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Chapter 14

Energy Stability Analysis for a Hybrid
Fluid-Kinetic Plasma Model

In plasma physics, a hybrid fluid-kinetic model is composed of a
magnetohydrodynamics (MHD) part that describes a bulk fluid component and a
Vlasov kinetic theory part that describes an energetic plasma component. Although
most hybrid models in the plasma literature are non-Hamiltonian, this chapter
investigates a recent Hamiltonian variant in its two-dimensional configuration. The
corresponding Hamiltonian structure is described along with its Casimir invariants.
Then, the energy-Casimir method is used to derive explicit sufficient stability
conditions, which imply a stable spectrum and suggest nonlinear stability.

14.1. Introduction

The discipline of plasma physics has provided a rich collection of spectral and
stability problems. Depending on the circumstances, plasmas may be described by
fluid models or kinetic theories with coupling to electromagnetic fields. As a result,
plasma theory has all of the possibilities and concomitant complications of all these
disciplines and, although a great deal of lore has been generated on the formal level,
there remain many open mathematical problems of a spectral and stability nature.

When dissipative terms are small enough to be safely neglected, the resulting
plasma systems are infinite-dimensional Hamiltonian systems. Thus, we are led to
stability and spectral problems of a wide variety of Hamiltonian operators. Usually,
these operators are non-Hermitian, non-normal and have rich spectra with both point

Chapter written by Philip J. MORRISON, Emanuele TASSI and Cesare TRONCI.
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and continuous components. Bifurcation theory of these operators including their
nonlinear extensions provides challenging non-trivial problems of important physical
relevance.

A particularly challenging class of spectral and stability problems arises from the
so-called hybrid models of plasma physics. These are models that incorporate both
fluid and kinetic equations. Generally speaking, the purpose of these models is to
describe a bulk portion of the plasma by a fluid model, such as MHD, while
describing a hot component of the plasma by a kinetic theory, such as the
Maxwell-Vlasov system. Thus, hybrid models can combine all spectral and stability
issues that occur in fluid and kinetic theories separately into a complicated whole. It
is well known that MHD and the Vlasov equation separately have a variety of
interesting point and continuous components to their spectra, and so, hybrid models
can indeed present a challenging class of mathematical problems. However, because
of the Hamiltonian nature of these models, we can use energy techniques to obtain
spectral information without performing detailed operator analysis. In particular, we
can obtain sufficient conditions for the existence of a stable spectrum by the so-called
energy-Casimir method (see [HOL 85, MOR 98]) that is based on the natural
Lyapunov-Dirichlet method of Hamiltonian systems theory.

The purpose of this chapter is to describe a particular hybrid model that is a
coupling between two-dimensional (planar) MHD and Vlasov theory. We will
describe its Hamiltonian structure and apply the energy-Casimir method to a class of
equilibrium states and obtain sufficient conditions for stability. This chapter is
organized as follows. In section 14.2, we review some details regarding stability and
the energy-Casimir method. Then, in section 14.3, we describe the planar hybrid
model, its noncanonical Hamiltonian structure and associated Casimir invariants.
This is followed in section 14.4 by the application of the energy-Casimir method
giving rise to the sufficient conditions. Finally, we conclude in section 14.5. For
completeness, two appendices are included: Appendix A (section 14.7) provides a
proof of the Jacobi identity, while Appendix B (section 14.8) contains a direct
verification that the functional indicated as Casimir for the hybrid model, indeed,
commutes with every other observable.

14.2. Stability and the energy-Casimir method

Consider a dynamical system z= V defined on some space (manifold) ~, where
Z E ~ can be a point or a trajectory, " . " denotes time derivative and V is an
autonomous vector field defined on ~. Our interest is in the stability of equilibrium
points Ze, solutions that satisfy V(Ze) = O. We adopt the standard definition of
stability for such points, which is the following:

An equilibrium point Ze, of a dynamical system is said to be stable if,
for any neighborhood N of Ze there exists a subneighborhood SeN of

Ze, such that if Z, an initial c
for all time t > O.

Often, we consider the associ
expanding V(Ze + 8z) to first ordi
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z., such that if Z, an initial condition, is in S, then the trajectory z(t ) EN
for all time t > 0.

Often, we consider the associated linear problem 8z = DV(ze) . 8z obtained by
expanding V(Ze + 8z) to first order. If 8z remains in N, then the system is said to be
linearly stable, and to distinguish this kind of stability from that with dynamics under
the full vector field V, we add the adjective nonlinear to describe the latter. Assuming
a solution of the form 8z = zexp(At ), the linear problem becomes (DV- Aid)· z = 0,
where id is the identity operator. The spectrum of DV, a(DV), is the set composed of
A E <C for which the linear operator DV - Aid has no densely defined continuous
inverse, and an equilibrium point is said to be spectrally stable if ia(DV) C LHP
(closure of the lower half complex plane). Observe that this definition of stability
includes the case iA E JR, which corresponds to pure oscillation, a case that is
sometimes called neutral stability. Inclusion of this case is most important, since this
is the only kind of spectral stability possessed by Hamiltonian systems.

There are several logical implications between the different types of stability, and
these can be somewhat subtle: for example, linear stability implies spectral stability;
linear stability does not imply nonlinear stability; nonlinear stability does not imply
linear stability. For establishing linear stability in Hamiltonian systems, which would
assure us that the spectrum lines on iJR , we can use Lyapunov function techniques
dating back to Lagrange and Dirichlet. Our main concern in this chapter is to do this
for a particular hybrid model.

For Hamiltonian systems, the vector field of our dynamical system is generated
by a Poisson bracket so that the equations of motion have the fo~ i ~ .{z,H} , which
for finite-dimensional systems in a coordinate patch is given by Zl = jlJdjH, where.J
is the Poisson bivector (cosymplectic form) and { , }: Coo (2') x Coo (2') ~ Coo (2').
Thus, equilibrium points satisfy dH E Ker(J). A consequence of the Poisson bracket
identities (see Appendix A (section 14.7)) is the Lie-Darboux theorem, which
implies Ker(J) is spanned by Casimir invariants, which satisfy {C,f} = 0, for all
functions f E Coo (2') (although there are serious unresolved issues with this theorem
for infinite-dimensional systems (see, e.g., [YOS 13])). Thus, equilibria are critical
points of an invariant energy function § = H +C and this fact is very useful for
establishing stability criteria.

