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Abstract In this paper we consider Runge–Kutta discontinuous Galerkin (RKDG) schemes
for Vlasov–Poisson systems that model collisionless plasmas. One-dimensional systems are
emphasized. The RKDG method, originally devised to solve conservation laws, is seen to
have excellent conservation properties, be readily designed for arbitrary order of accuracy,
and capable of being used with a positivity-preserving limiter that guarantees positivity of
the distribution functions. The RKDG solver for the Vlasov equation is the main focus, while
the electric field is obtained through the classical representation by Green’s function for
the Poisson equation. A rigorous study of recurrence of the DG methods is presented by
Fourier analysis, and the impact of different polynomial spaces and the positivity-preserving
limiters on the quality of the solutions is ascertained. Several benchmark test problems,
such as Landau damping, the two-stream instability, and the Kinetic Electro static Electron
Nonlinear wave, are given.

Keywords Vlasov–Poisson · Discontinuous Galerkin methods · Recurrence ·
Positivity-preserving · BGK mode · KEEN wave

1 Introduction

The Vlasov–Poisson (VP) system is an important equation for modeling collisionless plas-
mas, one that possesses computational difficulties of more complete kinetic theories. Thus,
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it serves as an important test bed for algorithm development. The VP system describes the
evolution of f = f (x, v, t), the probability distribution function (pd f ) for finding an elec-
tron (at position x with velocity v at time t) with a uniform background of fixed ions under
a self-consistent electrostatic field. In particular, the non-dimensionalized VP system (with
time scaled by the inverse plasma frequency ω−1

p and length scaled by the Debye length λD)
is given by

∂t f + v · ∇x f − E · ∇v f = 0 � × (0, T ]
−�x� = 1 −

∫

Rn

f dv �x × (0, T ] (1)

E = −∇x� �x × (0, T ].
Here the domain � = �x ×R

n , where �x can be either a finite domain or R
n . The boundary

conditions for the above systems are summarized as follows: f → 0 as |x | → ∞ or |v| → ∞.
If �x is finite, then we can impose either inflow boundary conditions with f = f in on
�I = {(x, v)|v · νx < 0}, where νx is the outward normal vector, or more simply impose
periodic boundary conditions. For simplicity of discussion, in this paper, we will always
assume periodicity in x . Also, we add that when the VP system is applied to plasmas the
total charge neutrality condition,

∫
�x

(∫
Rn f dv − 1

)
dx = 0, is imposed.

The following physical quantities associated with this system are related to its conservation
properties:

charge density ρ(x, t) =
∫

Rn

f (x, v, t) dv,

momentum density j (x, t) =
∫

Rn

v f (x, v, t) dv, (2)

kinetic energy density ξk(x, t) = 1

2

∫

Rn

|v|2 f (x, v, t) dv,

electrostatic energy density ξe(x, t) = 1

2
|E(x, t)|2.

Indeed, it is well-known that the VP system conserves the total electron charge
∫
�x

ρ(x) dx ,
momentum

∫
�x

j (x) dx , and energy
∫
�x

(ξk(x)+ ξe(x)) dx . Moreover, any functional of the
form

∫
�

G( f ) dxdv is a constant of motion. In particular, this includes the k-th order invariant
Ik = ∫

�
f k dxdv and the entropy S = − ∫

�
f ln( f ) dxdv. Sometimes the functional I2 is

also called the enstrophy, and all of these invariants are called Casimir invariants (see, e.g.,
[34]).

The VP system has been studied extensively for the simulation of collisionless plasmas.
Popular numerical approaches include Particle-In-Cell (PIC) methods [6,24], Lagrangian
particle methods [4,17], semi-Lagrangian methods [9,45], the WENO method coupled with
Fourier collocation [58], finite volume (flux balance) methods [7,18,19], Fourier–Fourier
spectral methods [27,28], continuous finite element methods [49,50], among many others. In
this paper, we will focus on the discontinuous Galerkin (DG) method to solve the VP system.
The original DG method was introduced by Reed and Hill [42] for neutron transport. Lesaint
and Raviart [32] performed the first convergence study for the original DG method. Cockburn
and Shu in a series of papers [15,14,11–13] developed the Runge–Kutta DG (RKDG) method
for hyperbolic equations. The RKDG methods have been used to simulate the VP system in
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plasmas by Heath, Gamba, Morrison and Michler [22,23] and for the gravitational infinite
homogeneous stellar system by Cheng and Gamba [8]. Theoretical aspects about stability,
accuracy and conservation of those methods are discussed in [22,23] and more recently in [3,
2] for energy conserving schemes. Such methods have excellent conservation properties, can
be readily designed for arbitrary order of accuracy, and have the potential for implementation
on unstructured meshes with hp−adaptivity. To ensure the positivity of the solution, one can
use a maximum-principle-satisfying limiter that has been recently proposed by Zhang and
Shu in [52] for conservation laws on cartesian meshes, and later extended on triangular meshes
[56]. This limiter has been used to develop positivity-preserving schemes for compressible
Euler [53,55], shallow water equations [48], and Vlasov-Boltzmann transport equations [10].
It has also been employed recently in the framework of semi-Lagrangian DG methods [41,43]
for the VP system.

The scope of the present paper is as follows: we focus on a detailed study of the RKDG
scheme for the Vlasov equation from both the numerical and analytical points of view. Since
we are only considering one-dimensional problems, we use the classical representation of the
solution by Green’s function to compute the Poisson equation; therefore, the electric field is
explicitly given as a function of the numerical density. This removes all discretization error
from the Poisson equation and lets us more accurately investigate our DG solver for the Vlasov
equations. We rigorously study recurrence, which is an important numerical phenomenon
that commonly appears with many solvers. We use Fourier analysis and obtain eigenvalues
of the amplification matrix, and then investigate the impact of different polynomial spaces on
the quality of the solution by examining conserved quantities as well as convergence to BGK
states [5] for some choices of initial states. We consider benchmark test problems such as
simulations of Landau damping phenomena for the linearized and nonlinear Vlasov Poisson
systems, two-stream instability, and their long time BGK states and the formation of Kinetic
Electro static Electron Nonlinear (KEEN) waves, both for the nonlinear system as well.

The remaining part of the paper is organized as follows: in Sect. 2, we describe the
numerical algorithm and summarize its conservation properties. In Sect. 3, we study the
recurrence phenomena that occurs for linear Vlasov type transport equations discretized by
DG methods with various polynomial orders. Sections 4.1 and 4.2 are devoted to discussions
of simulation results for the linearized and nonlinear VP system, respectively, for diverse
choices of initial data and external drive potentials. We conclude with a few remarks in Sect. 5.

2 Numerical Methods

In this section we first describe the proposed DG numerical algorithm and then discuss some
of its basic conservation properties related to the quantities of (2). This is done for both the
fully nonlinear VP system of (1) and the linearized VP system obtained by linearizing about
the homogeneous equilibrium feq(v), with corresponding vanishing electric equilibrium
field. Periodic boundary conditions in x are assumed.

Thus, setting f (x, v, t) = feq(v) + δ f (x, v, t) and expanding the system to first order
approximation, the perturbation δ f satisfies the Linear Vlasov–Poisson (LVP) system,

∂t f + v · ∇x f = E · ∇v feq � × (0, T ]
�x� =

∫

Rn

f dv �x × (0, T ] (3)

E = −∇x� �x × (0, T ],
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where δ f has been replaced by f to ease the notation. We find it convenient and efficient to
intertwine the discussion of our algorithms for the VP and LVP systems. To avoid confusion
in Sect. 2.1 we underline the words linear and nonlinear, signaling where discussions specific
to each apply.

