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Abstract

It is shown in this paper how a connection may be made between the symmetry generators of the

Hamiltonian (or potential) invariant under a symmetry group G, and the subcasimirs that come

about when the rank of the Poisson structure of a dynamical system drops by an even integer. This

kinematics-dynamics connection is made by using the algebraic geometry of the orbit space in the

vicinity of rank change, and the extra null eigenvectors of the mass matrix (Hessian with respect

to symmetry generators) of the Hamiltonian (or potential). Some physical interpretations of this

point of view include a control-theoretic prescription to study stability on various symplectic leaves

of the Poisson structure. Methods of Invariant Theory are utilized to provide parametrization for

the leaves of a Poisson dynamical system for the case where a compact Lie group acts properly on

the phase space, which is assumed to be modeled by Poisson geometry.
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I. INTRODUCTION

A Poisson dynamical system is one in which a Poisson bracket between functions governs

the dynamics. It can be shown that the Poisson bracket, or the rank two contravariant tensor

(called Poisson structure) it defines, assumes a noncanonical form where its rank is locally

constant [1]. Points on the phase space manifold where the rank is full are called regular, and

those where the rank is less than full, singular. In many situations of interest, the change

in rank governs physical properties like the presence of extra equilibria, or the stability of

existing equilibria [2]. The characterization of singular points of the Poisson manifold (which

models the dynamical system) is therefore of some interest. In what follows, we propose one

such characterization for the case of a Poisson manifold that is acted on by a continuous

symmetry group G — in other words, a regular G-Poisson manifold.

The techniques we use are those that were exploited in a different context by workers in

the algebraic geometry of spontaneous symmetry breaking. In such studies [3], it was shown

how the parametrization of lower dimensional strata (comprising the so-called thin orbits) in

orbit space could be carried out using the information that comes from the mass matrix (the

Hessian) of the potential. We conjecture here that these extra data, that correspond to the

partial restoration of symmetry in the vicinity of thin orbits, are precisely the embedding

data needed to define the subcasimir surfaces.

Recall that Casimirs are functions that commute with all functions, forming the center of

the Poisson bracket algebra. Their gradients are null eigenvectors of the matrix representing

the Poisson tensor in any chosen basis; integrating these null eigenvectors gives (up to a

constant) the Casimirs for the problem. The level sets of these Casimirs would locally carve

out symplectic leaves of even dimension equal to the rank of the Poisson tensor. When rank

changes occur, these leaves drop in dimension by an even integer: extra Casimirs, called

subcasimirs, arise and the new symplectic leaves of reduced dimension are defined by the

intersection of level sets of both the Casimirs and the subcasimirs.

Often, stability issues can be addressed by considering the Casimirs that occur on a

given leaf [4]. Physical systems tend to equilibrate towards states of greater symmetry,

which occur on dynamical leaves of greater codimension. Thus, singular leaves become

relevant as arenas where actual stability issues of equilibria must be addressed. For this

purpose, in addition to the Casimirs, the subcasimirs have also to be considered. The recipe
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we propose for thinking about the subcasimirs suggests an alternative path to studying the

stability problem: namely, through the examination of stability of equilibria through the

mass matrix of symmetry breaking. Said another way, we can approach dynamics through

kinematics, and vice versa, by availing of the symmetry in the problem.

Fuller details of many of the ideas and constructs to follow can be found in [5]. In

Section II, we recall the basic notions from Poisson geometry. In Section III, Lie group

actions and their orbit space structures are summarized. Symmetry breaking is introduced

in Section IV, where we propose the characterization for subcasimirs. Section V considers

some examples of rank change in finite and infinite dimensions, to provide context for the

proposed identification. Section VI concludes with a brief summary of the results, and

directions for further investigation.

II. PRELIMINARIES FROM POISSON GEOMETRY

A Poisson manifold Pm is an m-dimensional differentiable manifold with an extra struc-

ture called the Poisson structure. A Poisson structure is specified by a Lie algebra structure

on the space of smooth functions C∞(P ), by means of an antisymmetric algebra operation

called the Poisson bracket [6, 7]

{·, ·} : C∞(P )× C∞(P ) −→ R.