For finite-dimensional systems, definiteness (positive or negative) of the quadratic
form 82§(Ze; 8z) assures both linear and nonlinear stability. For linear systems,
82§ is invariant, in fact the Hamiltonian for the linear dynamics, and its definiteness
means the equilibrium point is foliated by nested invariant sets that are topologically
spheres. The interior of these sets can thus serve as the subneighborhoods S in the
above definition of stability. For nonlinear systems, § is invariant and, under mild
smoothness conditions, 82§ determines the topological character of the level sets of
§ in a sufficiently small neighborhood of the equilibrium point Ze . This guarantees
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that for any neighborhood N, there is an SeN, determined by some level set of §,

within which the flow must remain .

For infinite-dimensional systems, the situation is considerably more complicated.
First, definiteness of 8 2§ does not imply that an extremal point that satisfies 8§ = 0
is in fact an extermum (maximum or minimum). For both linear and nonlinear stability,
we require 82§ to lead to a norm for defining open sets. This leads to a second and for
nonlinear stability an often formidable complication: even if a norm can be extracted
from 82§ for a rigorous proof of nonlinear stability, we must show that the solution
to the dynamical system actually exists in this norm. Unfortunately, for the systems of
most physical significance in plasma physics, global existence results are not available.
In the rosy situation where existence results are firm, it can tum out that more than one
choice of norm may be available and a given equilibrium can be stable in one norm
and not in another; in this case, a physical determination must be made about what is
important.

In this chapter, we will follow the practice in the physics literature (e.g. [HAZ 84,
H'OL 85, MOR 86, MOR 98]) and only obtain formal stability criteria for our hybrid
models. More specifically, in section 14.4, we will find conditions under which 82§ is
positive definite. The reader interested in seeing what makes up a rigorous application
of the energy-Casimir method is referred to [BAT 95, REI 94].

14.3. Planar Hamiltonian hybrid model

Many hybrid models exist in the plasma physics literature, but one of the most
popular kinetic-MHD variants is that of [CHE 91, PAR 92, PAR 99, FU 95], which
has often been used in computer simulations [KIM 04, TAK 09]. This model employs
the so-called pressure-coupling scheme , which suffers from not conserving energy
exactly. Recently, a Hamiltonian version of this scheme (HPCS) was given in
[HOL 12, TRO 10, TRO 13]. Here , we will present and analyze a two-dimensional
variant of the HPCS. The equations of motion will be given in section 14.3.1, its
Hamiltonian structure is given in section 14.3.2 and its Casimir invariants is given in
section 14.3.3.

14.3.1. Planar hybrid model equations ofmotion

Upon setting all physical constants equal to unity, the planar Hamiltonian hybrid
model is given by the following system of partial differential equations:

atro = [ljI,ro] + [J,A]

atA = [ljI,A],

af (;at + [f ,ljI] +VJ-' ~

In these equations, the scalar f
and indicate the magnetic peloid.
These are related to the magnetic j

ro = zx V· U: = z·V x U,

where zindicates the unit vector a
in which the coordinates x and y (
V J- acts as VJ-U = xaxu + yayu on
stream function ljI , on the other h
the vorticity by

J=-M,

respectively. In [14.4], the symb
distribution function (phase spac
particle phase space 9 x }R3, whe
Finally, we indicated by [, ] the c:
by [f ,g]:= VJ- g ·zx Vf·

Equations [14.1]-[14.3] gove
system, coupled with a kinetic
equation, in which the bulk plas
species , through the additional prl
on the right-hand side of equation
two-dimensional version of class
the evolution of the distribution f
influenced by the transport and :
effects vanish upon setting ljI = 0
ideal Ohm's law reflecting the a~

bulk fluid.
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In these equations, the scalar functions A and OJ are defined on a domain !!J ~ JR.2
and indicate the magnetic poloidal flux function and the vorticity of the bulk flow.
These are related to the magnetic field B and to the bulk velocity field U by

termined by some level set of $",

s considerably more complicated.
tremal point that satisfies 8$" = 0

both lin.ear and nonlinear stability,
:ets. This leads to a second and for
I: even if a norm can be extracted
y, we must show that the solution
Unfortunately, for the systems of

existence results are not available.
it can tum out that more than one
brium can be stable in one norm
ition must be made about what is

'Aro = [0/, ro] + [l,A]+2 X V· (V1-1d3v fV 1-V1-) ,
atA = [lfI,A] ,

af af A ( af )- + [f , lfI] +V-L' - +v·z x V V-LlfI'-at aX-L aV-L

af af
+vzV -LA·-- -V-L' V-LA - = o.

av-L av z

[14.1]

[14.2]

[14.3]

where zindicates the unit vector along the coordinate z of a Cartesian system (x,y,z),
in which the coordinates x and y cover the domain !!J. The two-dimensional gradient
V -L acts as V -L U = xaxu + yayu on a generic function u. The current density J and the
stream function lfI , on the other hand, are related to the magnetic flux function and to
the vorticity by

respectively. In [14.4], the symbol d denotes the two-dimensional Laplacian. The
distribution function (phase space density) f(x-L ' v) is defined over the (reduced)
particle phase space !!J x JR.3, where X-L and v-L denote (x,y) and (vx , vy), respectively.
Finally, we indicated by [, ] the canonical bracket acting on two functions as f and g
by [f,g] := V-Lg·z X Vf.

