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A theory for lifting equations of motion for charged particle dynamics, subject to given

electromagnetic like forces, up to a gauge-free system of coupled Hamiltonian Vlasov-Maxwell

like equations is given. The theory provides very general expressions for the polarization and

magnetization vector fields in terms of the particle dynamics description of matter. Thus, as is

common in plasma physics, the particle dynamics replaces conventional constitutive relations for

matter. Several examples are considered including the usual Vlasov-Maxwell theory, a guiding

center kinetic theory, Vlasov-Maxwell theory with the inclusion of spin, and a Vlasov-Maxwell

theory with the inclusion of Dirac’s magnetic monopoles. All are shown to be Hamiltonian

field theories and the Jacobi identity is proven directly. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4774063]

I. INTRODUCTION

In conventional treatments of electricity and magnetism,

phenomenological susceptibilities are introduced to describe

material media. Concomitant with the introduction of these

susceptibilities is the idea that charge can be separated into

bound and free components, current can be similarly decom-

posed, and based on these separations, expressions for the

polarization and magnetization of the medium are obtained.

However, it is well-known to plasma physicists that such a

simple characterization is not possible for plasmas, where

particle orbits may transition from trapped to passing and,

indeed, may exhibit complicated behavior that can only be

described by the self-consistent treatment of the dynamics of

both the particles and the fields. Because of these complica-

tions, tractable and reliable expressions for the polarization

and magnetization are not so forthcoming, particularly when

approximations are made and/or additional physics is added.

The purpose of the present paper is to construct a gen-

eral theory for the coupling of charge carrying particle dy-

namics, entities possibly with internal degrees of freedom

described by a kinetic theory, coupled to electromagnetic-

like field theories. A theory that is gauge-free and ultimately

expressible without the introduction of vector and scalar

potentials is constructed. Like Maxwell’s equations, the

Vlasov-Maxwell equations, and virtually every important

system in physics, the theory will have Hamiltonian form.

This Hamiltonian form will be noncanonical, following the

program initiated in Refs. 1 and 2.

The construction begins in Sec. II with a set of ordinary

differential equations that describes the particle dynamics.

This set of equations, which is the basic model of the matter

under consideration, is assumed to have a very general

Hamiltonian form, possibly with an unconventional phase

space and with a Hamiltonian that depends on specified elec-

tromagnetic fields including the field variables E(x, t) and

B(x, t), and possibly all their derivatives. The problem then

is to lift this finite-dimensional dynamical system that

describes the matter to a gauge-free field theory with a

kinetic component that is of Vlasov type coupled to an elec-

tromagnetic component of Maxwell type. The difficulty with

this lifting program lies in the coupling of the two compo-

nents of the field theory. It is shown in Sec. III that the con-

struction given naturally results in a field theory that is also

Hamiltonian. This assures that there is a consistency to the

coupling. Because the Hamiltonian theory requires varia-

tional calculus, it is most convenient to discuss constitutive

relations resulting from the matter system in this section as

well. In Sec. IV, several examples are presented, beginning

with the usual Vlasov-Maxwell system, followed by a gen-

eral guiding center kinetic theory, a theory that includes

spin and, to show the generality of our construction, a theory

with monopole charge where the Maxwell field is modified.

Gaussian units are used for all examples. Section V contains

concluding remarks. In the Appendix of the paper, there are

several subsections with direct proofs of the Jacobi identity

for Poisson brackets of the noncanonical Hamiltonian field

theories. The first one describes an old calculation of the

author that has not heretofore appeared in print, a calculation

that contains several useful techniques. The other subsec-

tions contain analyses of the other brackets of the examples

of Sec. IV.

II. A GENERAL ELECTROMAGNETIC KINETIC
THEORY VIA LIFTING

Consider a general dynamical system with an n-dimen-

sional phase space with coordinates z ¼ ðz1; z2;…; znÞ and

evolution determined by a Poisson bracket and Hamiltonian

E as follows:

_za ¼ ½za; E� ¼ Jab @E
@zb

; a; b ¼ 1; 2;…; n; (1)

where the Poisson bracket on phase space functions g and h
is defined bya)morrison@physics.utexas.edu.
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½g; h� ¼ @g

@za
Jab @h

@zb
(2)

and repeated indices are to be summed. The only requirements

placed on the cosymplectic tensor J is that it endow the Poisson

bracket with the properties of antisymmetry, [g,h]¼�[h,g],

and the Jacobi identity, [g,[h,k]]þ [h,[k,g]]þ [k,[g,h]]¼ 0 for

all functions g, h, k (see, e.g., Refs. 3 and 4). In the context of

geometrical mechanics, this is referred to as a flow on a Poisson

manifold, but this formalism and its language will not be used

here. Rather, the physics of matter described by this finite-

dimensional dynamical system, as embodied in the Hamiltonian

function E, is emphasized. The description of the matter in the

formalism of this paper is contained in this function E and its

associated Poisson bracket (2).

Particle orbits in given E(x, t) and B(x, t) fields are usu-

ally described in terms of the electromagnetic potentials,

/ðx; tÞ and A(x, t), where

E ¼ �r/� 1

c

@A

@t
and B ¼ r� A : (3)

Following this usual procedure, the Hamiltonian E of the

general system of Eq. (1) will be restricted for the purposes

of the present lift theory to have the following form:

E ¼ �Kðp� eA=c;w;E;B;rE;rB;…Þ þ e/ ; (4)

where �K is an arbitrary function of its arguments. This form

was proposed in the context of the variational theory of Refs.

5–7. Since the aim is to generalize usual charged particle dy-

namics, the parameter e that denotes charge is included and c
is the speed of light as usual. This particular form assures elec-

tromagnetic gauge invariance. Here, the phase space has been

split into two parts, zp ¼ ðx; p;w1;w2;…;wdÞ, where the

coordinates ðx; pÞ are the usual canonical six-dimensional

phase space coordinates and the coordinates w ¼ ðw1;w2;
…;wdÞ describe additional degrees of freedom, such as might

occur in the classical description of a molecule with rotational

or vibrational degrees of freedom. These additional coordi-

nates will be referred to as internal degrees of freedom. An

important, but not the only, Poisson bracket is given by

½f ; g� ¼ ½f ; g�p þ ½f ; g�w

¼: rf � @g

@p
�rg � @f

@p
þ @f

@wa
Jab

w

@g

@wb
;

a; b ¼ 1; 2;…; d ; (5)

which is the sum of canonical and internal pieces, and is

assumed to satisfy the Jacobi identity. Such a bracket and

Hamiltonian generate dynamics of the form of Eq. (1).

Several comments on the Hamiltonian form of Eqs. (4)

and (5) are in order. Note that E may depend explicitly on

the fields, and all of their derivatives, and the same may be

true for the tensor J of the Poisson bracket provided the

Jacobi identity is satisfied for any choice of these fields. The

Poisson bracket may also have explicit w dependence, but no

direct coupling of the internal degrees of freedom to the

fields has been made explicit. In general, such coupling

would need to be consistent with the symmetries of interest

for these variables. For example, if w were a spin variable,

say s, then E would depend on s � B. This case is treated as

an example in Sec. IV C. Also, observe that all of the de-

pendence on the spatial variable x occurs through the fields.

The omission of such explicit dependence in E is appropriate

for media where spatial homogeneity is broken only by the

presence of the fields; however, the x dependence could be

added for further generalization.

Alternatively, a manifestly gauge invariant form is

obtained in terms of the coordinates zv ¼ ðx; v;w1;w2;…;wdÞ,
where ðx; vÞ denotes the usual six-dimensional velocity phase

space coordinates, with

p :¼ mvþ e

c
A ; (6)

and m denoting the mass of the charged particle. In terms of

these variables, Eq. (1) takes the form:

_zv ¼ ½zv;K� þ
e

m
I d � E ; (7)

where the bracket of Eq. (5) becomes the Littlejohn8 Poisson

bracket in Eq. (7)

½g; h�L ¼ ½g; h�v þ ½g; h�B ; (8)

where

½g; h�v ¼
1

m
rg � @h

@v
�rh � @g

@v

� �
and

½g; h�B ¼
e

m2c
B � @g

@v
� @h

@v

� �
; (9)

Id is a ð6þ dÞ � 3 matrix used to embed E into the force

law, and

Kðv;w; E;B;rE;rB;…Þ
¼ �Kðp� eA=c;w;E;B;rE;rB;…Þ : (10)

Thus, the electric field appears as an external force in addi-

tion to any dependence on it that may come through the

function K, and the electromagnetic potentials no longer

appear in the dynamics. Note, in general, E cannot be written

as a gradient in order to combine it with the first term of

Eq. (7). The dynamics of Eq. (7) with arbitrary Poisson

bracket in terms of zv, possibly depending explicitly on zv, E,

and B, can be taken as the starting point for lifting to a

kinetic theory.