2.1 Numerical Algorithm

For one-dimensional problems, we use a mesh that is a tensor product of grids in the x and
v directions, because this simplifies the definitions of the mesh and polynomial space for the
Poisson equation. Specifically, the domain � is partitioned as follows:

0 = x 1
2

< x 3
2

< · · · < xNx + 1
2

= L , −Vc = v 1
2

< v 3
2

< · · · < vNv+ 1
2

= Vc,

where Vc is chosen appropriately large to guarantee f (x, v, t) = 0 for |v| ≥ Vc. This is a
reasonable assumption, because of the well-posedness of the one-dimensional VP system as
indicated in [21]. The grid is defined as

Ii, j = [xi− 1
2
, xi+ 1

2
] × [v j− 1

2
, v j+ 1

2
],

Ji = [xi−1/2, xi+1/2], K j = [v j−1/2, v j+1/2], i = 1, . . . Nx , j = 1, . . . Nv,

where xi = 1
2 (xi− 1

2
+ xi+ 1

2
) and v j = 1

2 (v j−1/2 + v j+1/2) are center points of the cells.
We will make use of several approximation spaces. For the x-domain, we consider the

piecewise polynomial space of functions ξ : �x → R,

Zl
h = {ξ : ξ |Ji ∈ Pl(Ji ), i = 1, . . . Nx },

where Pl(Ji ) is the space of polynomials in one dimension of degree up to l. For the (x, v)

space, we consider two approximation spaces of functions φ, ϕ : � → R,

V l
h = {φ : φ|Ii, j ∈ Q

l(Ii, j ), i = 1, . . . Nx , j = 1, . . . Nv}
and

W l
h = {ϕ : ϕ|Ii, j ∈ P

l(Ii, j ), i = 1, . . . Nx , j = 1, . . . Nv},
where Q

l(Ii, j ) = Pl(Ji ) ⊗ Pl(K j ) = span{xl1 vl2 ,∀ 0 ≤ l1 ≤ l, 0 ≤ l2 ≤ l} denotes
all polynomials of degree at most l in x and v on Ii, j , and P

l(Ii, j ) = span{xl1 vl2 ,∀ 0 ≤
l1 + l2 ≤ l, l1 ≥ 0, l2 ≥ 0}. These two spaces are widely considered in the DG literature
for multi-dimensional problems. A simple calculation shows that the number of degrees of
freedom of Q

l(Ii, j ) is (l +1)2. For l ≥ 1 this is larger than the number of degrees of freedom
of P

l(Ii, j ), which is (l + 1)(l + 2)/2.
First we describe the RKDG scheme for the linear Vlasov equation. We seek fh(x, t) ∈ V l

h
(or W l

h), such that
∫

Ii, j

( fh)tϕh dxdv −
∫

Ii, j

v fh(ϕh)x dxdv +
∫

K j

(v̂ fhϕ−
h )i+ 1

2 ,v dv

−
∫

K j

(v̂ fhϕ+
h )i− 1

2 ,v dv =
∫

Ii, j

Eh f ′
eqϕh dxdv (4)

holds for any test function ϕh(x, t) ∈ V l
h (or W l

h). Here and below, we use the following
notations: Eh is the discrete electric field, which is to be computed from Poisson’s equation,
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(ϕh)±i+1/2,v = limε→0 ϕh(xi+1/2±ε, v), (ϕh)±x, j+1/2 = limε→0 ϕh(x, v j+1/2±ε), and v̂ fh is
a numerical flux. We can assume that in each K j , v has a single sign by properly partitioning
the mesh. Then, the upwind flux is defined as

v̂ fh =
{

v f −
h if v ≥ 0 in K j

v f +
h if v < 0 in K j

. (5)

The scheme for the nonlinear Vlasov equation is similar. We seek fh(x, t) ∈ V l
h (or W l

h),
such that

∫

Ii, j

( fh)tϕh dxdv −
∫

Ii, j

v fh(ϕh)x dxdv +
∫

K j

(v̂ fhϕ−
h )i+ 1

2 ,v dv −
∫

K j

(v̂ fhϕ+
h )i− 1

2 ,v dv

+
∫

Ii, j

Eh fh(ϕh)v dxdv −
∫

Ji

(Êh fhϕ−
h )x, j+ 1

2
dx +

∫

Ji

(Êh fhϕ+
h )x, j− 1

2
dx = 0 (6)

holds for any test function ϕh(x, t) ∈ V l
h (or W l

h). The upwind flux for v̂ fh has been defined
in (5) and the new flux needed for the nonlinear case is given by

Êh fh =
{

Eh f −
h if

∫
Ji

Ehdx ≤ 0
Eh f +

h if
∫

Ji
Ehdx > 0

. (7)

The above descriptions coupled with a suitable time discretization scheme, such as the
TVD Runge–Kutta method [44], completes the RKDG methods. For example, suppose the
semi-discrete schemes in (4) and (6) are written in the compact form

∫

Ii, j

( fh)tϕh dxdv = Hi, j ( fh, Eh, ϕh)

where for the linear Vlasov of (4)

Hlin
i, j ( fh, Eh, ϕh) =

∫

Ii, j

v fh(ϕh)x dxdv −
∫

K j

(v̂ fhϕ−
h )i+ 1

2 ,v dv

+
∫

K j

(v̂ fhϕ+
h )i− 1

2 ,v dv +
∫

Ii, j

Eh f ′
eqϕh dxdv,

while for the nonlinear Vlasov of (6)

Hnonlin
i, j ( fh, Eh, ϕh) =

∫

Ii, j

v fh(ϕh)x dxdv −
∫

K j

(v̂ fhϕ−
h )i+ 1

2 ,v dv +
∫

K j

(v̂ fhϕ+
h )i− 1

2 ,v dv

−
∫

Ii, j

Eh fh(ϕh)v dxdv +
∫

Ji

(Êh fhϕ−
h )x, j+1

2
dx−

∫

Ji

(Êh fhϕ+
h )x, j− 1

2
dx .

The third order TVD-RK method implements the following procedure for going from tn to
tn+1:
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∫

Ii, j

f (1)
h ϕh dxdv =

∫

Ii, j

f n
h ϕh dxdv + �t Hi, j ( f n

h , En
h , ϕh),

∫

Ii, j

f (2)
h ϕh dxdv = 3

4

∫

Ii, j

f n
h ϕh dxdv + 1

4

∫

Ii, j

f (1)
h ϕh dxdv + �t

4
Hi, j ( f (1)

h , E (1)
h , ϕh), (8)

∫

Ii, j

f n+1
h ϕh dxdv = 1

3

∫

Ii, j

f n
h ϕh dxdv + 2

3

∫

Ii, j

f (2)
h ϕh dxdv + 2�t

3
Hi, j ( f (2)

h , E (2)
h , ϕh).