It satisfies two properties, aside from antisymmetry,

{f, gh} = {f, g}h+ g{f, h} (1)

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0, (2)

which are called Leibniz’s rule and Jacobi identity, respectively.

In a coordinate neighborhood {xi}, and for f, g ∈ C∞(P ) the above properties imply the

following form for the bracket (summation over repeated indices):

{f, g} = {xi, xj}
∂f

∂xi

∂g

∂xj
.

Setting

{xi, xj} := J ij ,
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we see that the Poisson bracket of coordinate functions completely determines the cosym-

plectic form,

J(x) = J ij(x)
∂

∂xi

∧ ∂

∂xj
. (3)

We shall call it ‘Poisson tensor’ or ‘Poisson structure’ in what follows.

A. Constant rank case:

If dim(P ) = m, and the rank of the Poisson structure is l, then Darboux showed that

firstly l = 2n, and moreover local coordinates (q1, . . . , qn, p1, . . . , pn, c1, . . . , ck) exist about

any point x0 ∈ P such that the Poisson structure has the noncanonical form

(J ij)|x0 =











0 1 0

−1 0 0

0 0 0k











, (4)

which would be a canonical form except for the 0k. Here, m = 2n+k, and zeroes appearing

in the matrix have the appropriate dimensions.

In terms of the Poisson brackets, we have the following commutation relations:

{qi, pj} = δij , {qi, qj} = {pi, pj} = 0,

and the cks commute with everything.

Since det(J ij) = 0, this is not the inverse of any symplectic structure. However, by the

Frobenius theorem, it is possible to find leaves of a regular foliation generated by a system

of vector fields of rank 2n, which are symplectic with the symplectic form coming from

(roughly speaking) the part of the matrix (J ij) that is an invertible 2n by 2n submatrix. The

remaining k dimensions are transversal to the leaves and comprise the transverse structure

to the foliation. For a regular foliation, the transverse structure is trivial, and is simply

generated by the complementary dimension subspace of 1-form (Pfaffian) fields of rank k,

from amongst the space of all 1-form fields.

The leaves are regular submanifolds of P that are locally just level sets of the k functions

in a neighborhood with generalized Darboux coordinates, {ck = const.}. These are called

Casimirs (or Casimir invariants), and play an important role in both the physics and geom-

etry of Poisson dynamical systems. The Casimirs form the center of the Poisson function
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algebra, that is, {ck ∈ C∞(P )|{ck, f} = 0 ∀f ∈ C∞(P )}. Geometrically, as indicated above,

the differentials, {dck} generate the transverse foliation of complementary dimension to the

symplectic leaves. Physically, these are precisely the leaves on which dynamics, specified by

a Hamiltonian, would be constrained to occur. We emphasize here that the definition of

Casimirs does not call into account the Hamiltonian for the problem. The conservation of

Casimirs is purely kinematical, and happens for any choice of a Hamiltonian.

B. Nonconstant rank case:

If the rank of the Poisson structure is not constant as x ∈ P varies, then the distribution

of vector fields generated by the invertible part of J ij is integrable in the generalized sense,

with leaves of foliation of varying (even) dimension [8–10].

The local structure of a Poisson manifold in the neighborhood of a point x0 ∈ P was

studied by Weinstein [1, 11, 12]. Essentially, the Poisson structure decomposes into a sym-

plectic part and a singular part for which various forms can be postulated. The one that

shall be used in this paper is the ‘linear structure’, which entails zero rank at the origin. The

generic points are those for which the symplectic part of the Poisson structure has maximum

dimension. Points other than generic are called singular — at these points, the symplectic

part falls in dimension, and the singular part is one that incorporates the coordinates that

have disappeared.