Usual Lorentzian dynamics is given by K ¼ mjvj2=2:

when K is written in terms of p, the bracket of Eq. (5) with E
yields the equations of motion for a particle of charge e and

mass m subject to given electric and magnetic fields. Alter-

natively, the same equations are given from Eq. (7) with [,]L.

Now, the finite degree-of-freedom system of Eq. (7)

will be lifted. The first step is to lift the particle dynamics to

a kinetic theory for determining a phase space density

f(z, t)¼ f(x, v, w, t). This is easily achieved by the standard

Liouville form:

012104-2 P. J. Morrison Phys. Plasmas 20, 012104 (2013)



@f

@t
þ ½f ;K� þ e

m
E � @f

@v
¼ 0 ; (11)

where the generalization to multiple species is straightfor-

ward. Clearly, the characteristic equations of Eq. (11) corre-

spond to the finite-dimensional matter model of Eq. (7).

The second part of lifting is to describe the coupling to

Maxwell’s equations. This coupling is effected by introduc-

ing the energy functional

K½E;B; f � :¼
ð

dxdvdwK f ; (12)

whence the following expressions for the charge and current

densities are obtained:

qðx; tÞ ¼ e

ð
dvdw f �r � dK

dE
; (13)

Jðx; tÞ ¼ e

ð
dvdw

@K
@v

f þ @

@t

dK

dE
þ cr� dK

dB
: (14)

Inserting these expressions for the sources into the usual

form of Maxwell’s equations completes the lift.

From Eqs. (13) and (14), it is evident that the polariza-

tion, P, and magnetization, M, can be identified as

Pðx; tÞ ¼ � dK

dE
and Mðx; tÞ ¼ � dK

dB
; (15)

which is consistent with the usual definitions of bound charge

density, polarization current, and magnetization current

qb ¼ �r � P ; Jp ¼
@P

@t
; and Jm ¼ cr�M ; (16)

respectively. Although the manner of lifting embodied in

Eqs. (11), (13), and (14) is straightforward, because of the

functional derivatives in Eq. (15), the dependencies of P and

M on the fields E and B may be very complicated and con-

tain high order spatial derivatives.

In Sec. III, it is shown that this manner of lifting results

in a Hamiltonian field description of the coupled system. It

should be emphasized that this construction does not require

the explicit introduction of the vector and scalar potentials.

However, from the Hamiltonian form using E, it is clear that

it subsumes the description using /ðx; tÞ and A(x, t). To see

the explicit form, define the momentum phase space density

by �f ðx; p;w; tÞ ¼ f ðx; v;w; tÞ, which gives under the change

v$ p, the governing kinetic equation

@�f

@t
þ ½�f ; E� ¼ 0 ; (17)

with ½g; h� ¼ ½g; h�p þ ½g; h�w. The coupling to Maxwell’s

equation is essentially unchanged

qðx; tÞ ¼ e

ð
dpdw �f �r � dK

dE
; (18)

Jðx; tÞ ¼ e

ð
dpdw

@K
@p

�f þ @

@t

dK

dE
þ cr� dK

dB
; (19)

as are the expressions for P and M. Using the chain rule

expressions

@�f

@p
¼ 1

m

@f

@v
; r�f ¼ rf � e

mc

@f

@v
� rA ; and

@�f

@t
¼ @f

@t
� e

mc

@f

@v
� @A

@t
; (20)

it is not difficult to show that ½g; h�p transforms to ½g; h�L and

Eq. (17) transforms into Eq. (11).

III. HAMILTONIAN FORM AND CONSTITUTIVE
RELATIONS

Based on past experience, viz., Vlasov-Maxwell and

guiding center kinetic theories, a natural choice for the

Hamiltonian functional is the following:

H½f ;E;B� ¼ K �
ð

dx E � dK

dE
þ 1

8p

ð
dxðjEj2 þ jBj2Þ

¼ K þ
ð

dx E � Pþ 1

8p

ð
dxðjEj2 þ jBj2Þ; (21)

where P, as given by Eq. (15), is used as a shorthand in the

second line, which one could rewrite in terms of

D :¼ Eþ 4pP. The Hamiltonian of Eq. (21) is a generaliza-

tion of the energy component of the energy-momentum tensor

first derived by variational methods in Refs. 5–7. It is straight-

forward to verify directly that Eq. (21) is conserved by the

combined field theory, Maxwell’s equations with the sources

(13) and (14) coupled to the kinetic theory of Eq. (11).

One might think that the jBj2 term of Eq. (21) should be

replaced by B �H, where H ¼ B� 4pM, but this is incor-

rect. All polarization and magnetization effects are modeled

here by the terms involving K, i.e., they are a consequence

of the particle dynamics. Rather than relating E and B to D

and H by constitutive relations, the particle dynamics,

extended and other, describes the physics that is often

approximated by simplistic constitutive relations. For exam-

ple, the difference between jEj2 and E � D arises from the K
term that contains the matter dynamical information.

If only ðf ;E;BÞ are used as dynamical variables, there is

a difficulty in obtaining a Poisson bracket description for the

field theory. The problem is readily encountered when one

attempts to include polarization effects, because the polariza-

tion current has a time derivative and Poisson bracket

expressions such as fE;Hg do not produce terms with time

derivatives of the dynamical variables; i.e., in Hamiltonian

theories all time derivatives are on the left hand side, so to

speak. Consequently a term of the form @P=@t cannot

appear. However, there is a way to circumvent this problem,

a problem that does not occur in action principle formula-

tions, such as those of Refs. 5–7.

Functional differentiation of Eq. (21) gives

dH

dE
¼ � d2K

dEdE

� �†

�Eþ E

4p
; (22)

dH

dB
¼ dK

dB
� d2K

dBdE

� �†

�Eþ B

4p
; (23)
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where d2K=dEdE and d2K=dEdB are second functional de-

rivative operators that satisfy

d2K

dEdE

� �†

¼ d2K

dEdE
and

d2K

dBdE

� �†

¼ d2K

dEdB
: (24)

(See, e.g., (Refs. 3, 4, and 9) for a review of functional dif-

ferentiation.) Expressions (22) and (23) reveal how polariza-

tion and magnetization effects are embodied in K. Since the

functional derivatives above have, in a sense, “dressed” E

and B, existing Hamiltonian structures will not be adequate.

It is clear that without some modification one cannot obtain

the polarization current.

If the theory were expressed in terms of D, the following

bracket on functionals �F½D;B; f � could give the correct tem-

poral evolution of D, provided d �H=dB ¼ H=4p:

f �F; �Gg ¼
ð

dxdvdw f ð½ �Ff ; �Gf �v þ ½ �Ff ; �Gf �wÞ (25)

þ
ð

dxdvdw f ½ �Ff ; �Gf �B (26)

þ 4pe

m

ð
dxdvdw f ð �GD � @v

�Ff � �FD � @v
�Gf Þ (27)

þ 4pc

ð
dx ð �FD � r � �GB � �GD � r � �FBÞ ; (28)

with ½f ; g�v and ½f ; g�B given by Eq. (9), @vg ¼ @g=@v, and
�Ff :¼ d �F=df , �FD :¼ d �F=dD, etc. The Born-Infeld term of

Eq. (28) is motivated by their original theory10 that was also

written in terms of D and B (see also Ref. 11). Although this

term can give something like @D=@t ¼ r�H, it remains to

properly define the meaning of D and H. Thus, this bracket

alone does not constitute a closed theory. Similarly the cou-

pling term (27), a generalization of that introduced in Refs. 2

and 3 that includes the internal variable w, is written here in

terms of D, but the generalization of the Marsden-Weinstein

term12 (see also Ref. 13) of Eq. (26), and the first term of

Eq. (25), also a generalization of that given in Refs. 2 and 3,

are unchanged. The new internal term here of Eq. (25) with

½ �Ff ; �Gf �w does not depend on D and does not affect the

Jacobi identity (cf. Section 2 of the Appendix).