Poisson’s equation is used to obtain En
h , E (1)

h , and E (2)
h . Beyond periodicity, we need to

enforce some additional conditions to uniquely determine �. For example, we can set one
end of the spatial domain to ground, i.e. set �(0, t) = 0. In the one-dimensional case, then
the exact solution can be obtained if we enforce �(0) = �(L). For the nonlinear system we
obtain

�h =
x∫

0

s∫

0

ρh(z, t) dzds − x2

2
− CE x,

where CE = −L/2 + ∫ L
0

∫ s
0 ρh(z, t) dzds/L , and

Eh = −(�h)x = CE + x −
x∫

0

ρh(z, t) dz, (9)

while for the linear system Poisson’s equation gives

�h =
x∫

0

s∫

0

ρh(z, t)dz ds − CE x,

where CE = ∫ L
0

∫ s
0 ρh(z, t) dzds/L , and

Eh = −(�h)x = CE −
x∫

0

ρh(z, t) dz. (10)

From (9) and (10), we see that if fh ∈ V l
h (or W l

h), then ρh = ∫ Vc
−Vc

fh dv ∈ Zl
h ; hence,

Eh ∈ Zl+1
h

⋂
C0. The above approach uses the classical representation of the solution

by Green’s function and will be referred to as the “exact” Poisson solver. It is valid only
for the one-dimensional case. For higher dimensions, a suitable elliptic solver needs to be
implemented, such as those discussed in [23]. Here we use the exact solver to entirely
eliminate discretization error from Poisson’s equation and, thereby, spotlight the performance
of the Vlasov solver.

Below we describe positivity-preserving limiters, as summarized in [54]. We only use
such a limiter to enforce the positivity of fh for the nonlinear VP system. For each of the
forward Euler steps of the Runge–Kutta time discretization, the following procedures are
performed:

• On each cell Ii, j , we evaluate Ti, j := min(x,v)∈Si, j fh(x, v), where Si, j = (Sx
i ⊗

Ŝ y
j )
⋃

(Ŝx
i ⊗ Sy

j ), and Sx
i , Sy

j denote the (l + 1) Gauss quadrature points, while Ŝx
i , Ŝ y

j
denote the (l + 1) Gauss–Lobatto quadrature points.
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• We compute f̃h(x, v) = θ( fh(x, v)− ( fh)i, j )+ ( fh)i, j , where ( fh)i, j is the cell average
of fh on Ii, j , and θ = min{1, |( fh)i, j |/|Ti, j − ( fh)i, j |}. This limiter has the effect of
maintaining the cell average, while “squeezing” the function to be positive at all points
in Si, j .

• Finally, we use f̃h instead of fh to compute the Euler forward step.

This completes the description of the numerical algorithm.

2.2 Scheme Conservation Properties

In the following, we will briefly review and discuss some of the conservation properties of
the above RKDG scheme for the nonlinear VP equations without the positivity-preserving
limiter. Some of those results have been reported in [22] and [2].

Proposition 1 (charge conservation) For both the V l
h and W l

h spaces,
∑
i, j

Hnonlin
i, j ( fh, Eh, 1) = �( fh, Eh, 1)

which implies

∑
i, j

∫

Ii, j

f n+1
h dxdv =

∑
i, j

∫

Ii, j

f n
h dxdv + 2

3
�t

(
�( f (2)

h , E (2)
h , 1)

+1

4
�( f (1)

h , E (1)
h , 1) + 1

4
�( f n

h , En
h , 1)

)

for the fully discrete scheme (8). Here,

�( fh, Eh, ϕh) =
∑

i

∫

Ji

(Êh fhϕh)x,Nv+ 1
2

dx −
∑

i

∫

Ji

(Êh fhϕh)x, 1
2

dx

denotes the contribution from the phase space boundaries located at v = ±Vc, and should
be negligible if Vc is chosen large enough.

Remark Charge conservation (or mass conservation or probability normalization as it is
sometimes called) states that the total charge will be preserved on the discrete level up to
approximation errors associated with the phase space boundaries. The proof is straightforward
and, therefore, omitted. The same conclusion can be proven for the linearized system. The
positivity preserving limiter does not destroy this property because it keeps the cell averages
unchanged.

Proposition 2 (Semi-discrete L2 stability—enstrophy decay) For both the V l
h and W l

h
spaces,

∑
i, j Hnonlin

i, j ( fh, Eh, fh) ≤ 0. Hence,

d

dt

∑
i, j

∫

Ii, j

f 2
h dxdv ≤ 0.

The proof, for an arbitrary field Eh , can be found in [10], Theorem 4, which applies directly
here by setting the collisional form Qσ ≡ 0 in that proof.

For the remainder of this section we will assume the DG solution satisfies the veloc-
ity boundary conditions fh(x,±Vc, t) = 0. This is a reasonable assumption when Vc is
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large enough. In particular, this will guarantee exact charge conservation, which implies
that

∫ L
0 ρh(x, t)dx is constant in time t . Therefore, using the definition of Eh in (9), we

can obtain periodicity in Eh , i.e, Eh(0) = Eh(L). Without this assumption the propositions
below contain multiple boundary terms and the proof becomes technical.

Proposition 3 (Momentum conservation) Assuming fh(x,±Vc, t) = 0, for both the V l
h and

W l
h spaces when l ≥ 1,

∑
i, j Hnonlin

i, j ( fh, Eh, v) = 0, which implies

∑
i, j

∫

Ii, j

f n+1
h v dxdv =

∑
i, j

∫

Ii, j

f n
h v dxdv

for the fully discrete scheme.

Proof Choosing ϕh = v in (6), we have

∑
i, j

Hnonlin
i, j ( fh, Eh, v) =

∑
i, j

⎛
⎜⎝
∫

Ii, j

v fh(v)x dxdv −
∫

K j

(v̂ fhv)i+ 1
2 ,v dv +

∫

K j

(v̂ fhv)i− 1
2 ,v dv

−
∫

Ii, j

Eh fh dxdv +
∫

Ji

(Êh fhv)x, j+ 1
2

dx −
∫

Ji

(Êh fhv)x, j− 1
2

dx

⎞
⎟⎠

= −
∑
i, j

∫

Ii, j

Eh fh dxdv = −
∑

i

∫

Ji

Ehρh dx,

and using the exact Poisson solver together with the periodicity of Eh and �h yields the
following:

∑
i

∫

Ji

Ehρh dx =
∑

i

∫

Ji

Eh(ρh − 1) dx +
∑

i

∫

Ji

Eh dx

= −
∑

i

∫

Ji

Eh(Eh)x dx +
∑

i

∫

Ji

Eh dx

= −(E2
h(L) − E2

h(0))/2 − �(L) + �(0) = 0,

which completes the proof. �
Remark The above proof holds for the linearized system as well. Note, however, it relies
on the use of the exact Poisson solver. For a full numerical DG Poisson solver, such as that
developed in [23] for the discretization Poisson equation, exact momentum conservation
remains true, as was proven in [22] by means of the DFUG method developed there for
dealing with the discretized Poisson equation. However, the positivity-preserving limiter we
use here will destroy this property because it was not designed to conserve the numerical
momentum.

Proposition 4 (Semi-discrete total energy equality) Assuming fh(x,±Vc, t) = 0, for both
the V l

h and W l
h spaces when l ≥ 2,

d

dt

⎛
⎜⎝1

2

∑
i, j

∫

Ii, j

fhv2 dxdv + 1

2

∑
i

∫

Ji

E2
h(x) dx

⎞
⎟⎠= A( fh,�h)= A( fh − f,�h − P(�h)),
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where the operator A(w, u) := ∑
i, j

∫
Ii, j

(
wuxv − (w)t u

)
dxdv, and P is any projection

such that P(�h) ∈ Zl
h and P(�h) = �h at xi+1/2, for i = 0, 1, . . . , Nx .