Equations [14.1]-[14.3] govern the evolution of an incompressible MHD bulk
system, coupled with a kinetic particle population. Equation [14.1] is a vorticity
equation, in which the bulk plasma flow is affected by the presence of the kinetic
species, through the additional pressure divergence term, represented by the last term
on the right-hand side of equation [14.1]. In the absence of such term, we retrieve the
two-dimensional version of classical MHD. Analogously, equation [14.3] describes
the evolution of the distribution function of the kinetic species, which, in its tum, is
influenced by the transport and force term associated with the bulk velocity. Such
effects vanish upon setting lfI= 0 in [14.3]. Equation [14.2], on the other hand, is the
ideal Ohm's law reflecting the assumption that the magnetic flux is frozen into the
bulk fluid.

physics literature (e.g. [HAZ 84,
al stability criteria for our hybrid
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14.3.2. Hamiltonian structure

The model of equations [14.1]-[14.3] is easily obtained from the
three-dimensional Hamiltonian hybrid model in [TRO 10, TRO 13] by reduction to
two spatial dimensions. Thus , it is not surprising that it inherits a Hamiltonian
structure in terms of a noncanonical Poisson bracket. In Appendix A (section 14.7),
we show how to reduce the Poisson bracket of the three-dimensional model to obtain
the planar system [14.1]-[14.3].

Recall that a Poisson bracket {, } defines a Lie algebra realization on a set of
observables consisting of the functionals of the dynamic variables, which here are io,

A and f. As alluded to in section 14.2, time evolution of an element F of such algebra
is determined by the equation

depending on the velocity coordina
as Y -+ 00.

Concerning the Hamiltonian [1L

energy of the system, consisting of
energy and the kinetic energy of the
terms appearing in [14.6], respectiv

With regard to the Poisson brad
a pure MHD part, consisting of tl
the Poisson bracket of reduced Mf
kinetic part, given by its last two te
MOR 82, MAR 82]. The remaining
the coupling between the MHD ani

dtF = {F,H} ,

where , for the case at hand, the Hamiltonian H is given by

and the expression for the Poisson bracket reads

{FG}=Jd2xro[8F 8G] Jd2XA([8F 8G]_[8G 8F])
, So:' 8w + So:' 8A 8w ' 8A

J
2 3 ([8F A 8G] [8G 8F] )- dxdvf -y· z xV'- - -y· z xV'-

8f ' 8ro v 8f ' 8w v

J
d2 d3 f ([8F 8G]+ x v 8f ' 8f v

+V'1-A.(~8G~8F _~8F ~8G))
dVz 8f dY1- 8f dVz 8f dv1- 8f .

[14.5]

[14.6]

[14.7]

14.3.3. Casimir invariants

As discussed in section 1L

identification of the Casimir invar
any arbitrary functional F in th
Casimirs is not always an easy tasl
the major obstacle to the applica
consideration, the existence of a cr
shown in [HOL 12] and this Casii
theory, where it is generalizer
three-dimensional Poisson bracket
projected on the plane. Upon Sl

helicity and the Vlasov dynamics
model reads

where <1>, 'II and A are arbitrary fu

That [14.8] is in fact a Casimir ill'

The existence of such Casimir
which becomes clearer when con

This bilinear operation satisfies antisymmetry, the Leibniz identity and the Jacobi
identity (see Appendix A (section 14.7)). In [14.7] we introduced a canonical bracket
defined over a reduced phase space as [f ,g]v := V'1-f· dV-tg- V'1-g' dV-tf.

For the choices F = co, A, or f , using [14.6] and [14.7] in [14.5], we retrieve the
model equations [14.1]-[14.3], provided that boundary terms arising from integration
by parts vanish. This is accomplished, for instance, if the involved functions are
periodic on !!J or, in case !!J is unbounded, if they also decay at infinity. The functions

ro := ro- zx V'.K , wii
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depending on the velocity coordinates are also assumed to go to zero sufficiently fast
as v -t 00.

Concerning the Hamiltonian [14.6], we remark that it naturally expresses the total
energy of the system, consisting of the sum of the bulk kinetic energy, the magnetic
energy and the kinetic energy of the hot particle population, corresponding to the three
terms appearing in [14.6], respectively.

With regard to the Poisson bracket, on the other hand, we observe that it possesses
a pure MHD part, consisting of the first two terms of [14.7], which correspond to
the Poisson bracket of reduced MHD [MOR 84, MAR 84]. It also possesses a purely
kinetic part, given by its last two terms , which include the Vlasov bracket [MOR 80a,
MOR 82, MAR 82]. The remaining terms, on the other hand, are those responsible for
the coupling between the MHD and the kinetic components.

14.3.3. Casimir invariants

As discussed in section 14.2, the energy-Casimir method requires the
identification of the Casimir invariants C, i.e. functionals satisfying {F,C} = °for
any arbitrary functional F in the algebra of observables. However, finding the
Casimirs is not always an easy task and their limited availability sometimes stands as
the major obstacle to the application of the method. However, in the case under
consideration, the existence of a cross-helicity invariant for the Hamiltonian PCS was
shown in [HOL 12] and this Casimir finds its way into the present two-dimensional
theory, where it is generalized. The existence of such a Casimir for the
three-dimensional Poisson bracket yields a whole family of Casimir invariants when
projected on the plane. Upon summing contributions arising from the magnetic
helicity and the Vlasov dynamics, the total Casimir invariant for the planar hybrid
model reads

a of a OG))
.avz of av-.L Of .

[14.8]

where <:1>, qJ and A are arbitrary functions, and we have introduced the shorthand

That [14.8] is in fact a Casimir invariant is shown in Appendix B (section 14.8).