To close the theory requires a constitutive relation,

something like D ¼ � � E. Such relations are often appended

to electromagnetic theory based on phenomenological mate-

rial properties, but here they emerge as a consequence of

the Vlasov-like dynamics and the definitions (15). Using

Eq. (15) gives

D ¼ D½E;B; f � ¼ Eþ 4pP½E;B; f �; (29)

with both P and D linear in f, but not in E and B. In general,

these functionals can be nonlinear and even global in nature.

It is only required that there be a unique inverse

E ¼ D�1½D;B; f � ¼ E½D;B; f �: (30)

Similarly, using Eq. (15)

H ¼ H½B;E; f � ¼ B� 4pM½B;E; f � ; (31)

which is also assumed to have an inverse, i.e.,

B ¼ B½H;E; f � ¼ Hþ 4pM½H;E; f � : (32)

For given K, the expressions of Eq. (15) can be quite

complicated, particularly when derivatives of the fields are

included. However, these expressions are local in time, i.e.,

E; B; D, and f are all evaluated at the same time. Because

of the presence of f and the equation governing it, causal

effects are included in a dynamical sense and do not need to

be put in at the expense of breaking time-reversal symmetry.

Also, there is no artificial separation of charge into bound

and free components or current into magnetization or other.

Rather, charges and currents are determined dynamically

according to the Vlasov equation. A given charge may

behave in any manner consistent with this dynamics.

When limE!0 D½E;B; f � ¼ 0 the first order term in an

expansion in E gives D ¼ � � E, where � is the dielectric

permittivity operator. Similarly, B ¼ l �H, where l is the

permeability operator. If one were to replace the Vlasov

dynamics by trivial dynamics of linear response away from

equilibrium, then one can recover the usual permittivity and

permeability relations, including the usual causal (see, e.g.,

Ref. 14) form in space and time. But, this will not be done

here.

To sum up, the Hamiltonian of Eq. (21) is given in terms

of ðE;B; f Þ, the bracket of Eqs. (25)–(28) in terms of

ðD;B; f Þ, and Eq. (29) is a closure relation relating D to E.

Thus, if �H ½D;B; f � ¼ H½E;B; f � is defined by inserting the

inverse of Eq. (29) in for E, a closed theory is obtained. For

general K, this inversion cannot be done explicitly (although

a series expansion may be possible); however, the chain rule

can be used to relate functional derivatives of H to those of
�H and thereby obtain equations for the time derivatives of

ðD;B; f Þ which can then be shown to be equivalent to those

of Sec. II. Alternatively, the chain rule can be used to write

the bracket of Eqs. (25)–(28) in terms of the set of funda-

mental variables ðE;B; f Þ.
To understand the chain rule, suppose two functionals

are related by �F½D;B; f � ¼ F½E;B; f �, where the right hand

side is obtained by inserting Eq. (29) in for D in the func-

tional F on the left. Variation of �F ¼ F givesð
dx

�
d �F

dD
� dDþ d �F

dB
� dB

�
þ
ð

dz
d �F

df
df

¼
ð

dx

�
dF

dE
� dEþ dF

dB
� dB

�
þ
ð

dz
dF

df
df ; (33)

while variation of Eq. (30) gives

dE ¼ dE

dD
� dDþ dE

dB
� dBþ dE

df
df ; (34)

where dE=dD, etc., are the usual Fr�echet derivatives

obtained by first variation. Inserting Eq. (34) into Eq. (33)

and comparing the coefficients of the independent variations

dD, etc., gives
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d �F

dD
¼ dE

dD

� �†
� dF

dE
; (35)

d �F

dB
¼ dF

dB
þ dE

dB

� �†

� dF

dE
; (36)

d �F

df
¼ dF

df
þ dE

df

� �†
� dF

dE
: (37)

A more explicit expression for ðdE=dDÞ† can be

obtained by varying Eq. (29) at fixed B and f, giving

dD ¼ I � 4p
d2K

dEdE

� �
� dE ¼: e � dE (38)

or

dE ¼ dE

dD
� dD ¼ e�1 � dD; (39)

where e is the nonlinear permittivity operator (not to be con-

fused with �). Evidently,

ED :¼ dE

dD
¼ e�1 ¼ I � 4p

d2K

dEdE

� ��1

; (40)

and ED ¼ ðEDÞ† or ðe�1Þ† ¼ e�1. It is important to note that

although dD ¼ e � dE, D 6¼ e � E; the correct relation between D

and E is given by the nonlinear expression of Eq. (29). Similarly,

EB :¼ dE

dB
¼ 4pe�1 � d2K

dBdE
and Ef :¼ dE

df
¼ 4pe�1 � d2K

dfdE

(41)

and the functional derivatives of Eqs. (35)–(37) can now be

calculated

�HD ¼ E
†
D � HE ¼ e�1 � e � E

4p
¼ E

4p
;

�HB ¼ HB þ E
†
B � HE ¼ KB �

d2K

dBdE

� �†

�E

þ B

4p
þ e�1 � d2K

dBdE

� �†

�e � E ¼ B

4p
�M;

�Hf ¼ Hf þ E
†
f � HE ¼ K�

d2K

dfdE

� �†

�E

þ e�1 � d2K

dfdE

� �†

� e � E ¼ K : (42)

Now, using the expressions of Eq. (42) in the bracket of Eqs.

(25)–(28) gives

@B

@t
¼ �4pcr� �HD ¼ �cr� E; (43)

@D

@t
¼ 4pcr� �HB �

4pe

m

ð
dvdw f@v

�Hf

¼ cr�H� 4pe

m

ð
dvdw f@vK; (44)

@f

@t
¼ �½f ; �Hf � � @v � ðf �HDÞ

¼ �½f ; K� � e

m
E � @f

@v
; (45)

where ½ ; � ¼ ½ ; �L þ ½ ; �w as defined by Eqs. (8) and (9).

Thus, the bracket reproduces the Vlasov-like equation of

Eq. (11) and Maxwell’s equations with the polarization and

magnetization currents, but remember f and [,] can be written

in terms of p using Eq. (6) and thus the above is also equiva-

lent to Eq. (11).

In the above, D is a convenience, a shorthand for

Eþ 4pP, with E being the fundamental variable. One could

eliminate D from these equations, e.g., by writing Eq. (44) as

follows:

@D

@t
¼ ED �

@E

@t
þ PB �

@B

@t
þ Pf �

@f

@t
; (46)

where ED ¼ e, as before, and PB and Pf are again operators

obtained by variation of P, and then inserting the other two

equations of motion for the time derivatives. This procedure

will lead to a complicated set of equations in terms of the

fundamental variables ðE;B; f Þ. Another way of obtaining

these complicated equations is to obtain a bracket in terms of

E;B, and f alone, by inserting the transformations for the

functional derivatives of Eqs. (35)–(37) into the bracket of

Eqs. (25)–(28). This yields the following complicated

bracket:

fF;Gg ¼
ð

dxdvdw f ½Ff þ E
†
f � FE ; Gf þ E

†
f � GE�

þ 4pe

m

ð
dxdvdw f ððE†

D � GEÞ � @vðFf þ E
†
f � FEÞ

�ðE†
D � FEÞ � @vðGf þ E

†
f � GEÞÞ

þ 4pc

ð
dx ððE†

D � FEÞ � r � ðGB þ E
†
B � GEÞ

�ðE†
D � GEÞ � r � ðFB þ E

†
B � FEÞÞ; (47)

where to complete the procedure the expressions of Eqs. (40)

and (41) are to be inserted. Thus, the bracket of Eq. (47) is

quite complicated with many terms and operators. Neverthe-

less, by its construction it satisfies the Jacobi identity (mod-

ulo the r � B ¼ 0 obstruction discussed in Section 1 of the

Appendix). With Hamiltonian H½E;B; f � it is easily seen

from Eq. (42) that this bracket produces the correct equations

for @f=@t and @B=@t, but it is less easy, yet possible, to see it

produces the complications of Eq. (46) correctly.