Proof Choosing ϕh = v2/2 in (6) yields

d

dt

∑
i, j

1

2

∫

Ii, j

fhv2 dxdv +
∑
i, j

∫

Ii, j

Eh fhv dxdv = 0

and

d

dt

∑
i

1

2

∫

Ji

E2
h(x) dx =

∑
i

∫

Ji

Eh(Eh)t dx = −
∑

i

∫

Ji

(�h)x (Eh)t dx

=
∑

i

∫

Ji

�h(Eh)xt dx =
∑

i

∫

Ji

�h(1 − ρh)t dx

= −
∑

i

∫

Ji

�h(ρh)t dx = −
∑
i, j

∫

Ii, j

�h( fh)t dxdv,

where in the second line, we have used the periodicity and continuity of Eh and �h . Therefore,
we have proven that

d

dt

⎛
⎜⎝1

2

∑
i, j

∫

Ii, j

fhv2dxdv + 1

2

∑
i

∫

Ji

E2
h(x)dx

⎞
⎟⎠ = A( fh,�h).

On the other hand, upon choosing ϕh = P(�h) in (6) and using the periodicity and continuity
of P(�h), we can verify that A( fh, P(�h)) = 0. The exact solution f obviously satisfies
A( f,�h − P(�h)) = 0 from the continuity and periodicity of �h − P(�h), and therefore
we are done. �

The above proof indicates that the variation in the total energy will be related to the error
of the solution, fh − f , together with the projection error, �h − P(�h). In [22,23], error
estimates for DG schemes with NIPG methods for the Poisson equations are provided for
multiple dimensions. In [2], optimal accuracy of order l + 1 for the semi-discrete scheme
with Q

l spaces has been proven under certain regularity assumptions. We remark that in [2]
conservation of the total numerical energy is proven when the Poisson equation is solved
by a local DG method with a special flux. Unfortunately, no numerical simulations of linear
Landau damping or of the nonlinear VP system, such as those done in [23] or in Sect. 4 of
this present manuscript, have been performed up to this date by the scheme proposed in [2],
so a comparison is not possible.

3 On Recurrence

In this section we study recurrence, a numerical phenomenon that is known to occur in
simulations of Vlasov-like equations. Its study is important because it provides information
about the numerical accuracy of a scheme. Recurrence was observed in the semi-Lagrangian
scheme of Cheng and Knorr [9], where a simple argument for its occurrence was provided.
In this section, we carry out a detailed study of recurrence for the DG method.
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We study recurrence of our algorithm applied to the linear advection equation ft + v fx =
0 on [0, L = 2π/k] × [−Vc, Vc], since it is tractable and contains the basic recurrence
mechanism; results for the full Vlasov system tend to be quite similar. The initial condition
we consider is f0(x, v) = A cos(kx) feq(v), and the equilibrium distribution feq(v) is taken
to be either the Maxwellian or Lorentzian distribution, viz.

fM = 1√
2π

e−v2/2 or fL = 1

π

1

v2 + 1
.

For the Maxwellian equilibrium, fM , we take Vc = 5, and for the Lorentzian equilibrium,
fL , we take Vc = 30.

The exact solution for the advection equation is f (t, x, v) = f0(x−vt, v). Hence, a simple
calculation shows ρ(x, t) = A cos(kx)e−k2t2/2 for the Maxwellian distribution; similarly,
for the Lorentzian, ρ(x, t) = A cos(kx)e−kt . Thus, we see how the density for each case
should decay to zero. The failure of decay and the occurrence of recurrence noted for the
semi-Lagrangian scheme of [9] stems from the finite resolution in the velocity space and,
indeed, the recurrence time depends on the mesh size in v.

To be specific, we repeat the definition of DG scheme for this equation, which amounts
to (6) with Eh set to zero: we find fh(x, t) ∈ V k

h (or W k
h ) , such that∫

Ii, j

( fh)tϕh dxdv −
∫

Ii, j

v fh(ϕh)x dxdv +
∫

K j

(v̂ fhϕ−
h )i+ 1

2 ,v dv −
∫

K j

(v̂ fhϕ+
h )i− 1

2 ,v dv = 0

(11)

holds for any test function ϕh(x, t) ∈ V k
h (or W k

h ). Again v̂ fh is the upwind numerical flux
of (5). In the analysis below, we always assume time to be continuous, because recurrence is
mainly a phenomenon that comes from the spatial and velocity discretization.

3.1 The Case of l = 0

For the piecewise constant case, the DG method is equivalent to a simple first order finite
volume scheme and we can derive rigorously the behavior for ρ. Suppose we define fh = fi j

on cell Ii j , and assume uniform grids in both directions. Moreover, we assume Nv to be even
for simplicity. With this assumption, the location of the cell center is v j = ( j − Nv+1

2 )�v.
Now (11) simply becomes

d fi j

dt
+ v j

fi j − fi−1, j

�x
= 0 if v j ≥ 0,

d fi j

dt
+ v j

fi+1, j − fi j

�x
= 0 if v j < 0. (12)

The initial condition chosen is clearly equivalent to fi j (0) = Re
(

Aeikxi feq(v j )
)
. We prove

that the scheme above gives

fi j (t) = Re
(

Aeikxi +s j t feq(v j )
)

(13)

where s j is given in (14) below.
Upon plugging (13) into (12), we have

s j fi j + v j
1 − e−ik�x

�x
fi j = 0 if v j ≥ 0

s j fi j + v j
eik�x − 1

�x
fi j = 0 if v j < 0.
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Fig. 1 Computations of the advection equation for piecewise constant polynomials showing local maxima of
the density ρmax as a function of time. The mesh is 40×40 with �x = π/10. For the Maxwellian equilibrium
�v = 1/4, while for the Lorentzian equilibrium �v = 3/2

Hence,

s j =
{

−v j
1−e−ik�x

�x = v j
cos(k�x)−1

�x − v j
sin(k�x)

�x i if v j ≥ 0

−v j
eik�x −1

�x = −v j
cos(k�x)−1

�x − v j
sin(k�x)

�x i if v j < 0,

which can be summarized as

s j = |v j |cos(k�x) − 1

�x
− v j

sin(k�x)

�x
i. (14)

Therefore, the real part of s j is always negative, this means the magnitude of fi j will always
damp, but because of the j-dependence it does so at different rates for different cells. Since
the density

ρ(xi ) =
∑

j

fi j�v = Re

⎛
⎝∑

j

Aeikxi +s j t feq(v j )

⎞
⎠�v,

the density will damp at a rate between �v
2

cos(k�x)−1
�x and Vc−�v

2
cos(k�x)−1

�x . Another impor-
tant fact is that recurring local maxima of the density will have a period TR that satisfies
�v
2

sin(k�x)
�x TR = π . If we define k′ = sin(k�x)

�x , then TR = 2π
k′�v

. When �x → 0, k′ → k,
and this coincides with the recurrence time obtained in [9].