The existence of such Casimir invariants is amenable to a physical interpretation,
which becomes clearer when considering separately, the contributions coming from

he Leibniz identity and the Jacobi
we introduced a canonical bracket
f· av~g - V's s avJ..f.

d [14.7] in [14.5], we retrieve the
ary terms arising from integration
ce, if the involved functions are
so decay at infinity. The functions

(i):=w- z xV'·K , with
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the functions <I>, '¥ and A. If <I> == A == 0, the remaining Casimir expresses the
conservation of magnetic flux through a surface moving with the bulk fluid velocity.
This property is the frozen-in condition for the magnetic flux, inherited from ideal
MHD. If <I> == '¥ == 0, we retrieve the conservation of the integral of any function of
f , which is characteristic of Vlasov systems and whose physical meaning in terms of
particle rearrangements was given in [MOR 87]. However, a new family of invariants
associated with this two-dimensional hybrid model appears when setting '¥ == A == O.
For this case , the Casimir family reduces to

14.4.1. Equilibrium variational pl

To construct a variational princi
define the free energy functional g.
reads

C(ro ,A,f) Jd2
x (ro -2 xV -Jd3vfVl-) <P(A)

Jd2
x <P'(A) (V.L 'II"Vl-A +Jd

3vf V l- "2 x VA)

Jd2x<I>'(A)(U -K) ·B , [14.9]

where we split-off the Vlasov part
part

Upon setting o § = 0, the equi

where we recall that K = Jd3 vivi . which corresponds to the momentum of the hot
particle species in the xy-plane. Equation [14.9] introduces a hybrid cross-helicity
density (U - K) . B, expressing the correlation between the magnetic field and a
velocity field obtained by subtracting from the bulk velocity a contribution coming
from the kinetic species. Upon setting K == 0, this Casimir reduces to the cross
helicity family of invariants for two-dimensional MHD which to our knowledge was
first found in [MOR 84]. For a given constant An, choosing <I>(A) = ~o(A), with Jt
indicating the Heaviside function with step located at A = Ao, expresses the property
that not only is the total generalized cross-helicity is conserved, but also its integral
over domains A = Ao, which are bounded by magnetic flux surfaces.

Given that these families of Casimirs have been identified explicitly, we are ready
to apply the energy-Casimir method and find sufficient conditions for energy stability
of the system. This is carried out in the next section.

14.4. Energy-Casimir stability analysis

Knowledge of the Casimir invariants provides a variational principle for equilibria,
o § = 0, which we tend to in section 14.4.1. Then, the next step of the energy-Casimir
method is to consider the second variation, 02§ = 0, which is done in section 14.4.2.
Note that all physical constants have been set to unity. A more perspicuous study of
the dynamical behavior can be obtained upon restoring these constants.

o 'lie+<I>(Ae),

o -Me+w e<I>' (Ae)+

whose first relation renders the thii

1-Iv+l
2

In the above expressions, we in
quantities.

Upon assuming an invertible
distribution function in the form

As an example, consider the re
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14.4.1. Equilibrium variational principle

To construct a variational principle for the equilibria under consideration, we first
define the free energy functional § = H +C. Then, we take its first variation, which
reads

where we split-off the Vlasov part O§v:= Jd2xd3v (A' + IvI2/2)Of and the MHD
part

O§MHD:= Jd2x (<I>(A) - ~ - I m)Om +Jd2x (m<I>' (A) - M + 'P' (A)) OA.

Upon setting O§ = 0, the equilibrium equations tum out to be

oonds to the momentum of the hot
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o life +<I>(Ae) ,

o -Me +we<I>' (Ae) + 'P' (Ae) ,

o <I>'(Ae}v.z x VAe+ 1~2 +A'(fe},

whose first relation renders the third in the form

[14.10]

[14.11]

[14.12]

[14.13]

identified explicitly, we are ready
ent conditions for energy stability

/ariational principle for equilibria,
re next step of the energy-Casimir
I, which is done in section 14.4.2.
.ity. A more perspicuous study of
ing these constants.

In the above expressions , we introduced the subscript e to indicate equilibrium
quantities.

Upon assuming an invertible A, from [14.13], we obtain the equilibrium
distribution function in the form

[14.14]

As an example, consider the relative Gaussian distribution
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It is easy to see that this yields

and therefore, in the absence of MHD equilibrium flow, we have we= 0, which means
that the vorticity 2 x V' . Jd3v fv 1- associated with the hot particle flow is also zero.
In the general case of an arbitrary equilibrium of the type [14.14], this quantity is
computed as

zx V .Jd
3
vIe v"- = Jd

3vI; (v"-+U) .Zx V [~ Iv"-+UI
2

- ~ IUI2 + ~v~]

= - V'1- . (ne V'1- <I» ,

where n; = Jd3v f e is the hot particle equilibrium density. In conclusion, the final
form of the hybrid equilibrium relation reads

- M e+<I>' (Ae) V'1- . ((1 +ne)V'1-<I>(Ae)) + 'P' (Ae) = 0.

In the absence of a hot species (ne == 0), this reduces to the celebrated
Grad-Shafranov equation for reduced MHD [HAZ 84]. Note, when n, =t 0, we call
the above equilibrium relation the hybrid Grad-Shafranov equation.

14.4.2. Stability conditions

Turning now to stability criteria, we compute the second variation

82ff =82ffMHD+ 82ffv- 2 JJd2xd3v 8<I>(A) v1- .2x V'8 f

- JJd2xd3v(v1-' 2x V'f)<I>'(A) (8A)2 ,

where we have introduced

82ffMHD= Jd2x (IV'80/ - V'8<I> 12+ (1- (<I>')2) IV'8A1 2)

+Jd2x (w<I>" + 'P" +<I>'~<I>') (8A)2,

82ffv = Jd2xd3vA"(f) (8f)2 ,

which correspond to the second variation expressions for reduced MHD [HAZ 84] and
the Vlasov equation [FOW 63, GAR 63, MOR 87, HOL 85, MOR 90], respectively.

After some rearrangement, the eXI
equilibrium solution of [14.10]-[14

82ff (we,Ae,fe) = 82 ffMHD(me,J

- JJd
2xd3

,

+ JJd2Xd3
,

+ JJd
2xd3

,

+ JJd2xd3
.

-Jd2x <I>,2

+ JJd2Xd3

where we have defined JID1-e:= J(;
trace.