In terms of the structure matrix, we have in a neighborhood of x0,

(J ij)|x0 =











0 1 0

−1 0 0

0 0 πij(y)











(5)

where (q1, . . . , qn, p1, . . . , pn, y1, . . . , yk) are coordinates of P
2n+k in the above neighborhood,

and

πij(y) = {yi, yj}, πij(0) = 0

is the transverse Poisson structure. In tensor notation, we have:

J(x)|x0 =

n
∑

i=1

∂

∂qi

∧ ∂

∂pi
+

k
∑

j,l=1

πjl(y)
∂

∂yj

∧ ∂

∂yl
.
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In the neighborhood of any point of x0 ∈ P , the Poisson manifold Pm is a product

of a symplectic part and a degenerate Poisson part (in local coordinates, the expressions

given above). The regular part of P is an open dense subset of P , and here the symplectic

factor arranges in leaves of locally constant dimension. The degenerate factor or transverse

structure is defined up to its isomorphism class, which is the same for all points along the

leaf.

By ‘linear structure’ is meant that in a neighborhood of the point where rank is zero, the

Poisson structure has a Taylor series expansion of the form

J(x)|0 =
m
∑

i,j,l=1

C ij
l x

l ∂

∂xi

∧ ∂

∂xj
+ o(x2)

where C ij
l are structure constants of a Lie algebra g of dimension m and rank k.

If (µ1, . . . , µm) are coordinates of g∗, ( δ
δµ1 , . . . ,

δ
δµm ) the corresponding coordinate basis of

g, and 〈 , 〉 the g−g∗ pairing, then for any pair of functions f, g ∈ C∞(g∗), the Lie–Poisson

bracket is defined by

{f, g}(µ) =

〈

µ,

[

δf

δµ
,
δg

δµ

]〉

= C ij
l µ

l δf

δµi

δg

δµj
, (6)

where [ , ] is the Lie bracket on g, and C ij
k the structure constants of g.

Thus, linearization happens when the degenerate Poisson structure at the point of total

degeneracy is isomorphic to a Lie–Poisson structure.

C. An example

To this simple example we shall return later, in the context of orbit geometry.

In 3 dimensions, a rigid body is pictured as rotating freely in space about its center of

mass, under no external force. The symmetry group is SO(3), acting on configuration space

of three positions. The phase space group action is pictured as the coadjoint action [13] of

SO(3) on the space of angular momenta, µi ∈ so(3)∗, for i = 1, 2, 3.

We use the Lie–Poisson structure J suggested by the structure constants ǫijk of the Lie

algebra of SO(3). For two functions of the angular momenta, f, g ∈ C∞(g∗), it is given by

{f, g}(µ) := ǫijkµ
k ∂f

∂µi

∂g

∂µj
≡ J(df, dg),

a construct that is quite independent of the actual form of the Hamiltonian.
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The norm of the angular momentum (norm evaluated with respect to the inner product

of the vector space g∗) is a conserved quantity—

C =
1

2

3
∑

i=1

(µi)2; (7)

from the properties of a Poisson bracket (1) and (2), it follows that

{C, f} ≡ 0

for any function f ∈ C∞(g∗). Thus, Casimirs are kinematical constants of the Poisson

structure itself, without any reference to the chosen Hamiltonian (dynamics). This fact also

shows up in Section IV, where for the G-invariant potential, any reasonable choice can be

made of a G-invariant function that is twice differentiable (that is, whose Hessian is defined).

III. ORBIT SPACE CONSIDERATIONS

Consider a Lie group G acting on a manifold M . The usual Whitney embedding theorem

allows us to consider Euclidean spaces E of high enough dimension instead of M , with

the canonical Euclidean differentiable structure. A similar embedding is possible for an

arbitrary action of a Lie group on a manifold. In the first instance, the (generally nonlinear)

Lie group action can be replaced by a linear group action; in the second, the linear group

action on M can be extended to a linear action on appropriate E. The equivariant Whitney

embedding theorem (see, for instance, [14]) says this can always be done. Henceforth, we

restrict ourselves to linear Lie group (or, matrix group) actions on vector spaces, G on V
n.

We shall denote points of V by φ ∈ V, to be consistent with the application to symmetry

breaking in Section IV.