Next we compare the above theoretical prediction with numerical results. In all of the
calculations below, we take A = 1, k = 0.5 and the mesh size to be 40 × 40. In Fig. 1, we
display results for numerical runs using piecewise constant polynomials and time discretiza-
tion using TVD-RK3. (We use the third order method to minimize the time discretization
error.) We plot ρmax(t) = maxx ρ(x, t) in Fig. 1. First, we notice the pattern of ρmax has the
expected periodic structure with damping for both Maxwellian and Lorentzian equilibria.
For the Maxwellian distribution, a simple calculation yields TR = 50.47. Similarly, with the
formulas above, the smallest damping rate is −0.49×10−2, while the biggest is −9.3×10−2.
For the Lorentzian distribution, TR = 8.41, and the smallest damping rate is −2.94 × 10−2,
while the biggest is −5.58 × 10−1. From Fig. 1, by using the second to the fourth peak, the
actual computed value of TR for Maxwellian is 50.32 and the damping rate is −1.02 ×10−2;
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while for Lorentzian, from the second to the tenth peak, TR is 8.40 and the computed damping
rate is −3.19 × 10−2. These numbers agree well with the theoretical prediction.

In conclusion, our analysis explains the behavior of the first order DG solution. At t = TR ,
the numerical density obtains a local maximum; hence, clearly at this time the numerical
solution can no longer be trusted. The numerical decay deviates from the theoretical decay
well before t = TR . To achieve a larger TR , according to the formula, we can refine �v. On
the other hand, refining �x will not change TR by much.

Remark Using the same methodology, it is easy to perform a similar analysis for any type of
finite difference method. The real part of s j will be negative if there is numerical dissipation,
and the imaginary part will always approximate v j k due to the differential operator v ∂

∂x . This
means that for such schemes, the recurrence time TR will always be close to 2π

k�v
.

3.2 Higher Order Polynomials

In this section, we consider higher order polynomials. For the V 1
h space, it takes four point

values in each cell to represent a Q
1 polynomial. This technique was developed in [51] for

analyzing piecewise linear DG solutions in one dimension. As in Sect. 3.1, we use a uniform
mesh, i.e. �xi ≡ �x and �v j ≡ �v. Without loss of generality, we consider (11) for the case
of v ≥ 0 only, then v̂ fh = v f −

h , which means we only consider cells Ii, j with j ≥ Nv

2 + 1.
In each computational cell Ii, j , we can always use the following form to represent fh :

fh = fi− 1
4 , j+ 1

4
χ1(x, v) + fi− 1

4 , j− 1
4
χ2(x, v) + fi+ 1

4 , j+ 1
4
χ3(x, v) + fi+ 1

4 , j− 1
4
χ4(x, v),

where

χ1(x, v) = −4

(
x − xi

�xi
− 1

4

)(
v − v j

�v j
+ 1

4

)

χ2(x, v) = 4

(
x − xi

�xi
− 1

4
)

)(
v − v j

�v j
− 1

4

)

χ3(x, v) = 4

(
x − xi

�xi
+ 1

4

)(
v − v j

�v j
+ 1

4

)

χ4(x, v) = −4

(
x − xi

�xi
+ 1

4

)(
v − v j

�v j
− 1

4

)

are the basis functions in Q
1 and fi±1/4, j±1/4 = fh(xi±1/4, v j±1/4) are the point values. By

choosing the test function in (11) to be ϕh = χ�, � = 1, 2, 3, 4, we obtain four relations.
Letting fi j = ( fi−1/4, j+1/4, fi−1/4, j−1/4, fi+1/4, j+1/4, fi+1/4, j−1/4)

T , then corresponding
to each of the four terms in (11), we have

M
d fi j

dt
− B fi j + C fi, j − D fi−1, j = 0,

where

M = �x�v

144

⎛
⎜⎜⎝

49 −7 −7 1
−7 49 1 −7
−7 1 49 −7
1 −7 −7 49

⎞
⎟⎟⎠ ,
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B = �v

12

⎛
⎜⎜⎝

−(2�v + 7v j ) v j −(2�v + 7v j ) v j

v j 2�v − 7v j v j 2�v − 7v j

2�v + 7v j −v j 2�v + 7v j −v j

−v j −2�v + 7v j −v j −2�v + 7v j

⎞
⎟⎟⎠ ,

C = �v

48

⎛
⎜⎜⎝

2�v + 7v j −v j −(6�v + 21v j ) 3v j

−v j −2�v + 7v j 3v j 6�v − 21v j

−6�v − 21v j 3v j 18�v + 63v j −9v j

3v j 6�v − 21v j −9v j −18�v + 63v j

⎞
⎟⎟⎠ ,

and

D = �v

48

⎛
⎜⎜⎝

−6�v − 21v j 3v j 18�v + 63v j −9v j

3v j 6�v − 21v j −9v j −18�v + 63v j

2�v + 7v j −v j −6�v − 21v j 3v j

−v j −2�v + 7v j 3v j 6�v − 21v j

⎞
⎟⎟⎠ .

After simple algebraic manipulation, we obtain

d fi j

dt
= �v

�x

(
Sm fi j + Tm fi−1, j

)
,

where

Sm =

⎛
⎜⎜⎝

− 49
96 − 7m

8
7

96 − 7
32 − 3m

8
1

32− 7
96

49
96 − 7m

8 − 1
32

7
32 − 3m

8
77
96 + 11m

8 − 11
96 − 21

32 − 9m
8

3
32

11
96 − 77

96 + m
8 − 3

32
21
32 − 9m

8

⎞
⎟⎟⎠ ,

Tm =

⎛
⎜⎜⎝

− 35
96 − 5m

8
5

96
35
32 + 15m

8 − 5
32

− 5
96

35
96 − 5m

8
5

32 − 35
32 + 15m

8
7

96 + m
8 − 1

96 − 7
32 − 3m

8
1

32
1

96 − 7
96 + m

8 − 1
32

7
32 − 3m

8

⎞
⎟⎟⎠ ,

and m = 2 j − Nv −1 = 1, 3, 5 . . . are positive and odd integers. Therefore, the amplification
matrix is given by

G j = �v

�x

(
Sm + Tme−ik�x

)
.

With the initial condition fi j (0) = Re(Aeikxi ϒ), where

ϒ =
(

e−ik�x/4 feq(v j+ 1
4
), e−ik�x/4 feq(v j− 1

4
), eik�x/4 feq(v j+ 1

4
), eik�x/4 feq(v j− 1

4
)
)T

,

it is clear that the general expression for the numerical solution is

fi j (t) = Re

(
eikxi

4∑
α=1

aαVα eηα t

)
.

Here ηα are the eigenvectors of G j with Vα the corresponding eigenvectors, aα are constants
such that fi j (0) = ϒ , and all these quantities are dependent on j (or equivalently m =
2 j − Nv − 1). The collective behaviors of the eigenvalues ηα will influence the behavior of
the density as a function of time. We focus on the matrix �m = Sm + Tme−ik�x , which with
some algebraic manipulation can be seen to have the form

�m = W ⊗ V,
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where W and V are the following 2 × 2 matrices:

W =
(−3m − 7

4
1
4− 1

4 −3m + 7
4

)
,

V =
( 1

2 + 5
24 î − 1

2 − 5
8 î

− 1
2 − 1

24 î 1
2 + 1

8 î

)
,

and î = e−ik�x − 1 = −ik�x + O(�x2). This nice structure is due to the tensor product
formulations of the mesh and the space Q

l . We compute the eigenvalues of the matrix V ,

obtaining λ1 = (3 + î −
√

9 + 12î + î2)/6 = 1
6 ik�x − 1

12 k2�x2 + O(�x3) and λ2 =
(3 + î +

√
9 + 12î + î2)/6 = 1 − 1

2 ik�x + O(�x2), and the eigenvalues of W , obtaining
−3m ± √

3. Hence, by simple linear algebra, the four eigenvalues of the matrix �m are
obtained ⎛

⎜⎜⎝
ξ1 = (−3m − √

3)λ2

ξ2 = (−3m + √
3)λ2

ξ3 = (−3m − √
3)λ1

ξ4 = (−3m + √
3)λ1

⎞
⎟⎟⎠ .