Because energy stability is a
evaluated at the equilibrium, has ,
8 f, we infer from [14.15], that suf

1<I>'(Ae) 1

2 < 1 ; JID+ r .Le

me<I>" (Ae)+ 'P" (Ae)+<I>' (A

A" (fe ) > 2/f e .
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our stability condition requires ~
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After some rearrangement, the expression for the second variation, evaluated at an
equilibrium solution of [14.10]-[14.12], can be written as follows

82ff (we,Ae,fe) = 82ffM HD ( we,Ae,fe) +82ffv (we,Ae,fe)

-11d2xd3y (v ·z x V'fe)<I>"(Ae)(8A)2

+11d2xd3
y fe-1

18f - 8Afe V'1- <I>' (Ae) ' Zx V1- 1
2

+11d
2xd3

yi:' 1
8f - f e<I>' (Ae)V'1- 8A· Zx v1-1

2

- 211d2xd3
y t:' (8f)2 - 1d2x(TrIF1-e) lV'1-<I>'(Ae)1

2(8A)2

+11d2xd3Yfe (V1-' V'1-<I>'(Ae))2(8A)2

-1d2x<I>'2(Ae) (Tr IFr .)1V'1- 8AI2

+11d2xd3Yfe<I>'2(Ae)(V1-'V'1- 8Af

where we have defined IF.Le := Jd3
y f eY1-V1-, while Tr denotes the ordinary matrix

trace.

Because energy stability is attained (by definition) if the second vanation,
evaluated at the equilibrium, has a definite sign, for any perturbations 8A, 800 and
Sf, we infer from [14.15], that sufficient conditions for stability are provided by ..

v8<I>(A) v1- .ZX V'8f

F)<I>' (A )(8Af,

1<I>'(Ae) 1
2 < I

1+TrIP'1-e

we<I>" (Ae)+ 'P" (Ae)+ <I>' (Ae)~<I>' (Ae) - IV'1-<I>' (Ae)1
2 Tr IF1-e >°

A"(fe) > 2/f e .

[14.16]

[14.17]

[14.18]

p' ~<I>') (8A f ,

s for reduced MHD [HAZ 84] and
HaL 85, MaR 90], respectively.

Note that If/e = -<I>(Ae) implies Ue = -<I>' (Ae)Be, so that the stability condition
of [14.16] reads

where Be := IBel and U» := IUel. Because of the presence of the kinetic component,
our stability condition requires slower equilibrium flows, in comparison to the
corresponding condition for reduced MHD. The latter condition [MaR 84], indeed,
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requires MHD flows to be just sub-Alfvenic, whereas this is no longer sufficient to
satisfy [14.16] in the presence of a hot particle population.

Upon making use of <p' = - U e · Be/B; = -Ve/Be, the condition [14.17] can be
reformulated in the following way :

reveals that there is a neutral direc
[MOR 86], where it was shown the
interpretation in terms of spontane
Goldstone mode of particle physics

Finally, upon differentiating the equilibrium relation for A' with respect to v, we
obtain

/I () 1 ,
A I e = - I : ==? I e < - 21e .

For example, the particular Gaussian distributions such that I: = -Ie (unit
variance) are stable equilibria. This is a modification of Gardner's well -known
monotonicity theorem [GAR 63, FOW 63].

It should be emphasized that our sufficient conditions are not optimal. Clearly,
some potentially stabilizing positive definite terms have not been used, and tenus
involving gradients, e.g ., IV-l oAI2, could be estimated in conjunction with those
involving (OA)2 by the Poincare inequality in order to obtain better results. Also , the
conditions we have obtained control oA and 01, but an examination of 02§ MHD
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[14.20]

[14.19]Be X z,Vl..Je (1 _ V;) _ ~ Be X Z.V (V;) Be X Z.V B2
B2 B2 2 B2 .L B2 B2 .t. ee e e e e

u, Be X Z A I (Ve) 1

2
+- - -2- . V.LZ X V . Ke - V.L - Tr JID-le > 0,

Be Be Be

which provides an interpretation of this stability condition in terms of physical
properties of the equilibrium state. The terms of line [14.19] correspond to the same
terms appearing in the energy stability condition for reduced MHD. In particular, we
can recognize in the first term the above-mentioned sub-Alfvenic condition, in
addition to conditions depending on the relative direction of the equilibrium
magnetic fields and the gradient of the current density. These have been shown to be
a source for the kink and interchange instabilities observed in tokamaks in the
presence of magnetic curvature, see Chapter 12. The terms of line [14.20] account for
the new contributions due to the kinetic species. These are due to the compressibility
of the hot particle equilibrium flow and to the hot particle energy. We observe that, in
the case of static MHD equilibrium (i.e. Ue = 0), the presence of the kinetic species
has no influence on the condition [14.19]-[14.20]. In particular, in that limit, we
recover the pure reduced MHD condition [HAZ 84], Be X z·V-lie> 0, which
corresponds to a current density profile monotonically decreasing with the
equilibrium flux function Ae.
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ulation.

.is., the condition [14.17] can be

reveals that there is a neutral direction given by 8lJ1 = 8<1>. This was pointed out in
[MOR 86], where it was shown that this corresponds to the Alfven wave that has an
interpretation in terms of spontaneous symmetry breaking and plays the role of the
Goldstone mode of particle physics.

lation for A' with respect to v, we
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mated in conjunction with those
r to obtain better results. Also , the
but an examination of 8 2 ffMHD

14.5. Conclusions

Stability analyses playa central role in the investigation of phenomena occurring
in plasmas. For phenomena in which dissipative effects can be neglected, plasma
models should be energy conserving and possess a Hamiltonian structure, thereby
avoiding unphysical "phantom dissipation". For continuum models (e.g. kinetic or
fluid theories) formulated in terms of Eulerian variables, the Hamiltonian structure is
generically of noncanonical type. Associated with such Hamiltonian structure are
Casimir functionals, particular invariants arising from degeneracy of the
cosymplectic (bivector) operator. The existence of Casimir invariants is the basis of
the energy-Casimir method for determining stability conditions for noncanonical
Hamiltonian systems, which, as mentioned in section 14.2, imply spectral stability. In
this chapter, we applied the energy-Casimir method to the planar version of a hybrid
model for plasmas, which couples, via the pressure terms, the dynamics of a bulk
MHD flow, with the kinetic evolution of a population of hot particles.