For some theories of interest, including usual linear

response theory, K has a simplified form, viz.,

Kðv;w;E;BÞ ¼ hðv;w;BÞ þ Pðv;w;BÞ � E

þ 1

2
E � kðv;w;BÞ � E ; (48)

where k
† ¼ k. For example, such a linear polarization theory

is sufficient for some drift and gyrokinetic-like theories.

With Eq. (48),
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P ¼ �
ð

dvdw
@K
@E

f ¼ �
ð

dvdwPf � E �
ð

dvdw k f : (49)

The first term of the second equality of Eq. (49) represents a

permanent dipole moment per unit volume, which can be

dropped: because Eq. (21) is a Legendre transform it will

cancel out anyway. The second term of Eq. (49) defines the

electric susceptibility, ve . Thus, P ¼ ve � E or

D ¼ � � E; (50)

with � ¼ I þ 4pve . Note that unlike the e of Eq. (38), when

Eq. (48) is assumed, � is independent of E but not of B. Ex-

plicitly in terms of indices

�ij ¼ dij � 4p
ð

dvdw kijðv;w;BÞ f : (51)

Assuming ��1 exists and has the form:

��1 ¼
I

I þ 4pve

¼ I � 4pve þ ð4pve Þ2 �… ; (52)

where ve
2 stands for matrix multiplication, and so on down

the line. Hence, E ¼ ��1 � D. Although � is linear in f, this is

not the case for ��1. Finally, for the K of Eq. (48) that is quad-

ratic in E, the following simplified expressions are obtained:

E
†
D ¼ ��1; (53)

E
†
B ¼ D �

@ ��1

@B
; (54)

E
†
f ¼ D � ��1 � k � ��1: (55)

Note, obtaining these formulas can be facilitated by using

identities obtained by varying the expression ��1 � � ¼ I.

IV. EXAMPLES

In this section, four examples are given: that of Sec.

IV A is the usual Vlasov-Maxwell theory, that of Sec. IV B

is a guiding center drift kinetic theory that includes nontri-

vial polarization and magnetization effects, that of Sec. IV C

includes a physically perspicuous internal variable, and that

of Sec. IV D was chosen to show the generality of the lift

theory by altering Maxwell’s equations.

A. Vlasov-Maxwell

For Vlasov-Maxwell theory w is nonexistent and

only z ¼ ðx;pÞ appears. Thus, �f ðx;p; tÞ and, with

K ¼ jp� eA=cj2=2m, Eq. (11) becomes

@�f

@t
¼ jp� eA=cj2

2m
þ e/; �f

" #

¼ � e

mc
ðp� eA=cÞ � rA � @

�f

@p
þ er/ � @

�f

@p

� 1

m
ðp� eA=cÞ � r�f : (56)

In terms of f ðx; v; tÞ, K ¼ mjvj2=2 and Eq. (56) becomes

@f

@t
¼ �v � rf � e

m
Eþ v

c
� B

� �
� @f

@v
: (57)

From the general Hamiltonian (21), with K ¼ mjvj2=2,

evidently the Vlasov-Maxwell Hamiltonian is

H ¼ m

2

ð
dxdv jvj2 f þ 1

8p

ð
dxðjEj2 þ jBj2Þ ; (58)

and with ½g; h�L the bracket of Eqs. (25)–(28) becomes the

Vlasov-Maxwell bracket

F;Gf g ¼
ð

dxdv

�
f ½Ff ;Gf �v þ f ½Ff ;Gf �B

þ 4pe

m
f ðGE � @vFf � FE � @vGf Þ

�
þ 4pc

ð
dx ðFE � r � GB � GE � r � FBÞ: (59)

With this bracket and Hamiltonian, one obtains the usual

Vlasov-Maxwell equation as

@f

@t
¼ f ;Hf g ¼ �½f ;K�L �

e

m
E � @f

@v
; (60)

which is equivalent to Eq. (57). Similarly, since for this

example D ¼ E, the usual expression for the current is

obtained from fE;Hg, there being no polarization or mag-

netization contributions, and Faraday’s law is given by

@B=@t ¼ fB;Hg.
The relativistic Vlasov-Maxwell theory similarly follows

with the choice K ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp� eA=cj2 þ m2

0c2

q
and the theory

can be written in manifestly covariant form,6 but this will not

be pursued further here.

B. Guiding center drift kinetic theory

A canonical Hamiltonian description for guiding center

particle motion was obtained in Refs. 6 and 7 by applying

Dirac constraint theory to Littlejohn’s degenerate Lagran-

gian15,16 (with a regularization suggested in Ref. 17) in order

to effect a Legendre transformation. The canonical variables

of the theory are ðx; q4; p; p4Þ and the particle Hamiltonian,

Dirac’s primary Hamiltonian for this problem (see, e.g.,

(Refs. 7 and 18)), is

Eðx; q4; p; p4;E;B;rBÞ ¼ vg � ðp� eA�=cÞ þ V4p4 þ e/�

(61)

¼ Kðp� eA=c; q4; p4;E;B;rBÞ þ e/ ; (62)

which is of the form of Eq. (4). Here

A� ¼ Aþ b mcv0cðq4=v0Þ=e ;

e/� ¼ e/þ ljBj þ mðq2
4 þ jvEj2Þ=2 ; (63)

vE ¼ cðE� BÞ=jBj2 ; b ¼ B=jBj ; (64)

vg ¼ q4B�=ðc0B�jjÞ þ cE� � B=B�jj ;

V4 ¼ eE� � B�=ðmg0B�jjÞ ; (65)
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B� ¼ r � A� and E� ¼ �r/� � 1

c

@A�

@t
: (66)

The function cðzÞ is an antisymmetric regularization function

with z ¼ q4=v0 and v0 some constant velocity. The Littlejohn

theory is recovered if cðzÞ ¼ z, in which case q4 ¼ vjj. In the

regularized theory cðzÞ � z for small jzj, but for large jzj, c is

bounded so that with v0 � vthermal, mv0c cð1Þ 	 ejBj=
ðb � r � bÞ, which is accomplished, e.g., by c ¼ tanhðzÞ.

This theory has an eight-dimensional phase space with

the canonical bracket

½g; h� ¼ ½g; h�p þ @q4
g @p4

h� @q4
h @p4

g ; (67)

which with K of Eq. (62) completes the theory. The appro-

priate bracket of the form of Eqs. (25)–(28) is obtained with

Eq. (67), and from K the functional K can be constructed and

thus the Hamiltonian of Eq. (21). This bracket and Hamilto-

nian produces the equations of motion; thus this system is a

Hamiltonian field theory. From K, the polarization and mag-

netization can be obtained straightforwardly. Since expres-

sions are complicated, the reader is referred to Refs. 6 and 7

for details.

C. Spin Vlasov-Maxwell

The nonrelativistic spin Vlasov-Maxwell system is a ki-

netic theory generalization of the Vlasov-Maxwell system

that includes a semiclassical description of spin.19–21 The

Hamiltonian description of this system21 will be shown to fit

within the gauge-free lifiting framework. The spin Vlasov-

Maxwell electron distribution function, f ðx; v; s; tÞ, contains

the internal spin variable s ¼ ðs1; s2; s3Þ, and satisfies

@f

@t
¼ �v � rf þ e

m
Eþ v

c
� B

� �
þ 2le

m�hc
rðs � BÞ

� �
� @f

@v

þ 2le

�hc
ðs� BÞ � @f

@s
; (68)

where m and e > 0 are the electron mass and charge, respec-

tively, 2p�h is Planck’s constant, le ¼ glB=2 is the electron

magnetic moment in terms of lB, the Bohr magneton, and

the electron spin g-factor. Equation (68) is coupled to the dy-

namical Maxwell’s equations

@B

@t
¼ �cr� E ;

@E

@t
¼ cr� B� 4pJ ; (69)

through the current J ¼ Jf þ cr�M, which has “free” and

spin magnetization parts

Jf :¼ �e

ð
dv ds vf and M :¼ � 2le

�h

ð
dv ds sf : (70)

Equations (68) and (69) with Eq. (70) are to be viewed clas-

sically and consequently a full nine-dimensional phase space

integration, d9z ¼ dxdvds, is considered for f. Spin quantiza-

tion is obtained as an initial condition that constrains s to lie

on a sphere (see Ref. 21). Extension to multiple species is

straightforward, so will not be included.

