite-dimensional systems, various normal
forms, such as the Ginzburg-Landau equation, adequately describe pattern formation
due to the appearance of a single mode of instability in a wide variety of dissipative
problems. In Hamiltonian systems, the situation is more complicated; the lack of
dissipation creates a greater challenge because dimensional reduction is not so
accommodating. However, for finite-dimensional Hamiltonian systems, there is a
long history of perturbation/averaging techniques for near-integrable systems,
systems with adiabatic invariants, etc. Techniques that may lead to nonlinear normal
forms. Similarly, techniques have been developed for infinite-dimensional
Hamiltonian systems, particularly in the context of single field 1+1 models. However,
the combination of nonlinearity together with the type of continuous spectrum
discussed here and in Chapter 12 provide a distinctively more difficult challenge.

This challenge is met by the single-wave (SW) model, an infinite-dimensional
Hamiltonian system that describes the behavior near threshold and subsequent
nonlinear evolution of a discrete mode that emerges from the continuous spectrum.
The SW model was originally derived in plasma physics, then (re)discovered in
various fields of inquiry, ranging from fluid mechanics, galactic dynamics a~d
condensed matter physics. The presence of the continuous spectrum, which IS
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responsible for Landau damping on the linear level, causes conventional perturbation
analyses to fail because of singularities that occur at all orders of perturbation.
However, in [BAL 13], it was shown by a suitable matched asymptotic analysis, how
the single-wave model emerges from the large class of2+1 theories of section 12.3 of
Chapter 12. An essential ingredient for this asymptotic reduction is that these
Hamiltonian systems have a continuous spectrum in the linear stability problem
arising not from an infinite spatial domain but from singular resonances along curves
in phase space (e.g. the wave-particle resonances in the plasma problem or critical'
levels in fluid mechanics). Thus, the SW model describes nonlinear consequences of
the CHH and CSS bifurcations.

In particular, the SW model describes a range of universal phenomena, some of
which have been rediscovered in different contexts. For a bifurcation to instability, the
model features the so-called trapping scaling dictating the saturation amplitude and
the cats-eye or phase space hole structures that characterize the resulting phase-space
patterns. An example of this is shown in Figure 13.7, which depicts the phase space
pattern and temporal fate of the singe-wave (bifurcated mode) amplitude. The SW
model also gives a description of nonlinear Landau damping, i.e. how such damping
can be arrested by nonlinearity. An in-depth description of the SW model is beyond
the scope of the present contribution, but we comment that in addition to the normal
form that aligns with the CHH bifurcation, there is also a degenerate from associated
with the CSS bifurcation. We refer the reader to [BAL 13] (notably section V) for
further details.

x

Figure 13.7. Evolution of the single-wave model [BAL 13]. a) Plot ofa typical
phase space hole pattern. b) Behavior ofmode amplitude as a function of time
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13.6. Summary and conclusions

We presented a mathematical account of CHH bifurcations in 2+I Hamiltonian
continuous media field theories. We presented a mathematical framework in which
we describe the structural stability of equilibria of Hamiltonian systems, whose most
important ingredient was a method for attaching signature to the continuous
spectrum. We presented an application of this framework to the Vlasov-Poisson
equation, demonstrating that the two-stream instability can be interpreted as a
positive energy mode interacting with a negative energy continuous spectrum, and
that all equilibria are structurally unstable in Banach spaces that are not strong
enough to prevent infinitesimal perturbations from altering the signature of the
continuous spectrum. If we restrict to dynamically accessible perturbations, which by
construction cannot effect the signature, then only those equilibria with both positive
and negative signatures are structurally unstable.

Finally, in this chapter, we examined the difference between canonical and
noncanonical Hamiltonian systems and also the idea that the single-wave model is a
normal (degenerate) form for the CHH (CSS) bifurcation that describes its nonlinear
evolution. These processes underlie phase space pattern formation in the 2+I theories
that we are interested in, and explaining these patterns and the structure of the phase
space of these systems provides strong motivation for this work and further research.
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