After introducing the model, we formulated its Hamiltonian structure, pointing out
how it relates to the Hamiltonian structures of reduced MHD and the Vlasov equation.
In particular, in terms of the adapted variables, it emerged that the corresponding
noncanonical Poisson bracket introduces the kinetic-MHD coupling terms, whereas
the Hamiltonian is just the sum of the reduced MHD and Vlasov contributions. This
was also reflected in the Casimir structure. Indeed, the latter was seen to be divided
into three independent contributions: two of these inherited from reduced MHD and
Vlasov equation, which correspond to the magnetic frozen-in condition and to the
conservation of any function of I integrated over phase space, respectively. However,
the third family of Casimirs that was seen to originate from the coupling terms in
the bracket is peculiar to this model and expresses the conservation of a generalized
hybrid cross-helicity, which , unlike the usual cross-helicity of MHD, accounts also for
the contribution of the fluid momentum of the hot particle species.

The abundance of Casimirs present in this planar reduction of the model
facilitated the application of the energy-Casimir method. From the first variation of
the free energy functional ff, we determined general equations for equilibria of the
system. These led, in particular, to a hybrid Grad-Shafranov equation, which
generalizes the traditional equilibrium conditions of two-dimensional MHD. Finally,
explicit energy stability conditions were obtained from the analysis of the second
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variation of § . On the basis of the obtained conditions, the presence of the hot
particle species was seen to impose a lower bound on the equilibrium bulk speed
when compared to the pure MHD case. The presence of the kinetic component was
also seen to require stronger conditions on the current density profile for the stability
to be attained. The distribution function, on the other hand, is constrained by
dependence on the MHD component, via the equilibrium relation, and its variation in
terms of the equilibrium quantities required a bound from above in order to satisfy
the stability conditions. However, also in the presence of the hot particle population,
we observed that without MHD equilibrium flow, a monotonically decreasing current
density profile satisfies the stability condition, as is the case for reduced MHD. Also,
Gaussian distribution functions with unit variance are seen to satisfy the equilibrium
condition, as is the case for purely kinetic Vlasov-like systems.

In conclusion, we remark that the conditions obtained are not optimal; further
analysis of the functional § could lead to tighter conditions. However, the energy­
Casimir analysis as performed is direct and efficient and circumvents more detailed
spectral analysis.
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14.7. Appendix A: derivation of hybrid Hamiltonian structure

In this appendix, we obtain the Hamiltonian structure composed of the
Hamiltonian of [14.6] and Poisson bracket of [14.7], by restriction of the
Hamiltonian structure first given in [TRO 10] for the full three-dimensional HPCS
model. (For background material see, e.g., [MOR 98, MOR 05] and [AND 12] for a
similar derivation).

The HPCS Poisson bracket is gi

J 3 (8(
{F,G} = d xM· 81'

-jd3Xp(~

+ jd3XB·(i

+Jd
3xd3vj

+Jd
3xd3vj

whereas the Hamiltonian reads
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In equations [14.21) and [14.22], p and M indicate the mass density of the bulk
fluid and its momentum density, respectively, whereas %'(p) is the internal energy per
unit mass. Physical constants have been set equal to unity.

The proof that [14.22] satisfies the Jacobi identity also can be carried out by
explicit verification. Indeed, upon recognizing that it is composed of terms of the
original bracket of MHD [MOR 80b] and that of the Maxwell-Vlasov system
[MOR 80a , MOR 82, MAR 82, MAR 83], together with later work on the two-fluid
system [SPE 82a, SPE 82b] , it is not difficult to ascertain the validity of the Jacobi
identity. Alternatively, we can begin with an action principle (see, e.g., [MOR 09]), in
particular the action principle for this model of [HOL 12], and .derive the Poisson
bracket of [14.22], thereby ensuring the Jacobi identity.

To see how the bracket [14.21] reduces to the bracket [14.7] of the planar model,
we first consider the two-dimensional restriction of [14.21] by eliminating the
dependence on the z coordinate. Then, we can enforce incompressibility by
restricting to functionals that are independent of p in [14.21]. Consistently, we also
remove the internal energy term from the Hamiltonian [14.22] . We note that with
such restrictions on the functionals and on the Poisson bracket, the Poisson bracket
loses all explicit functional dependence on p. Thus, according to the bracket theorem
of [MOR 82], the restricted Poisson bracket must satisfy the Jacobi identity.
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By using vector identities, we can rewrite the first line of [14.21] as

Then, introduction of the relations

[14.23]

J 2 3 [81= d xd vv .Zx Vf 8(

V x M = roz, B = V x (Az) [14.24] - [4>,v

leads to the following rule for transforming the functional derivatives

.'

8F (81' )8M = V x 8roz ,
8F 81'

z ·Vx - = - .
8B 8A

[14.25]

In the above computations, inte
have been carried out and the Lei1
differentiation with respect to the a

Using [14.24] and [14.25], together with [14.23] in [14.21], leads namely to the
bracket [14.7] of the incompressible planar model. The Hamiltonian [14.22], on the
other hand, reduces to [14.6].

14.8. Appendix B: Casimir verification

Here, we demonstrate explicitly that [14.8] is a Casimir invariant, i.e. satisfies
{F,C} = 0 for all functionals F. This is simplified by noting that Jd2x 'P (A) and
Jd2xd3vA(f) are separate Casimirs of [14.7]. Using 8C/8f = v· Zx V<I>, we obtain

14.9. Bibliography

[AND 12] ANDREUSSI T., Mo
magnetohydrodynamics: symmet
variational principles", Physics of,

[BAT 95] BATT J. , MORRISON P.J. ,
Vlasov -Poisson system in three din
vol. 130, pp. 163-182, 1995.