Further, if G is compact, this linear action could be made, using the Haar measure for G,

into an orthogonal action.[48] We assume this is the case for the orthogonal decompositions

considered below. By this, certain directions are isolated as those that characterize a decrease

in orbit dimension.

A. Orbit types

In what follows, basic notions in Lie group actions and standard constructions relating

to proper actions will be assumed (tubular neighborhoods, slices, etc.). Good treatments
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are available in [15–17]. Let Gφ be the isotropy subgroup (or stabilizer), that is, the set of

all g ∈ G that leaves φ ∈ V fixed. Then, G/Gφ ⊆ G is isomorphic to the orbit through φ,

Ω(φ) = G · φ ⊂ V. Any two points on the same orbit have stabilizers that are related by

conjugacy through an element g ∈ G. The conjugacy class of stabilizers of a given orbit is

said to constitute its type, denoted by (Gφ). So, in summary, the orbits are isomorphic to

homogeneous spaces of the form G/H , with H ⊆ G, and are of type (H).

Collect together the set of all points of V of orbit type (H), where H ⊆ G is a compact

subgroup. Denote this set by Σ(H). As H varies over the closed subgroups of G, the orbit

types (H) partition V into an orbit type decomposition.

Clearly, orbit types can vary only across the orbits, changing as the foliation goes from

regular leaves to singular leaves, while remaining constant along an orbit. Also, smaller orbit

types are associated to fatter orbits, which is to say, the generic orbits have the least residual

symmetry. Singular orbits have smaller dimension and hence, larger isotropy subgroups that

leave their points invariant, and hence larger orbit types. For the case of a Poisson manifold,

it can be shown that the orbit type of a generic leaf of a foliation is always Abelian, while

that of the non-generic leaf is nonabelian (Duflo & Vergne’s Theorem [18]).

For the example of the rigid body in Section IIC, at generic points the orbits of the

coadjoint action of SO(3) on so(3)∗ have residual symmetry SO(2), and those of two distinct

points on the same orbit (a 2-sphere) are related by a conjugate rotation, as is easily seen.

The isotropy subgroup, SO(2) is compact, Abelian, and its conjugacy class defines a orbit

type for the union of all 2-spheres of non-zero radii. The only closed (nontrivial) subgroup

of SO(3) that is not conjugate to SO(2) is SO(3) itself, and this is the isotropy of the origin

where µi = 0, ∀i = 1, . . . , 3. Thus V, which in this case is so(3)∗, is a disjoint union of the

two orbit types, the origin of type (SO(3)) and everything else of type (SO(2)).

Now, we mod out the space V by the G-action, to get an orbit space. The reduced space

V /G is a projection of V, where each orbit in V gets projected into a point on V /G, via

the canonical projection Π : V −→ V /G.

The decomposition of V into orbit types is formally called a stratification. These are

a bit more general than foliations, in that the strata are not required to be generated by

differentiable (singular) distributions. The orbit types classify the strata in both V and V /G

into three kinds:
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1. The principal stratum ΣP of maximum orbit type (H), (so that H is conjugate to the

isotropy subgroups for the principal orbits in the stratum), is an open dense subset of

V. The image via the orbit map Π : V −→ V /G of the principal stratum, denoted

by Σ̂P , is connected in V /G. If ΩP is a principal orbit, and Ω any other orbit, then

∃ a G-equivariant map ΩP −→ Ω. If ΩP ≃ G/H and Ω ≃ G/K, then K ⊃ H . Also,

π : ΩP −→ Ω is a (principal) bundle (in V), or, equivalently, π̂ : G/H −→ G/K is a

principal bundle (in G), with fiber K/H .

2. If dim (K/H) > 0 (or dim ΩP > dim Ω), then Ω is called a singular orbit, denoted

by ΩS, and the stratum to which it belongs is called a singular stratum ΣS. The

corresponding image in the orbit space is not necessarily connected, and it is denoted

by Σ̂S.