For this system K is chosen as follows:

Kðv; s;BÞ ¼ m

2
jvj2 þ 2le

�hc
s � B ; (71)

however, more general forms are possible. It is not difficult

to check that the characteristic equations of Eq. (68) are of

the form of Eq. (11) with the Poisson bracket ½g; h� ¼ ½g; h�v
þ ½g; h�s, where

½g; h�s ¼ s � ð@sg� @shÞ ; (72)

with @s :¼ @=@s, and K given by Eq. (71).

Thus the Hamiltonian functional (21) becomes

H½E;B; f � ¼
ð

d9z
m

2
jvj2 þ 2le

�hc
s � B

� �
f

þ 1

8p

ð
dx ðjEj2 þ jBj2Þ; (73)

which can be shown to be conserved directly by using the

equations of motion, and the bracket of Eqs. (25)–(28)

adapted to the present example is

fF;GgsVM ¼
ð

d9z f ð½Ff ;Gf �v þ ½Ff ;Gf �B þ ½Ff ;Gf �s; (74)

þ 4pe

m
ðFE � @vGf � GE � @vFf ÞÞ; (75)

þ 4pc

ð
dx ðFE � r � GB � GE � r � FBÞ : (76)

The last term of Eq. (74) of f ; gsVM accommodates the

spin, an internal variable; it is not surprising that it has an

inner bracket based on the soð3Þ algebra (e.g., Ref. 18). The

remaining terms of Eqs. (74)–(76) produce the usual terms

of Vlasov-Maxwell theory: it is a straightforward exercise to

show that Eqs. (68) and (69) are given as follows:

@f

@t
¼ ff ;HgsVM;

@B

@t
¼ fB;HgsVM;

@E

@t
¼ fE;HgsVM :

This is facilitated by the identity
Ð

d9z f ½g; h� ¼ �
Ð

d9z g
½f ; h�, which works for each of ½g; h�v, ½g; h�B, and ½g; h�s. It

follows that the polarization P 
 0 and dK=dB ¼ �M as

given by Eq. (70).

In Section 2 of the Appendix, a direct proof of the Jacobi

identity for ff ;HgsVM is given.

D. Monopole Vlasov-Maxwell

This example differs from the previous ones in that

Maxwell’s equations are changed to another field theory. In

particular, Dirac’s theory of electromagnetism22,23 with

monopole charge will be treated in the lift framework.

For Dirac’s theory, Eq. (7) is replaced by the particle

orbit equations

_x ¼ v and _v ¼ e

m

�
Eþ v

c
� B

�
þ g

m

�
B� v

c
� E

�
;

(77)
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where g and e are magnetic and electric charges, respec-

tively. The appropriate particle Poisson bracket for insertion

into Eqs. (25)–(28) is

½g; h�m ¼ ½g; h�v þ ½g; h�B þ ½g; h�E; (78)

where

½f ; g�E :¼ � g

m2c
E � ð@vf � @vgÞ : (79)

The particle Hamiltonian is given by K ¼ mjvj2=2, just as

for Vlasov-Maxwell theory.

In lifting to a kinetic theory, there are various kinds of

multi-species dynamics, with and without magnetic charge,

which could be considered. Here, the case of a single species

of identical particles that carry both magnetic and electric

charges will be developed, along the lines of the quantum

fluid theory considered in Ref. 24. Inserting Eq. (78) into

Eqs. (25)–(28) and adding a new coupling term to account

for the B that acts as an external force, gives the bracket

fF;GgmVM ¼
ð

dxdv
�

f ½Ff ;Gf �m (80)

þ 4pe

m
f ðGE � @vFf � FE � @vGf Þ

þ 4pg

m
f ðGB � @vFf � FB � @vGf Þ

�
(81)

þ 4pc

ð
dx ðFE � r � GB � GE � r � FBÞ : (82)

With Hamiltonian of Eq. (58) this bracket yields

@f

@t
¼ �v � rf � @f

@v
� e

m

�
Eþ v

c
� B

�
þ g

m

�
B� v

c
�E

�� �
;

(83)

@E

@t
¼ cr� B� 4pJe; (84)

@B

@t
¼ �cr� E� 4pJm; (85)

where

Je ¼ e

ð
d vv f and Jm ¼ g

ð
d vv f : (86)

Thus, monopole Vlasov-Maxwell is a Hamiltonian field theory.

One reason for investigating Dirac’s model in the pres-

ent context is to see if the r � B ¼ 0 obstruction to Jacobi

discussed in Appendix can be removed. In Section 3 of the

Appendix, the Jacobi identity for fF;GgmVM is proved

directly, and there it is discovered that the solenoidal charac-

ter of B is replaced by r � ðeB� gEÞ ¼ 0. Thus, the space of

functionals must still be restricted to such fields, as discussed

in the Appendix. However, Dirac constraint theory can

reduce this to a boundary condition at infinity.25

Another reason for investigating monopole theories is for

their utility in developing numerical algorithms. For example,

the Gudunov numerical method for magnetohydrodynamics26

(see also Ref. 27) exploits a form that allows for r � B 6¼ 0

that was subsequently shown to be Hamiltonian without the

r � B ¼ 0 constraint in Refs. 1 and 3 (see also Refs. 28–30).

However, since the monopole theory of this section requires a

specific linear combination of E and B to be divergence free,

adaptations of these methods in not so straightforward. In any

event, the reader can rest assured if mononpoles are discov-

ered there still will exist Hamiltonian guiding center and gyro-

kinetic kinetic theories, obtained with suitable choices for K
with associated generalized polarization and magnetization

vectors.

V. CONCLUSIONS

The main accomplishment of this work is to describe

how a matter model of dynamics can be lifted to a Hamilto-

nian coupled Vlasov-Maxwell system. En route to this Ham-

iltonian theory, the general constitutive relations of Eqs. (30)

and (31) or, equivalently, the nonlinear permittivity and per-

meability operators, as determined by Eq. (15), were

obtained. These constitutive functionals are very general: as

discussed in the paper, K may contain all derivatives of the

fields and may even be global in nature and contain integral

operators. From the general constitutive functionals, it was

shown how to obtain the usual linear relations. A noncanoni-

cal Poisson bracket, another step in the program started in

Refs. 1–3, was obtained for this general class of theories.

Four examples were given, including the general class of

guiding center kinetic theories of Sec. IV B. This latter example,

like all systems that are in the class of variational theories of

Ref. 6, easily was shown to possess the Hamiltonian structure.

Thus, the theory of this paper determines the path to follow for

obtaining the Hamiltonian formulation of a consistent gyroki-

netic theory by making use of the results Refs. 31 and 32.

Various generalizations are possible. Namely, the exten-

sion to many species of different dynamics, relativistic

theory other than the Vlasov-Maxwell example that was

described, versions where particle matter models have more

general finite-dimensional Poisson brackets, are all straight-

forward. Also, extending the matter dynamics by coupling to

other general gauge-free field theories is possible.

Another application of the techniques of this paper will

be used in a subsequent work33 that will treat Hamiltonian

perturbation theory in the field theory context. There it will

be shown how an exact transformation of the particle (char-

acteristic) equations of Vlasov-Maxwell equations can be

lifted to the kinetic and Maxwell equations, and how this can

be used in perturbation theory for infinite-dimensional non-

canonical Hamiltonian systems.

In physics, there are two ways of constructing new theo-

ries. The usual way is to construct an action principle by pos-

tulating a Lagrangian density with the desired observables and

symmetry group properties. Alternatively one can postulate an

energy functional and Poisson bracket, which is essentially

the approach of the present paper. With this latter approach,

one must prove directly the Jacobi identity ffF;Gg;Hg
þffG;Hg;Fg þ ffH;Fg;Gg 
 0, for all functionals F, G,

and H. Techniques for doing this are not generally known,

and this provides one reason for the Appendix.

012104-8 P. J. Morrison Phys. Plasmas 20, 012104 (2013)



ACKNOWLEDGMENTS

I would like to thank Alain Brizard, Cristel Chandre, Ema-

nuele Tassi, and Michel Vittot for their continued interest in

this subject, their encouragement, and for many fruitful discus-

sions. I would also like to thank Iwo Bialynicki-Birula for

helpful correspondence and Loic de Guillebon for his com-

ments on an earlier draft of this manuscript. Supported by U.S.

Department of Energy Contract No. DE-FG05-80ET-53088.