[CHE 91] CHENG C.Z. , "A kine
phenomena", Journal ofGeophysi

[FOW 63] FOWLER K., "Lyapunov's
Physics, vol. 4, pp. 559-609, 1963

[FU 95] Fu G.Y., PARK W., "Nonlir
Eigenmode" , Physical Review Le,

[GAR 63] GARDNER C.S. , "Bound c
vol. 6, pp. 839-840, 1963.

[HAZ 84] HAZELTINE R.D ., HOLM
Poisson brackets and nonlinear Ly
M.Q. , SAWLEY M.L. (eds), Inu
Polytechnique Federal School of I

[HOL 85] HOLM D.D. , MARSDEN J
plasma equilibria" , Physics Rep01

[HOL'12] HOLM D .D ., TRONCI C.,
Communications in Mathematical



.st line of [14.21] as

[14.23]

[14.24]

.tional derivatives

[14.25]

~] in [14.21], leads namely to the
The Hamiltonian [14.22], on the

a Casimir invariant, i.e. satisfies
.d by noting that Jd2x\P(A ) and
S8C/8j = v -Zx V<P, we obtain

- [v. z xv~, v . z x v ;:U

8F]
8m v

Energy Stability Analysis 327

In the above computations, integrations by parts with vanishing boundary terms
have been carried out and the Leibniz identity has been used. Also, prime denotes
differentiation with respect to the argument.

14.9. Bibliography

[AND 12] ANDREUSSI T., MORRISON P.J ., PEGORARO F, "Hamiltonian
magnetohydrodynamics: symmetric formulation, Casimir invariants, and equilibrium
variational principles", Physics ofPlasmas, vol. 19, pp . 052102-1-052102-8, 2012 .

[BAT 95] BATT J., MORRISON P.J ., REIN G., "Linear stability of stationary solutions of the
Vlasov-Poisson system in three dimensions", Archivefor Rationa l Mechanics and Analysis,
vol. 130, pp. 163-182, 1995.

[CHE 91] CHENG C.Z., "A kinetic-magnetohydrodynamic model for low-frequency
phenomena", Journal ofGeophysical Research, vol. 96, no . A12, pp. 21159-21171, 1991.

[FOW 63] FOWLER K ., "Lyapunov's stability criteria for plasmas", Journal ofMathematical
Physics, vol. 4, pp. 559-609, 1963 .

[FU 95] Fu G .Y., PARK W., "Nonlinear hybrid simulation of the toroidicity-induced Alfven
Eigenmode", Physical Review Letters , vol. 74, pp. 1594-1596, 1995.

[GAR 63] GARDNERC.S., "Bound on the energy available from a plasma", Physics ofFluids,
vol.6,pp.839-840, 1963.

[HAZ 84] HAZELTINE R.D ., HOLM D.D ., MARSDEN J.E., MORRISON P.J., "Generalized
Poisson brackets and nonlinear Lyapunov stability-application to reduced MHD", in TRAN
M .Q ., SAWLEY M.L. (eds) , International Conference on Plasma Physics Proceedings ,
Poly technique Federal School of Lausanne, pp. 203-211 , 1984.

[HOL 85] HOLM D .D ., MARSDEN J .E. , RATIU T. S., et ai., "Nonlinear stability of fluid and
plasma equilibria", Physics Reports , vol. 123, pp. 1-116, 1985.

[HOL' 12] HOLM D.D. , TRONeI C. , "Euler-Poincare formulation of hybrid plasma models" ,
Communications in Mathematical Sciences, vol. 10, pp. 191-222,2012.



328 Nonlinear Physical Systems

[KIM 04] KIM C.C. , SOVINEC C.R. , PARKER S .E. , "Hybrid kinetic-MHD simulations in
general geometry", Computer Physics Communications, vol. 164, pp. 448-455, 2004.

[MAR 82] MARSDEN J.E ., WEINSTEIN A. , "The Hamiltonian structure of the Maxwell­
Vlasovequations", Physica D, vol. 4, pp. 394-406, 1982.

[MAR 83] MARSDEN J.E., WEINSTEIN A. , RATIU T.S., et al., "Hamiltonian systems with
symmetry, coadjoint orbits and plasma physics", Atti della Accademia delle Scienze di
Torino. Classe di Scienze Fisiche, Matematiche e Naturali, vol. 117, pp. 289-340, 1983.

[MAR 84] MARSDEN J.E., MORRISON P.J. , "Noncanonical Hamiltonian field theory and
reduced MHD", Contemporary Mathematics, vol. 28, pp. 133-150, 1984.

[MOR 80a] MORRISON P.l. , "The Maxwell-Vlasov equations as a continuous Hamiltonian
system", Physics Letters A, vol. 80, pp. 383-386, 1980.

[MOR 80b] MORRISON P.J., GREENE J .M., "Noncanonical Hamiltonian density formulation
of hydrodynamics and ideal magnetohydrodynamics", Physical Review Letters, vol. 45,
pp. 790-794, 1980.

[MOR 82] MORRISON P.J. , "Poisson brackets for fluids and plasmas", in TABORM., TREVE
.: Y. (eds) , Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems,

AlP Conference Proceedings, pp. 13-46, 1982.

[MOR 84] MORRISON P.J ., HAZELTINE R.D. , "Hamiltonian formulation of reduced
magnetohydrodynamics", Physics ofFluids, vol. 27, pp. 886-897, 1984.

[MOR 86] MORRISON P.J., ELIEZER S. , "Spontaneous symmetry breaking and neutral
stability in the noncanonical Hamiltonian formalism", Physical Review A, vol. 33,
pp.4205-4214,1986.

[MOR 87] MORRISON P.J., "Variational principle and stability of nonmonotonic Vlasov­
Poisson equilibria", Zeitschrift fiir Naturforschung, vol. 42a, pp. 1115-1123, 1987.