It is easy to show that the eigenvectors corresponding to these eigenvalues are independent of
m, since the eigenvectors of V and W are independent of m. We conclude that the eigenvalues
of G j are

⎛
⎜⎜⎝

η1 = (−3m − √
3)λ2�v/�x

η2 = (−3m + √
3)λ2�v/�x

η3 = (−3m − √
3)λ1�v/�x

η4 = (−3m + √
3)λ1�v/�x

⎞
⎟⎟⎠ ,

and therefore,

4∑
α=1

aαVα eηα t = e−3m(λ2�v/�x)t
(

a1V1 e−√
3(λ2�v/�x)t + a2V2 e

√
3(λ2�v/�x)t

)

+e−3m(λ1�v/�x)t
(

a3V3 e−√
3(λ1�v/�x)t + a4V4 e

√
3(λ1�v/�x)t

)
.

Since η1 and η2 have nontrivial negative real parts, the damping for those two modes
will be strong. Consequently, the main behavior of the density will be dominated by the
eigenmodes of η3 and η4. Recall

ρ(xi± 1
4
, t) =

∑
j

∫

I j

fh(xi± 1
4
, v, t)dv =

∑
j

( fi± 1
4 , j+ 1

4
+ fi± 1

4 , j− 1
4
)�v,

and, therefore, the behavior of ρ(xi±1/4, t) is dominated by
∑

m

e−3m(λ1�v/�x)t
(

c3 e−√
3(λ1�v/�x)t + c4 e

√
3(λ1�v/�x)t

)
,

where c3 and c4 are constants that do not depend on m. Since λ1 = 1
6 ik�x − 1

12 k2�x2 +
O(�x3), we have −3m(λ1�v/�x) = − k�v

2 mi − m�v�xk2

4 + O(�v�x2). Hence, with an
argument similar to that of Sect. 3.1 for the piecewise constant case, when t ≈ TR = 2π

k�v
the

imaginary parts of all modes will return to mπ i , and this will correspond to a local maximum
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Fig. 2 Computations of the advection equation for the polynomial spaces Q
1 and Q

2 showing local maxima of
the density ρmax as a function of time. The mesh is 40×40 with �x = π/10. For the Maxwellian equilibrium
�v = 1/4, while for the Lorentzian equilibrium �v = 3/2

of ρmax as a function of time. The remaining term, c e−√
3ik�v/6t +d e

√
3ik�v/6t , corresponds

to the envelope of the wave, and the negative real part of the eigenvalues indicates numerical
dissipation.

In Fig. 2, we plot the evolution of ρmax as a function of time for the Q
1 and Q

2 spaces.
From Fig. 2a, b, we observe the behavior predicted by our analysis for the Q

1 elements. From
Fig. 2c, d, we find that the solutions using the Q

2 polynomials share similar structures, except
that small oscillations can be observed for the Maxwellian case. Also we note that the Q

2

discretizations can follow the exact solutions longer in time, in the sense that the minimum
value achieved before ρmax starts to deviates from the exact solution is on the order of 10−6

compared to 10−4 in the Q
1 case. This is expected due to the higher order accuracy of the

scheme. For the Q
2 polynomials, we deduce that the amplification matrix G is a 9×9 matrix.

Thus, for this case there, there will be nine eigenvalues and more modes than for the Q
1

space. In Table 1, we verify the recurrence time TR numerically; good agreement between
the predicted values and the observed values are seen.
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Table 1 The location of local maxima of the density ρmax compared with the predicted recurrence time TR

Predicted TR = 2π
k�v

Numerical value of Q
1 Numerical value of Q

2

Maxwellian 50.26548245743669 50.265482457450 50.265482457450

Lorentzian 8.37758040957278 8.37787960887962 8.37787960887760

The TR values for the Maxwellian equilibrium are computed using the average of the first three peaks, while
for the Lorentzian they are computed using the average of the first seven peaks

Note, the trace T r(Sm) = −4m, m = 1, 3, 5 . . ., while a similar calculation for cells when
v < 0 yields T r(Sm) = 4m, m = 1, 3, 5 . . .. Therefore, we conclude that our semi-discrete
algorithm has an incompressible vector field and thus possesses a version of Liouville’s
theorem on conservation of phase space volume. Liouville’s theorem for finite difference
and Fourier discretization of fluid and plasma equations is well known and has been used in
statistical theories of turbulence (see e.g. [26,29,31,40]). We also note that we have performed
the analysis for the semi-discrete DG schemes. For fully discrete RKDG schemes, one could
use a similar method, as proposed in [57] for the wave equation, to write the fully discrete
amplification matrices, but we do not pursue this in this paper.

We close this section with a few comments. An analysis similar to that of this section for
P

1 elements yields a 3 × 3 matrix; however, this basis does not yield the nice form possessed
by Q

1 because of the loss of the tensor structure. Figure 3 shows the temporal behavior of
ρmax using the P

l elements. Observe that, although the local maxima still are located near
TR = 2π

k�v
, there appear to be several small local maxima instead of one main maximum,

and overall the long time dissipation seems to be stronger than that for Q
l . We also noted that

the P
2 basis follow the exact solution longer than P

l , but shorter than Q
2 cases, because for

P
2 elements, the minimum value that the solution achieves before it deviates from the exact

solution is on the order of 10−4. In summary, we conclude that increasing the polynomial
order does not change TR by much. However, higher order accuracy seems to improve the time
that the numerical solution can follow the exact solution. For Q

l elements, the amplification
matrix can be written as a tensor product of two small matrices, and this made possible our
direct analysis for the recurrence time. For P

l elements, we lose this tensor structure, and the
solution is more dissipative.

Finally we remark that since the linearized equation involves an operator E f ′
eq(v), where

the electric field depends on the distribution function f on all cells, it is not trivial to gen-
eralize the analysis to the LVP system. However, it was proven in [35,38] that there exists
a generalization of the Hilbert transform that maps the solution of the advection equation
to the solution of this LVP system, so we expect similar type of recurrence behavior for the
LVP system, and this is verified by numerical calculation in Sect. 4.1.

4 Vlasov Numerical Results

Now we turn to some numerical tests of our method for both the VP and LVP systems. For
the LVP system we consider the standard tests of linear and nonlinear Landau damping,
which have been studied in many references in the contexts of various numerical techniques
since [9] (see [23] for an extended list), but we also consider a test that heretofore does not
appear to have been done, viz., we monitor the linearized energy that is conserved by the LVP
system [30,35,38]. Similarly, for the nonlinear VP system we consider the standard tests of
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Fig. 3 Computations of the advection equation for the polynomial spaces P
1 and P

2 showing local maxima of
the density ρmax as a function of time. The mesh is 40×40 with �x = π/10. For the Maxwellian equilibrium
�v = 1/4, while for the Lorentzian equilibrium �v = 3/2

nonlinear Landau damping and a symmetric version of the two-stream instability (also see
[23] for references). In addition, for the VP system we consider an example that is initialized
by a driving electric field, resulting in a dynamically accessible initial condition as described
in [36–38], which has been observed to approach nonli near BGK [5] states that have been
termed KEEN waves in Refs. [1,25] (see also [22,46]).