APPENDIX: DIRECT PROOF OF JACOBI IDENTITIES

One term of the original Vlasov-Maxwell Hamiltonian

formulation of Ref. 2 presented an obstruction to the Jacobi

identity.34 This term was replaced in Ref. 12 in order remove

this problem, but it was then reported in Ref. 3 that the new

term also presents an obstruction, viz., that given by Eq. (A22)

below. One can rescue the Hamiltonian theory by requiring all

functionals to depend on fields B such that r � B ¼ 0, but

because the orginal program begun in Refs. 1 and 2 was to

construct truly gauge-free field theories in terms of noncanoni-

cal Poisson brackets, this taint was a disappointment. The

same obstruction appeared in the context of magnetohydrody-

namics,2 but a way to remove it was obtained in Ref. 3. To

date, the best fix for the taint of the Vlasov-Maxwell bracket is

given in Ref. 25 by using Dirac constraint theory, which repla-

cesr � B ¼ 0 by a boundary condition at infinity.

Section1 of this Appendix contains the details of the on-

erous calculation first performed by the author in 1981

(reported in detail here for the first time, as it was originally

done), leading to the result of Eq. (A22) that appeared in

Ref. 3. This is followed in Sections 2 and 3 of this Appendix

by a direct proof of the brackets for the spin and monopole

Vlasov-Maxwell theories, respectively.

1. Vlasov-Maxwell bracket

For convenience the charge, mass, and a factor of 4p are

scaled out to obtain the Vlasov-Maxwell bracket for the

fields f(z, t), E(x, t), and B(x, t) in the following form:

fF;Gg¼
ð

d6zf ½Ff ;Gf �cþ f ½Ff ;Gf �B

þ f ðGE �@vFf �FE �@vGf Þ

þ
ð

d3xFE �r�GB�GE �r�FB

¼: fF;GgcþfF;GgBþfF;GgEf þfF;GgEB ;

(A1)

where Ff :¼ dF=df , ½ f ;g�c :¼rf �@vg�rg �@v f , @v :¼ @=@v,

½ f ;g�B :¼B � ð@v f �@vgÞ, and fF;Ggc, etc., are obvious from

context. Also, note, boldface has been removed since the for-

mulas are busy enough. Since charge can be scaled out in this

manner, it is evident that the validity of the Jacobi identity is in-

dependent of the sign of the species charge.

Above, the term fF;GgB, the Marsden-Weinstein

term,12 has been separated out because it will be seen to be

the source of the failure of Jacobi identity unless r � B ¼ 0.

Considering the combination fF;Ggc þ fF;GgB together

would simplify the calculation somewhat.

The Jacobi identity is

ffF;Gg;Hg:¼:ffF;Ggc;HgþffF;GgB;Hg
þffF;GgEf ;HgþffF;GgEB;Hg
¼ffF;Ggc;Hgc|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

þffF;Ggc;HgB|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2

þffF;Ggc;HgEf|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
3

þffF;Ggc;HgEB|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
4

þffF;GgB;Hgc|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
5

þffF;GgB;HgB|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
6

þffF;GgB;HgEf|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
7

þffF;GgB;HgEB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
8

þffF;GgEf ;Hgc|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
9

þffF;GgEf ;HgB|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
10

þffF;GgEf ;HgEf|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
11

þffF;GgEf ;HgEB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
12

þffF;GgEB;Hgc|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
13

þffF;GgEB;HgB|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
14

þffF;GgEB;HgEf|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
15

þffF;GgEB;HgEB|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
16

;

where the symbol :¼ : means modulo cyclic permutation;

“cyc” will be used to denote cyclic permutation when only

one side is to be permuted.

To prove the Jacobi identity for a generic Poisson

bracket of the form fF;Gg ¼ hFwjJGwi, with cosymplectic

operator J , one must calculate the functional derivative

dfF;Gg=dw. This derivative has three contributions: one

from Fw, one from J , and one from Gw. The first and last

give rise to second functional derivatives. Proofs of the

Jacobi identity are greatly simplified by the following:

Bracket Theorem (Ref. 3) To prove the Jacobi identity
for generic brackets of the form fF;Gg ¼ hFwjJGwi one
need only consider the explicit dependence of J on w when
taking the functional derivative dfF;Gg=dw.

Proof. The formal proof uses the anti-self-adjointness of

J and the self-adjointness of the second functional deriva-

tive. With these symmetries it can be shown that all second

functional derivative terms cancel. w
In what follows dfF;Gg=dw _¼ … denotes the func-

tional derivative modulo the second derivative terms. Equa-

tion (A1) gives

dfF;Ggc

df
_¼ ½Ff ;Gf �c;

dfF;Ggc

dB
_¼ 0;

dfF;Ggc

dE
_¼ 0; (A2)

dfF;GgB

df
_¼ ½Ff ;Gf �B;

dfF;GgB

dB
_¼
ð

dv f ð@vFf � @vGf Þ;

dfF;GgB

dE
_¼ 0 ; (A3)

dfF;GgEf

df
_¼ ðGE � @vFf � FE � @vGf Þ ;

dfF;GgEf

dB
_¼ 0 ;

dfF;GgEf

dE
_¼ 0 ; (A4)
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dfF;GgEB

df
_¼ 0 ;

dfF;GgEB

dB
_¼ 0 ;

dfF;GgEB

dE
_¼ 0 : (A5)

The following are immediate:

• Term 1 vanishes because fF;Ggc is Lie-Poisson; i.e.,

using the first of Eq. (A2), dfF;Ggc= df _¼ ½Ff ;Gf �, which,

when inserted into ffF;Ggc;Hgc and cyclicly permuting,

vanishes by virtue of the Jacobi identity of ½ ; �c.
• Term 4 vanishes by the Bracket Theorem because of the

second two equations of Eq. (A2).
• Term 12 vanishes by the Bracket Theorem because of the

second two equations of Eq. (A4).
• Terms 13-16 vanish by the Bracket Theorem because

fF;GgEB has no explicit dependence on f, E, or B, i.e.,

because of Eq. (A5).

Remark. One can organize Jacobi identity calculations at

the outset by grouping together all like terms that can possibly

cancel. For example, terms with the same functional derivatives

of F, G, and H must be considered together. Sometimes other

considerations can aid in the grouping of terms. When terms are

grouped appropriately, failure of a class of terms to cancel is a

proof of the failure of Jacobi. In the heading below fff means

that only function derivatives with respect to f occur, etc.

Term 6 (fff)

Using the first equation of Eq. (A3) gives

6 :¼:

ð
f ½B � ð@vFf �@vGf Þ;Hf �B

:¼:

ð
f B � ð@vðB � ð@vFf �@vGf ÞÞ�@vHf Þ

:¼:

ð
f BiBr�ijk�rst

@

@vj

@Ff

@vs

@Gf

@vt

� �
@Hf

@vk

:¼:

ð
f BiBr�ijk�rst

@2Ff

@vj@vs

@Gf

@vt

@Hf

@vk
þ @Ff

@vs

@2Gf

@vj@vt

@Hf

@vk

� �
(A6)

:¼:

ð
f BiBr�ijk�rst

@2Ff

@vj@vs

@Gf

@vt

@Hf

@vk
�@Hf

@vk

@2Ff

@vs@vj

@Gf

@vt

� �
:¼: 0

(A7)

where Eq. (A7) follows from Eq. (A6) by permuting the sec-

ond term of Eq. (A6), shifting the indices according to

s! k; k ! t; t! j; j! s, and i$ r, and using the anti-

symmetry of the Levi-Civita symbol.

Note, the above procedure is common in this game and

of general utility, so it is recorded in the following:

Lemma 1. If two terms can be made to cancel by permut-
ing one of them, then all terms cancel.

Proof. By writing out all six terms by permuting

FGH ! GHF! HFG, one observes they cancel in pairs. w
Remark. Term 6 vanishes without any assumptions on

B, i.e., r � B ¼ 0 is not required.

Term 11 (EEf)

Using the first and last equations of Eq. (A4) yields

11 :¼:

ð
f HE �

@

@v

dfF;GgEf

df

:¼:

ð
f HE �@vðGE �@vFf �FE �@vGf Þ

:¼:

ð
f ðHE �@vðGE �@vFf Þ�GE �@vðHE �@vFf ÞÞ :¼:0;

(A8)

where the last equality follows because comðGE � @v;HE �@vÞ
¼ 0, where com means commutator.