3. If dim (K/H) = 0 (so that dim ΩP = dim Ω) but ΩP −→ Ω is a nontrivial covering

map (so that K/H is finite and nontrivial), then Ω is called an exceptional orbit, the

stratum to which it belongs is denoted ΣE , and its image in the orbit space Σ̂E .

It can be shown on general grounds that the disjoint union of singular (and exceptional)

strata form the boundary of the principal stratum. We shall not consider exceptional strata as

these are not rank changing. (They would, however, be of importance in physical situations

such as bifurcations, or patterns of discrete symmetry breaking.) Further, it can be shown

that the minimum and maximum orbit types are unique.

The bundle projection from a principal to a singular orbit, called π or π̂ in the definition

above, can be used to devise a map, as we do in Section IV, in order to parameterize the

embedding of the singular strata as the boundary components of the principal stratum,

using ideas from symmetry breaking, and invariant theory.

As an example, consider the rigid body Poisson manifold. It is composed of two strata:

the principal stratum ΣP being a disjoint union of all 2-spheres indexed by their radii, and

of isotropy type (SO(2)); and a singular stratum ΣS , namely the origin, of type (SO(3)).

The corresponding orbit space strata are the projections of orbits along the half real line

(also the base of a singular fibration with fibers the orbits); they are Σ̂P = (0,∞) for the

principal stratum, and Σ̂S = {0} for the singular stratum.
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B. Tangents and Normals

To enable invariant theory parametrization to actually characterize the desired orbits, it

is useful to keep track of certain subspaces that are left invariant under the group action. The

dimension of these subspaces changes when a transition is made from a regular to a singular

orbit. Accordingly, the class of invariants used to describe them would correspondingly

change.

Let the orthogonal action or representation be denoted by (G,Vn ≃ R
n). Gφ = {g ∈

G| g · φ = φ} is the isotropy subgroup or symmetry group of a point φ ∈ V, and gφ = {ξ ∈

g| ξ · φ = φ} is the corresponding Lie algebra. The reference for what follows is [3].

The tangent to an orbit Ω(φ) in the orbit space V /G is generated by dim G − dim Gφ

vectors that are the image, via the action map, of as many Lie algebra elements. From the

slice construction, it follows that the normal directions to the orbit are generated by a slice

that is Gφ-invariant. Not all the points in the normal direction move under the isotropy,

however. The notion of an invariant normal slice plays an important role in orbit geometry.

We outline the relevant definitions and properties in steps:

1. The tangent to the orbit, Tφ(Ω) = {ξ · φ| ξ ∈ g}. Clearly, dim Tφ = dim G− dim Gφ.

Also, the tangent is G-invariant, that is Tg·φ = g · Tφ.

2. The normal to the orbit is specified by the orthogonal decomposition, Nφ + Tφ = R
n,

〈Nφ, Tφ〉 = 0, with 〈 , 〉 the G-invariant inner product on R
n. That is, Nφ = {w ∈

R
n | 〈w, ξ · φ〉 = 0 ∀ξ ∈ g}, and 〈φ, w〉 = 〈g · φ, g · w〉. The latter condition, given

the antisymmetry of the Lie algebra to O(n), when differentiated with respect to a

1-parameter group g(t) = exp tξ, at t = 0, yields the condition 〈φ, ξ · φ〉 = 0, which

implies that the normal space contains the point on the orbit regarded now as a

position vector emanating from the origin of Rn, φ ∈ Nφ. (The zero vector, for the

same reason, also lives in Nφ for any φ ∈ R
n.) Like Tφ, Nφ is G-invariant, Ng·φ = g ·Nφ.

3. The set of all points in Nφ that are fixed under the Gφ action, N0
φ = {u ∈ Nφ| h · u =

u, ∀h ∈ Gφ}, orthogonally decomposes Nφ further into two subspaces,

Nφ = N0
φ ⊕N1

φ, (8)

R
n = Tφ ⊕N0

φ ⊕N1
φ. (9)

10



4. The tangent space to a stratum Σ is well-defined, as being the orthogonal sum of the

orbit tangent space and the invariant normal space:

Tφ(Σ) = Tφ(Ω)⊕N0
φ. (10)

Thus N0
φ lies in the tangent space to the stratum, and N1

φ is normal to the stratum. It

can be shown that the necessary and sufficient condition that the stratum is a principal

one is that N0
φP

spans the (slice) coordinates transverse to an orbit.