4.1 Linearized VP System

Associated with the LVP system of (3) is the well-known plasma dispersion function [20],

ε(k, ω) = 1 − 1

k2

+∞∫

−∞

f ′
eq(v)

v − ω/k
dv, (15)

which (with the appropriate choice of contour) will be used to benchmark the accuracy of the
Landau damping rate and oscillation frequency obtained from our DG solver with choices
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for the various polynomial spaces. The LVP system conserves not only the total charge and
momentum, but also the linear energy [30,35,38], which is defined as

HL = −1

2

∫

�

v f 2

f ′
eq

dxdv + 1

2

∫

�x

E2 dx . (16)

As noted above, we monitor this quantity and check for its conservation. In addition, we
monitor the shift of energy to the first term of (16) as the second decays in time in accordance
with Landau damping, consistent with the discussion of [38].

4.1.1 Linear Landau Damping

For this classical test problem, we choose the usual initial condition f0(x, v) =
A cos(kx) fM (v), with A = 0.01 and k = 0.5. For the Maxwellian distribution function
the dispersion relation becomes

ε(k, ω) = 1 + 1

k2

{
1 + ω√

2k
Z

(
ω√
2k

)}
,

where the plasma Z -function is defined as

Z(z) = 1√
π

∞∫

−∞
e−t2 dt

t − z
= 2ie−z2

i z∫

−∞
e−t2

dt.

From this relation, the predicted damping rate is computed to be 0.153359 and the predicted
oscillation frequency to be 1.41566.

In Fig. 4, we plot the evolution of the maximum of the electric field Emax using various
polynomial spaces. In Table 2, we compare the theoretical and numerical values of damping
rate and frequency as a measurement of accuracy. We see that refining the mesh always
gives better approximations. The piecewise constant polynomials P

0 give much larger error
compared to higher order polynomials. While the difference between the P

l and Q
l spaces

is not significant. Observe from Fig. 4 how similar the recurrence behavior is for this LVP
problem to that of the advection equation.

As for conservation properties, the charge and momentum are well conserved as predicted
by Propositions 1 and 3. However, the linear energy HL demonstrates different behaviors
depending on the polynomial spaces. Figure 5 shows that HL decays significantly for all P

l

spaces even upon mesh refinement. On the other hand, the Q
l seems to conserve it much

better. We note that Q
1 conserves HL much better than P

2, although the former is a subspace
of the later.

Also, note from Fig. 6 that the electrostatic energy for both choices of polynomial spaces
damps at a rate given by twice the Landau damping rate. This is to be expected for the
linear theory, since after integration over space the oscillatory component is removed and
E ∼ exp(−2γ t). Therefore, if the energy is conserved numerically this damped electrostatic
energy must be converted into the relative kinetic energy that is represented by the first term
of (16). Thus, conservation of HL serves as a global measure of the ability of an algorithm
to resolve fine scales in velocity space. That this transference must take place for the linear
VP system was proven in Section IV of Ref. [38].
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Fig. 4 Depiction of linear Landau damping showing recurrence in the maxima of the electric field, Emax, as
a function of time for various polynomial spaces

4.2 Nonlinear VP System

In this section, we consider the nonlinear VP system. As noted above, we benchmark the
solver against three test cases: the nonlinear Landau damping, two-stream instability, and an
external drive problem with dynamically accessible initial condition.
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Table 2 The damping rate and frequency for linear Landau damping

Predicted value Mesh P
0

P
1

P
2

Q
1

Q
2

Damping rate 0.153359 40 × 40 0.227489 0.153536 0.153375 0.153425 0.153379
80 × 80 0.191702 0.153366 0.153363 0.15369 0.153363

Frequency 1.41566 40 × 40 1.38249 1.41643 1.41643 1.41643 1.41643
80 × 80 1.40056 1.41576 1.41576 1.41576 1.41576

The numerical values are computed using the fourth to the tenth peak and the predicted value is obtained from
the plasma dispersion function (15) with a Maxwellian equilibrium
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Fig. 5 Evolution of the linear energy HL of (16) as a function of time, while the Vlasov system undergoes
linear Landau damping. Various polynomial spaces and mesh sizes were used, as indicated

Fig. 6 Evolution of the
electrostatic energy (red), linear
energy (blue) and the first term in
the linear energy (green) as a
function of time, while the
Vlasov system undergoes linear
Landau damping. Here Q

2 was
used with a 80 × 80 mesh (Color
figure online)

The nth Log Fourier mode for the electric field E(x, t) [23] is defined as

log FMn(t) = log10

⎛
⎜⎜⎝ 1

L

√√√√√√
∣∣∣∣∣∣

L∫

0

E(x, t) sin(knx) dx

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

L∫

0

E(x, t) cos(knx) dx

∣∣∣∣∣∣

2
⎞
⎟⎟⎠ .

We will use this quantity to plot data from our various runs.
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Fig. 7 Evolution of the first four Log Fourier mode as a function of time for nonlinear Landau damping.
Various values of the numerical damping/growth rate are marked on the graphs. Here the P

2 space with the
positivity-preserving limiter was used on a 100 × 200 mesh. The predicted recurrence time TR for log FM1
is 209.44, for log FM2 is 104.72, for log FM3 is 69.81, and for log FM4 is 52.36

4.2.1 Nonlinear Landau Damping

For this case we choose f0(x, v) = fM (v)(1+ A cos(kx)) with A = 0.5, k = 0.5, L = 4π ,
and Vc = 6. We implement the scheme on a 100 × 200 mesh and integrate up to T = 100
using three methods: P

2, P
2 with the positivity-preserving limiter, and Q

2. In Fig. 7, we plot
the evolution of the first four Log Fourier modes as a function of time. All three methods
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Fig. 8 Evolution of conserved quantities as a function of time during the course of nonlinear Landau damping
for various computational methods. A mesh of 100 × 200 was used

give qualitatively similar results that compare well with other calculations in the litera-
ture. We observe initial damping (until t ≈ 15), followed by exponential growth (until
t ≈ 40), and finally saturation of the modes. Note the predicted recurrence times TR for
each of the modes are as follows: for log FM1, TR = 209.44; for log FM2, TR = 104.72;
for log FM3, TR = 69.81; and for log FM4, TR = 52.36. Since the bounce time is
about 40, we have some confidence that the solution is resolved at least up u ntil non-
linearity becomes important. Although, the role played by TR for the nonlinear evolu-
tion is not clear since nonlinearity could remove the fine scales generated by linear phase
mixing.

In Fig. 8, we plot the conserved quantities of Sect. 2.2. The charge and momentum
are well conserved for all methods, while the enstrophy has decayed by about 15 % at
T = 100 for all three methods. This result agrees with our analysis in Sect. 2. We remark
that the limiter has an effect on charge conservation, due to its modification of the solu-
tion on the boundary. The total energy is conserved much better without the positivity-
preserving limiter. When we use the limiter, the total energy grows by about 0.3 % at
T = 100.
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Fig. 9 Depiction of the first four Log Fourier modes during the nonlinear evolution of the two-stream insta-
bility. Also depicted is the evolution of energy and enstrophy as a function of time for various methods

4.2.2 Two-Stream Instability

For this case we choose f0(x, v) = fT S(v)(1 + A cos(kx)), where fT S(v) = 1√
2π

v2e−v2/2,

A = 0.05, k = 0.5, L = 4π , and Vc = 6. The mesh size we take is 100 × 200. In
Fig. 9, we plot the evolution of conserved quantities. For this example, charge and momentum
are well conserved by all methods, so are not plotted. The enstrophy decays by about 4 % at
T = 100, while the total energy is well conserved even with the limiter. The plots of the log
Fourier modes show an early exponential growth followed by oscillation. Figure 10 provides
evidence that the system has relaxed into a BGK mode. Here, the relation defined by the
ordered pair (ε = v2/2 + �(x, T ), f (x, v, t))) is plotted at various times t . The use of this
kind of plot as a diagnostic was first reported in [23] for electrostatic VP equations and later
in [8] for the gravitational VP equations. Here, the evolution clearly indicates convergence
to a BGK equilibrium.