Terms 2 and 5 (fff)

Remark. Terms 2 and 5 have been grouped together

because both give rise to terms in the Jacobi identity involv-

ing Ff, Gf, and Hf.

Using Eq. (A2) in 2þ 5 :¼: ffF;Ggc;HgB þ ffF;GgB;
Hgc gives

2þ5 :¼:

ð
f B � ð@v½Ff ;Gf �c�@vHf Þþ f ½B � ð@vFf �@vGf Þ;Hf �c

:¼:

ð
f Bi �ijk

@Hf

@vk

@Ff

@vj
;Gf

� �
c

þ Ff ;
@Gf

@vj

� �
c

� �

þ
ð

f �ijk
@

@x‘
Bi
@Ff

@vj

@Gf

@vk

� �
@Hf

@v‘

�

�Bi
@

@v‘

@Ff

@vj

@Gf

@vk

� �
@Hf

@x‘

�

:¼:

ð
f Bi �ijk

@Hf

@vk

@Ff

@vj
;Gf

� �
c

þ@Hf

@vk
Ff ;

@Gf

@vj

� �
c

�

þ @Ff

@vj

@Gf

@vk
;Hf

� �
c

�
(A9)

þ
ð

f �ijk
@Bi

@x‘

@Ff

@vj

@Gf

@vk

@Hf

@v‘

� �
: (A10)

Upon defining F ¼ @vFf ; G ¼ @vGf , and H ¼ @vHf ,

and using the Leibniz rule for ½ ; �c, Line Eq. (A9) can be

rewritten asð
f Bi �ijkðHk½F j;Gf �c þHk½Ff ;Gj�c þ Gk½F j;Hf �c

þ F j½Gk;Hf �cÞ :¼: 0 ; (A11)

where upon permutation the first and fourth terms cancel, as

do the second and third. Thus,

2þ 5 :¼:

ð
f �ijk

@Bi

@x‘

@Ff

@vj

@Gf

@vk

@Hf

@v‘

� �
: (A12)

From Eq. (A12), the only remaining term is from Line

(A10). This term can be rearranged to yield

2þ 5þ cyc ¼
ð

f r � B½ð@vFf � @vGf Þ � @vHf � ; (A13)

which is a consequence of the following:
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Lemma 2. For any three vectors F ; G, and H, and vec-
tor field B in R3,

H � rB � ðF � GÞ þ F � rB � ðG � HÞ

þ G � rB � ðH � FÞ ¼ ðr � BÞðH � ðF � GÞÞ; (A14)

where H � rB � C ¼ HiCj@iBj.

Remark. Terms 2 and 5 could have been combined with

Term 6. They were considered separately to pinpoint, as will

be seen, that they are the sole terms that violate the Jacobi

identity without r � B ¼ 0.

Terms 7 and 10 (Eff)

Inserting the first and last equations of Eq. (A3) and the

first equation of Eq. (A4) into 7þ 10 :¼: ffF;GgB;HgEf

þffF;GgEf ;HgB gives

7þ 10 :¼:

ð
f HE � @vðB � ð@vFf � @vGf ÞÞ

þ f B � ð@vð�GE � @vFf þ FE � @vGf Þ � @vHf ÞÞ

:¼:

ð
f HE‘@v‘ðBi�ijk@vjFf@vkGf Þ

� f Bi �ijk

�
�@vjðGE‘@v‘Ff Þ@vkHf

þ @vjðFE‘@v‘Gf Þ@vkHf

�
:¼:

ð
f Bi�ijkHE‘ð@vkGf@v‘@vjFf þ @vjFf@v‘@vkGf Þ

(A15)

� f Bi �ijkð�GE‘@vkHf@vj@v‘Ff þ FE‘@vkHf@vj@v‘Gf Þ :
(A16)

Now upon permutation, the first term of Eq. (A15) is seen to

cancel the second of Eq. (A16) and the second term of Eq.

(A15) cancels the first term of Eq. (A16). Thus 7þ 10 :¼: 0.

Terms 3, 8, and 9 (Eff)

Using the first and last equations of Eqs. (A2) and (A4)

and the first and second equations of Eq. (A3) in 3þ 9 gives

3þ 9 :¼: �
ð

f ðHE � @v½Ff ;Gf �c þ ½HE � @vGf ;Ff �c

� ½HE � @vFf ;Gf �cÞ: (A17)

Using Lemma 3 below in Eq. (A17) with C equal to HE

gives

3þ 9 :¼:

ð
f ðr � HEÞ � ð@vFf � @vGf Þ : (A18)

Lemma 3. For any vector field C(x) and phase space
functions f and g

C � @v½f ; g�c ¼ ½C � @vf ; g�c þ ½f ;C � @vg�c

þ ðr � CÞ � ð@vg� @vf Þ : (A19)

Proof. With @vi :¼ @=@vi and @xi :¼ @=@xi

C�@v½f ;g�c¼Cið½@vif ;g�cþ½f ;@vig�cÞ
¼½C�@vf ;g�c�½Ci;g�c@vifþ½f ;C�@vg�c
�½f ;Ci�c@vig

¼½C�@vf ;g�c�ð@vif Þð@vjgÞ@xjCiþ½f ;C�@vg�c
þð@vigÞð@vjf Þ@xjCi

¼½C�@vf ;g�cþ½f ;C�@vg�c
þð@xjCiÞðð@vif Þð@vjgÞ�ð@vigÞð@vjf ÞÞ
¼½C�@vf ;g�cþ½f ;C�@vg�c
þð@vigÞð@vjf Þð@xjCi�@xiCjÞ
¼½C�@vf ;g�cþ½f ;C�@vg�cþðr�CÞ�ð@vg�@vf Þ:w

(A20)

Now consider Term 8

8 :¼: �
ð

d3x HE � r �
ð

d3v f @vFf � @vGf

� �
:¼: �

ð
d6z f ðr � HEÞ � ð@vFf � @vGf Þ : (A21)

Equations (A18) and (A21) imply 3þ 8þ 9þ cyc ¼ 0.

Remark. Observe the terms here, like Terms 7 and 10, are

Eff terms. However, they have been grouped separately because

there are ‘other considerations’ as mentioned above. The Terms

7 and 10 vanish with B, but the Terms 3, 8, and 9, do not. Thus

terms of one kind cannot cancel terms of the other.

Finally, from all of the above, the following is

concluded:

Main Theorem (Ref. 3) For the Vlasov-Maxwell
bracket of Eq. (A1)

ffF;Gg;Hg þ cyc ¼
ð

d6z f r � B ð@vFf � @vGf Þ � @vHf :

(A22)

Remark. It is interesting to note that the other constraint,

r � E ¼ 4pq, need not be satisfied for the Jacobi identity to

hold. It turns out to be a Casimir invariant.

2. Spin Vlasov-Maxwell bracket

Writing fF;GgsVM¼fF;GgVMþfF;Ggs and using:¼:

as defined in Section 1 of this Appendix

ffF;GgsVM;HgsVM :¼: ffF;GgVM;HgVM þ ffF;Ggs;HgVM

þ ffF;GgVM;Hgs þ ffF;Ggs;Hgs

:¼: ffF;Ggs;HgVM þ ffF;GgVM;Hgs ;

(A23)

where the second equality follows because of the Jacobi

identity for Vlasov-Maxwell (assuming solenoidal B) and

the fact that fF;Ggs is a Lie-Poisson bracket (see, e.g.,

(Refs. 4 and 35)). Thus, it only remains to show that the

cross terms cancel, which is facilitated by a the bracket theo-

rem3 stated above; viz., when functionally differentiating

fF;GgVM and fF;Ggs, which are needed when constructing

the cross terms, one can ignore the second functional deriva-

tive terms. Using the symbol _¼ again to denote equivalence

modulo the second variation terms,
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dfF;GgVM

df
_¼ ½Ff ;Gf �c þ ½Ff ;Gf �B þ FE � @vGf � GE � @vFf ;

(A24)

dfF;Ggs

df
_¼ ½Ff ;Gf �s; (A25)

while all other needed functional derivatives vanish. Thus,

ffF;GgVM;Hgs :¼:

ð
d9z ðf ½½Ff ;Gf �c þ ½Ff ;Gf �B;Hf �s

þ f ½FE � @vGf � GE � @vFf ;Hf �sÞ;
(A26)

ffF;Ggs;HgVM :¼:

ð
d9z ðf ½½Ff ;Gf �s;Hf �c þ f ½½Ff ;Gf �s;Hf �BÞ

þ f HE � @v½Ff ;Gf �sÞ: (A27)

The first lines of Eqs. (A26) and (A27) cancel by virtue of the

Jacobi identities for the brackets ½ ; �c;B;s on functions, while

the second line of Eq. (A26) cancels upon permutation of the

second term. Similarly, the second term of Eq. (A27) vanishes.