5. From counting dimensions, (10) implies dim Σ = dim G − dim Gφ + dim N0
φ. Now,

use the orbit map, Π : Rn −→ R
n /G, under which all of the tangent space to an orbit

gets mapped to the zero vector in R
n /G. The corresponding strata also get mapped,

Π : Σ(Ω) −→ Σ̂(Ω), where (Ω) indicates the orbit type of a representative orbit of the

stratum. Thus, we see that dim Σ̂(Ω) = dim N0
φ [49].

6. By combining the dimensionality relations above with the definitions of the various

types of strata, we have a criterion for principal orbits: The necessary and sufficient

condition that Ω is principal is that N1
φ = ∅ ∀φ ∈ Ω, in which event, the principal

stratum to which the orbit belongs is full dimension, dim ΣP = n.

C. Invariants of Orbits

In this section, we briefly indicate how invariant theory is used to parameterize orbits

and the strata for a group action on a vector space. The basic result is due to Hilbert, based

on which a map can be defined, which does the bookkeeping for the orbits in an algebraic

manner.

As before, let V be a (real) vector space, on which a compact Lie group G acts linearly

(hence by an orthogonal representation). A polynomial p : V −→ R is called G-invariant if

p(g · φ) = p(φ) ∀g ∈ G, φ ∈ V.

Hilbert’s basis theorem[14, 19]

PG, the ring of G-invariant polynomials under the operations of polynomial addition and

multiplication, is a finitely generated algebra under R.

11



The algebra PG is a graded algebra, graded by the degree of the invariant polynomial. The

basis guaranteed by the above theorem is called an integrity basis. There is a minimum num-

ber q, for a given representation (G,V); this is called a minimal integrity basis, or Hilbert

basis. We denote the generators of PG by (θ1, . . . , θq) ∈ R
q. Any polynomial p ∈ PG can

be written, φ ∈ V, p(φ) = p̂(θ1(φ), . . . , θq(φ)). When a Hilbert basis is formed by algebraic

independent polynomials, it is called free and the corresponding representation (G,Rn) is

called cofree. A non-cofree basis would have a certain number of nontrivial algebraic iden-

tities between the basis elements. (All cofree representations of complex semisimple Lie

groups have been classified by G. W. Schwarz [20].)

Next we define the Hilbert map (sometimes called the orbit map; but we reserve that term

for Π : Rn −→ R
n /G) as a map that goes from the orbits to its invariant parametrization,

H : Vn −→ R
q, φ 7−→ (θ1(φ), . . . , θq(φ)). The image H(V) is a semi-algebraic variety S ∈ R

q.

Via the orbit map Π, Rn /G becomes immersed as a semi-algebraic variety [50] Ŝ ∈ R
q as

well.

The main theorem that allows orbits to be parametrized by invariants is the following:

Theorem

1. H is a proper map (namely, the inverse image of a compact set is compact also).

2. If φ 6∈ Ω(φ′), then H(φ) 6= H(φ′); points from distinct orbits are separated by the

Hilbert map.

3. S ≃ Ŝ, that is, there is a ‘commutative triangle’,

R
n H

−−−→ S ∈ R
q

Π





y
‖

R
n /G −−−→

Ĥ

Ŝ ∈ R
q

where the map Ĥ is a homeomorphism.

The above result for polynomials has been generalized to the smooth category by

G .W. Schwarz. The proof essentially uses Weierstraß’s approximation theorem. A smooth

function may also be written as a function of a finite number of basis elements that generate

the ring of smooth G-invariant functions.
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Examples

As an example, let us consider SU(n) in the adjoint representation, defined by Trφ = 0.