[MOR 90] MORRISON P.J., KOTSCHENREUTHER M., "The free energy principle, negative
energy modes and stability", in BAR'YAKHTAR Y.G., CHERNOUSENKO Y.M., EROKHIN
N.S. , SITENKOA.B. , ZAKHAROV Y.E. (eds), Nonlinear World. IV International Workshop
on Nonlinear and Turbulent Processes in Physics, Singapore, World Scientific, pp. 910­
932 , 1990.

[MOR 98] MORRISON P.J. , "Hamiltonian description of the ideal fluid" , Reviews ofModern
Physics, vol. 70 , pp. 467-521 , 1998 .

[MOR 05] MORRISON P.J. , "Hamiltonian and action principle formulations of plasma
physics" , Physics ofPlasmas, vol. 12, pp. 058102-1-058102-13, 2005.

[MOR 09] MORRISON P.J. , "On Hamiltonian and action principle formulations of plasma
dynamics", in ELIASSON B., SHUKLA P. (eds) , New Developments in Nonlinear Plasma
Physics: Proceedings for the 2009 ICTP College on Plasma Physics, AlP Conference
Proceedings, La Jolla, pp . 329-344,2009.

[MOR 13] MORRISON P.J., TASSI E., TRONKO N ., "Stability of compressible reduced
magnetohydrodynamic equilibria-analogy with magnetorotational instability", Physics of

Plasmas, vol. 20, pp. 042109-1-042109-10, 2013.

[PAR 92] PARK W., et al. , "Three-di
simulation", Physics ofFluids B, vc

[PAR 99] PARK W., BELOVA E.Y. ,
multilevel physics models", Physics

[REI 94] REIN G., "Nonlinear stabilit
method" , Mathematical Methods in

[SPE 82a] SPENCER R.G., "The
electrodynamics", in TABOR
Hydrodynamics and Integrability ill
Jolla, California, pp. 121-126, 198:

[SPE 82b] SPENCER R.G., KAUFMA
dynamics", Physical Review A, vol.

[TAK 09] TAKAHASH R ., BRENNAN
on resistive MHD stability", Phys .

2009.

[TRO 10] TRONCI C. , "Hami ltonian c
A: Mathematical and Theoretical, ,

[TRO 13] TRONCI C., TASSI E. ,
Hamiltonian vs. non-Hamiltonian",

[YOS 13] YOSHIDA Z., MORRISON ]
Euler equation an.d equilibrium poi;



Hybrid kinetic-MHD simulations in
ns,vol. l64,pp.448-455,2004.

miltonian structure of the Maxwell_
~82.

I., et al., "Hamiltonian systems with
tti della Accademia delle Scienze di
trali, vol. 117, pp. 289-340, 1983.

onical Hamiltonian field theory and
pp. 133-150, 1984.

lations as a continuous Hamiltonian
O.

ical Hamiltonian density formulation
" Physical Review Letters , vol. 45,

and plasmas", in TABOR M., TREVE
i Integrability in Dynamical Systems,

.miltonian formulation of reduced
'p. 886-897, 1984;,.

us symmetry breaking and neutral
m", Physical Review A, vol. 33,

stability of nonmonotonic Vlasov­
,I. 42a, pp. 1115-1123, 1987.

'The free energy principle , negative
. CHERNOUSENKO V.M. , EROKHIN
.ar World. IV International Workshop
ngapore, World Scientific, pp. 910-

the ideal fluid", Reviews ofModern

principle formulations of plasma
'58102-13, 2005.

In principle formulations of plasma
Developments in Nonlinear Plasma

1 Plasma Physics , AlP Conference

"Stability of compressible reduced
etorotational instability", Physics of

Energy Stability Analysi s 329

[PAR 92] PARK W., et ai., "Three-dimensional hybrid gyrokinetic-magnetohydrodynamics
simulation", Physics ofFluids B, vol. 4, pp. 2033-2037, 1992.

[PAR 99] PARK W., BELOVA E.V. , Fu G.Y., et al., "Plasma simulation studies using
multilevel physics models", Physics ofPlasmas , vol. 6, pp. 1796-1803, 1999.

[REI 94] REIN G. , "Nonlinear stability for the Vlasov-Poisson system - the energy-Casimir
method", Mathematical Methods in the Applied Sciences, vol. 17, pp. 1129-1140, 1994.

[SPE 82a] SPENCER R.G., "The Hamiltonian structure of multi-species fluid
electrodynamics", in TABOR M., TREVE Y. (eds), Mathematical Methods in
Hydrodynamics and Integrability in Dynamical Systems, AlP Conference Proceedings, La
Jolla, California, pp. 121-126, 1982.

[SPE 82b] SPENCER R.G., KAUFMAN A.N. , "Hamiltonian structure of two-fluid plasma
dynamics ", Physical Review A, vol. 25, pp. 2437-2439, 1982.

[TAK 09] TAKAHASH R. , BRENNAN D.P. , KIM C.C ., "Kinetic effects of energetic particles
on resistive MHD stability", Physical Review Letters, vol. 102, pp. 135001-1-135001-4,
2009.

[TRO 10] TRONCI C., "Hamiltonian approach to hybrid plasma models", Journal of Physics
A: Mathematical and Theoretical, vol. 43, pp. 375501-1-375501-26,2010.

[TRO 13] TRONCI C. , TASSI E. , MORRISON P.J. , "Hybrid Vlasov-MHD models:
Hamiltonian vs. non-Hamiltonian", arXiv , 1306.2406 ,2013.

[YOS 13] YOSHIDA Z. , MORRISON P. J., DOBARRO E , "Singular Casimir elements of the
Euler equation and equilibrium points", Journal ofMathematical Fluid Mechanics, 2013.


	Title
	Chapter14
	0191_001
	0191_002
	0191_003
	0191_004
	0191_005
	0191_006
	0191_007
	0191_008
	0191_009
	0191_011
	0191_012
	0191_013
	0191_014
	0191_015
	0191_016
	0191_018
	0191_019