4.2.3 Dynamically Accessible Excitations—KEEN Waves

Motivated by experiments performed for understanding aspects of laser-plasma interac-
tion [33], several authors have considered numerical solution of the VP system with
a transitory external driving electric field (see, e.g., [1,25] ), rather than just specify-
ing an ad hoc initial condition for f , as is usually done. Such drive generated initial
conditions are examples of those proposed and discussed in [36–38], where they were
termed dynamically accessible (DA) initial conditions. DA initial conditions are important
because they have a Hamiltonian origin and preserve phase space constraints. Moreover,
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Fig. 10 Plots of the distribution f (x, v, t) versus ε = v2

2 −�(x, t) for the two-stream instability at the times

t indicated, showing saturation to a BGK state. Here the P
2 space with the positivity-preserving limiter was

used on a 100 × 200 mesh

since ultimately any perturbation of charged particles within the confines of VP theory
is in fact caused by an electric field, it is physically very natural to consider DA ini-
tial conditions. We consider two numerical examples and compare our results with those
of [1,25], w here the authors observed saturation to nonlinear traveling BGK-like states
that they termed KEEN waves, standing for kinetic electrostatic electron nonlinear waves.
We note that the calculations of [1] were duplicated in [22] and allied work was given in
[46,47].

Specifically, the system is driven by a single prescribed frequency and wavelength, where
the driven Vlasov equation,

ft + v fx − (E + Eext ) fv = 0,

is solved. Here, Eext (x, t) = Ad(t) sin(kx −ωt) is the external field, where Ad is a temporal
envelope that is ramped up to a plateau and then ramped down to zero. For our two examples
we consider the following two ramping profiles:
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Fig. 11 Phase space contour at
T = 1000 for with DA initial
condition with drive AJ

d . The plot
suggests saturation to a moving
BGK-like state. Here the Q

1

element was used on a 200 × 400
mesh

Fig. 12 The electric field E(0,t)
at the center of the spacial
domain at late times for the drive
AJ

d . The periodicity matches the
propagation of the BGK-like
state through the domain. Here
the Q

1 element was used on a
200 × 400 mesh
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Fig. 13 The first four Log
Fourier Modes for the drive AJ

d ,
indicating saturation. Here the
Q

1 element was used on a
200 × 400 mesh
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Fig. 14 Phase space contour plots for the KEEN wave at the times indicated. A large amplitude drive of
Am = 0.4 was used, along with the P

2 basis and a positivity-preserving limiter on a 200 × 400 mesh

AJ
d (t) =

⎧⎪⎪⎨
⎪⎪⎩

Am sin(tπ/100) if 0 < t < 50
Am if 50 ≤ t < 150
Am cos

(
(t − 150)π/100

)
if 150 < t < 200

0 if 200 < t < T

, (17)
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Fig. 15 (Top) The electric field E(0, t) at the center of the spacial domain at later times for the drive AA
d .

The periodic structure is due to multiple interacting BGK-like states. (bottom) Blow up indicating a period-4
modulation of a central hole such as that of Fig. 12). The simulation was done with P

2 elements with a limiter
on a 200 × 400 mesh

with Am = 0.052 as used in [25] and

AA
d (t) =

{
Am

1
1+e−40(t−10) if 0 < t < 60

Am

(
1 − 1

1+e−40(t−110)

)
if 60 ≤ t < T

, (18)

with Am = 0.4 as used in [1]. In practice, the system is initialized on f (0, x, v) = fM (v),
then ramped according to (17) or (18) to prepare the DA initial condition. The system is then
evolved after Eext is turned off and seen to approach asymptotic states. For both cases the
computational domain is of size [0, 2π/k] × [−8, 8], and we take k = 0.26 and ω = 0.37.

Following [25] with the drive AJ
d of (17) with Am = 0.4 we obtain for latter times a

translating BKG-like state, a snapshot of which is depicted in the phase space portrait of
Fig. 11. This structure moves through the spatial domain giving rise to the central periodic
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Fig. 16 Evolution of the first
four Log Fourier modes as a
function of time for the drive of
Eq. (18). The simulation used P

2

elements with a limiter on a
200 × 400 mesh

electric field signal, E(0, t), depicted in Fig. 12. The period of this signal coincides with the
propagation speed of the BKG-like state, which in agreement with [25] is about 1.35. Figure
13 shows the first four Fourier modes and indicates saturation.

Next, we increase the drive to compare with results of [1]. With the stronger drive of AA
d

with Am = 0.4, the system does not approach a uniformly translating state, but approaches
a structure with more complicated time dependence as seen in the phase contour plots of
Fig. 14. These figures are in good agreement with those of [1].

The electric field in the middle of the spatial domain, E(0, t), is plotted in Fig. 15, which
shows more complicated behavior, which surprisingly heretofore has not been plotted. In the
top part of this figure we see that there is regular periodic behavior at long times and from
the bottom part of the figure we see that there is period-4 modulation of a basic periodic
structure similar to that of Fig. 12. Closer examination of phase space plots shows that this
modulation is cause by the existence of additional smaller BGK-like structures. We note,
that the existence of multiple BGK-like states is not new; for example, they were seen in the
simulations of [16]. Thus, we propose that KEEN waves can be interpreted as the interaction
of multiple BGK-states, which can also be interpreted as an infinite-dimensional version of
Lyapunov–Moser–Weinstein periodic orbits in Hamiltonian systems (see, e.g. [39]). This
will be the subject of a future publication, so we do not pursue it further here.

Finally, in Fig. 16 we see from the evolution of log Fourier modes. Prior to t = 10
the solution remains roughly at Maxwellian equilibrium. However, at around t = 45 we
can observe the formation of the KEEN wave, which continues to execute the behavior of
Fig. 15 well after the external field has been turned off at t = 60. We see from this figure
the effects of mesh refinement and the use of different polynomial bases, as indicated in the
figure.

5 Conclusion

In this paper, we considered the RKDG method for the VP system. We focused on two com-
mon solution spaces, viz., those with P

l and Q
l elements. Ignoring boundary contributions,

the scheme can preserve the charge and momentum, and maintain the total energy up to
approximation errors when the polynomial order l is taken big enough. However, when the
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positivity-preserving limiter was used, some examples gave relatively large errors for the
total energy. A rigorous study of numerical recurrence was performed for the Q

l elements,
and the eigenvalues of the amplification matrix were explicitly obtained. DG schemes of
higher order were shown numerically to give a recurrence time that is close to the classical
calculation TR = 2π

k�v
. The qualitative behaviors of the P

l and Q
l spaces were similar for

most computational examples, except the linear energy HL was much better conserved using
the Q

l space. The schemes were used to compute the test cases of Landau damping, the
two-stream instability and the KEEN wave, and results comparable to those in the literature
were obtained.
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