A basis for the invariants are just the Casimirs, θ1 = Trφ2, . . . , θn−1 = Trφn. Similarly for

so(m), the Lie algebra of skew-symmetric matrices, XT = −X , for which the invariants are

Sk = TrXk, k = 1, . . . , [n/2] = l. The characteristic polynomial is the expression

∆X(λ) = |X − λ1|

= λn − p1λ
n−1 − · · · − pn,

The various pi in the expansion are the ith-symmetric function of the eigenvalues of X . Let

the polynomial ring over the real numbers generated by these pi be denoted by R[p1, . . . , pn].

Clearly, the symmetric functions form an integrity basis for an arbitrary symmetric polyno-

mial in n variables. There is an isomorphism between R[p1, . . . , pn] and R[S1, . . . , Sl], made

explicit through a set of recursive relations known as the Newton formulas,

Si − p1Si−1 + p2Si−2 − · · ·+

+(−1)i−1pi−1S1 + (−1)ipi = 0,

i = 1, . . . , n

Si − p1Si−1 + p2Si−2 − · · ·+

+(−1)npnSi−n = 0,

i = n+ 1, n+ 2, · · · .

It is in fact possible [22] to use these relations in order to parameterize singular orbits of

the SO(n) coadjoint action on the Lie coalgebra so(n)∗, and in general, for any semisimple

Lie group. The various symmetric functions p1, . . . , pn−k could be written as the sum over

squares of Pfaffians (essentially determinants of minors obtained by deleting the comple-

mentary indices). Setting them equal to zero amounts to looking at lower rank subalgebras

of X ∈ so(n), or on the group level, at homogeneous spaces of the form (for n = 2m case as

an example) SO(2m)/(SO(2k)×U(1)m−k. From general considerations of orbit types (Sec-

tion IIIB) and symmetry breaking (dealt with below), this amounts to a partial breaking

of symmetry. The subcasimirs that arise in the process are simply the coordinates of the

embedding specified by the above system of equations. (The representation in this case is

called non-cofree as the equations are tied up with determinantal identities.)
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IV. SYMMETRY BREAKING

Now, we suppose a Lie group G of appropriate type acts on the Poisson manifold, so

that the leaves of the Poisson manifold are contained in the orbits of the group action.

In particular, we choose the group to be such that its rank (defined as the dimension of

its Cartan subalgebra) coincides with the corank of the Poisson structure at its generic

points. In making this ansatz, we rule out several interesting Poisson structures [23], where

the action of a group on the manifold is globally transitive (for example, the action of

SO(2) on a 2-torus T
2, with irrational winding number). We only consider here group

actions for which Casimirs define both the group orbits as well as the Poisson leaves. Such

a requirement is automatically satisfied by the much investigated Lie–Poisson structures.

There, a semisimple Lie group acts on its coadjoint space, and the Casimirs form the center of

the coadjoint representation. But in fact, this is generically so in virtue of the Linearization

conjecture of Weinstein, cf. Section IIB. In this section, for any reasonable choice of G-

invariant Hamiltonian (or potential), it is seen that by the process of symmetry breaking, the

null eigenvectors of the mass matrix span out the directions tangent to the orbits. Methods

of invariant theory are then used to characterize the various orbits. Remembering that some

of these orbits describe the Poisson leaves, we make the identification of these invariants,

which come from symmetry breaking, to the Casimirs and subcasimirs of Poisson geometry,

and provide in the process a dynamical interpretation for a kinematical phenomenon.

Let us suppose that symmetry is broken from the original symmetry group G to a reduced

symmetry group, H .[51] The null eigenvectors of the mass matrix, or Goldstone modes, are

parametrized by the homogeneous space G/H . We note that the generic leaf corresponds

to a maximum breaking of symmetry — the original symmetry group is reduced to its

(Abelian) Cartan torus, denoted by Gc. Then, G/Gc is isomorphic to a principal orbit.

Partial breaking of symmetry corresponds to leaves where some of the symmetry has been

restored. The stabilizers of these leaves are of higher dimension, and also non-abelian, and

so the leaves, by virtue of the bundle map π (or, π̂, cf. Section IIIA), are singular leaves.