3. Monopole Vlasov-Maxwell bracket

For this case the Gaussian units of the text are used, i.e.,

the factors of 4p are reinserted and both the usual and monople

charges are manifest. Let ½F;G�m ¼ fF;GgVM þ fF;GgM,

where

fF;GgM ¼
ð

d6z f ½Ff ;Gf �E þ
4pg

m
f ðGB � @vFf � FB � @vGf Þ ;

(A28)

and ½ ; �E is defined by Eq. (79). Thus, the Jacobi identity has

four terms to consider

ffF;Ggm;Hgm :¼: ffF;GgVM;Hgm þ ffF;GgM;Hgm

¼ ffF;GgVM;HgVM|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þffF;GgM;HgVM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
2

þffF;GgVM;HgM|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
3

þffF;GgM;HgM|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
4

;

(A29)

where the symbol : ¼ : is defined in Section 1 of this

Appendix.

Term 1

From Ref. 3 (cf. Section 1 of this Appendix)

ffF;GgVM;HgVM þ cyc¼ e

m2

ð
d6z f r �B

� ½ð@vFf � @vGf Þ � @vHf � : (A30)

As in Section 1 of this Appendix, dfF;Gg=dw _¼ …

denotes the functional derivative modulo the second deriva-

tive terms. The following will be needed:

dfF;GgVM

df
_¼ ½Ff ;Gf �c þ ½Ff ;Gf �B

þ 4pe

m
ðGE � @vFf � FE � @vGf Þ; (A31)

dfF;GgM

df
_¼ ½Ff ;Gf �E þ

4pg

m
ðGB � @vFf � FB � @vGf Þ;

(A32)

dfF;GgVM

dB
_¼ e

m2

ð
d3v f @vFf � @vGf ;

dfF;GgVM

dE
_¼ 0;

(A33)

dfF;GgM

dE
_¼ � g

m2

ð
d3v f @vFf � @vGf ;

dfF;GgM

dB
_¼ 0 :

(A34)

The Poisson bracket that generates the ‘v�’ part of the gen-

eralized Lorentz force is ½f ; g� ¼ ½f ; g�c þ ½f ; g�B þ ½f ; g�E.

Because of

½½f ; g�E; h�E þ cyc ¼ 0 and ½½f ; g�E; h�B
þ ½½f ; g�B; h�E þ cyc ¼ 0 ; (A35)

the following holds:

½½f ; g�; h� þ cyc ¼ ½½f ; g�c; h�B þ ½½f ; g�B; h�c þ ½½f ; g�c; h�E
þ ½½f ; g�E; h�c þ cyc

¼ ðer � B� gr � EÞ½ð@vf � @vgÞ � @vh�=m2:

(A36)

The first term of the above is the source of the RHS of

Eq. (A30).

Now consider the remaining terms of Eq. (A29).

Term 4

Equations (A28) and (A32) give

ffF;GgM;HgM :¼:

ð
d6z f ½Ff ;Gf �E þ

4pg

m

�

� ðGB � @vFf � FB � @vGf Þ;Hf

�
E

þ 4pg

m
f HB � @v ½Ff ;Gf �E þ

4pg

m

�

� ðGB � @vFf � FB � @vGf Þ
�
:

(A37)

Equation (A37) has three kinds of terms. Consider first the

fff-termsð
d6z f ½½Ff ;Gf �E;Hf �E ¼

g2

m4

ð
d6z f E � ð@vðE � ð@vFf � @vGf ÞÞ

� @vHf Þ

¼ g2

m4

ð
d6z f �ijk�rstEiEr@vkHf

� ð@vj@vsFf@vtGf þ @vj@vtGf@vsFf Þ:
(A38)

Upon permutation and reindexing, the two terms of Eq. (A38)

cancel. This, of course, follows immediately from Eq. (A35)—

the above serves as a proof that ½½f ; g�E; h�E þ cyc ¼ 0. Next

consider the BBf-term
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16p2g2

m4

ð
d6z fHB � @vðGB � @vFf � FB � @vGf Þ: (A39)

This vanishes upon permutation because HB � @v and FB � @v

commute. Now all that remains of Term 4 is the Bff-term

4pg

m

ð
d6z f ½ðGB � @vFf � FB � @vGf ;Hf �E þ f HB � @v½Ff ;Gf �E :

(A40)

This term is of the same form as the EFF term of the VM-

bracket (terms 7 and 10), and vanishes for the same reason.

Therefore, Term 4 vanishes.

Now consider the two cross terms.

Terms 2 and 3

Term 2 is

ffF;GgM;HgVM :¼:

ð
d6z f

�
½Ff ;Gf �E þ

4pg

m

� ðGB � @vFf � FB � @vGf Þ;Hf

�
c

(A41)

þ f ½Ff ;Gf �E þ
4pg

m
ðGB � @vFf � FB � @vGf Þ;Hf

� �
B

(A42)

þ 4pe

m
f HE � @v ½Ff ;Gf �E þ

4pg

m
ðGB � @vFf � FB � @vGf Þ

� �
(A43)

þ e

m
f @vHf �

g

m2

ð
d3v f @vFf � @vGf (A44)

� 4p
ð

d3xr� HB �
g

m2

ð
d3v f @vFf � @vGf ; (A45)

while Term 3 is

ffF;GgVM;HgM :¼:

ð
d6z f

h
½Ff ;Gf �c þ ½Ff ;Gf �B (A46)

þ 4pe

m
ðGE � @vFf � FE � @vGf Þ;Hf

i
E

(A47)

þ 4pg

m
f HB � @v

�
½Ff ;Gf �c þ ½Ff ;Gf �B (A48)

þ 4pe

m
ðGE � @vFf � FE � @vGf Þ

�
(A49)

�g

m
f@vHf �

e

m2

ð
d3vf@vFf�@vGf : (A50)

Upon comparing Terms 2 and 3 some cancellations are

immediate.

• Using Eq. (A36), 1st term of Eq. (A41)þ 1st term of

Eq. (A46) gives � g
m2 ðr � EÞð@vFf � @vGf Þ � @vHf

• Using Eq. (A35), 1st term of Eq. (A42)þ 2nd term of

Eq. (A46)¼ 0

• Lines (A44)þ (A50)¼ 0

• The terms of Eq. (A49) vanish because HB � @v and GE �
@v commute. Likewise the last two terms of Eq. (A43)

Applying the following:

Lemma 3. For any vector field C(x) and phase space
functions f and g,

C � @v½f ; g�c ¼ ½C � @vf ; g�c þ ½f ;C � @vg�c
þ m�1ðr � CÞ � ð@vg� @vf Þ ; (A51)

which is not difficult to prove, to the last terms of Eq.

(A41)þLine (A45)þ the last first term of Eq. (A48)¼ 0.

There are six remaining terms. The last two terms of Eq.

(A42) cancel the last term of Eq. (A48), and the first term of

Eq. (A43) cancels the two terms of Eq. (A47). Thus in this

case, the obstruction becomes

ffF;GgmVM;HgmVMþcyc¼ 1

m2

ð
d6zf ðer�B�gr�EÞ

�ð@vFf�@vGf Þ�@vHf (A52)

and it is concluded that the Jacobi identity still requires a sol-

enoid constraint on eB� gE.

Upon transforming to new variables ~e ~E ¼ eEþ gB and

~eB ¼ eB� gE, where ~e2 ¼ e2 þ g2, reproduces the Poisson

bracket for Vlasov-Maxwell theory, which is possible for

this single species case of Dirac’s theory. In retrospect, the

existence of this transformation precludes the necessity for

the proof of the Jacobi identity; however, consistent with the

goal of this entire appendix, viz., to demonstrate techniques

of general utility rather than to present the most efficient

proofs, we retain it here.
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