(Singular leaves can be formally studied as singular reductions of manifolds with symmetry,

and this program is carried out in [26–28], and the references cited therein.)

For the case that the Poisson manifold P = g∗, where g is a semisimple Lie algebra and g∗

its dual, this identification is the natural one suggested by the maximal isotropy embedding

14



of a Lie algebra h in the larger Lie algebra g, for the case that symmetry is broken from G

down to H [29]. We are only concerned with patterns of symmetry breaking that entail a

rank change, and assume that this can be arranged.

We now make these observations physically relevant employing ideas from spontaneous

symmetry breaking, with the added feature of incorporating free parameters, or controls.

The notion of patterns in the breaking of symmetry, namely variation in the subgroups of

the original symmetry group that survive when control parameters (like coupling constants,

or classical masses) are varied, played an important historical role in spontaneous and gauge

symmetry breaking in particle physics. Here, the hadronic potential was assumed to have

a certain polynomial form (say, quartic), and the problem was to find the minima of the

potential by varying with respect to certain parameters. This problem was soon realized

to be mostly geometrical in character [3, 30–34], with orbit geometry and invariant theory

playing a role in defining the possible orbital strata that the minima could occupy. We

turn this development around, and use arbitrarily chosen G-invariant potentials and their

extremal values, in order to relate kinematical data of the Poisson bracket, with dynamical

information that comes from symmetry breaking by the potential.

A. Bosonic symmetry breaking

This is the most basic mechanism for the idea of symmetry breaking. The G-invariant

Hamiltonian is a function of a certain number of scalar fields. The fields themselves depend

on the spacetime coordinates, and the symmetry group acts on the space of fields. Spon-

taneous breaking of symmetry is said to occur when the symmetry of the solutions got by

extremizing the potential, is less than the full symmetry group [35]. The material to follow

is fairly standard, and our purpose is to establish notation, and reinterpret standard results

in the light of orbit geometry.

Let V
n be the space of n scalar fields, φi : M −→ R, where M is some underlying

differentiable manifold (not relevant for our purposes). Let G be a compact Lie group that

acts properly on V, and let V (φ) be a G-invariant scalar potential function on V. Then the

condition for a vacuum is that

∂V (φ)

∂φi

∣

∣

∣

∣

φ=φ(e)

= 0, (i = 1, . . . , n),
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so the Taylor expansion of the potential about equilibria takes the form:

V (φ) = V (φ(e)) +
1

2
Mijχiχj + o(χ3).

In the above expression, the ‘mass matrix’ Mij ≥ 0 is defined as

Mij =
∂2V (φ)

∂φi∂φj

∣

∣

∣

∣

φ(e)

, (11)

and the shifted fields by χi(x) = φi(x)−φ(e)i. The mass matrix, being the second derivative

of the potential, governs the stability of the equilibrium. (We refer the reader to [36] for

more on stability in field theory systems; we do not concern ourselves with this aspect of

the theory, but rather simply use the null spectrum of Mij to study orbit geometry on V,

which models the linear Poisson G-manifold. See however, the conclusions, Section VI.)

Since the potential is G-invariant, it satisfies the invariance condition at the vacuum as

well, so

V (φ(e)) = V (Θgφ(e)) = V (φ(e)) +
1

2
Mijδφ(e)iδφ(e)j + · · · , (12)

where Θg : V −→ V is the action ∀g ∈ G.

Let (T a)ij denote the representation matrices, where a = 1, . . . , d = dim G, and i, j =

1, . . . , n = dim V, so that Θg = exp tT aξa, {ξa} ∈ g, g(t) ∈ G a 1-parameter subgroup, and

set the variation δφ(e) to be:

δφ(e)i =

[

∂Θg

∂ξa

∣

∣

∣

∣

t=0

φ(e)

]

i

δξa.

Now, suppose that only a subgroup H ⊂ G leaves invariant the equilibrium point. We

have two possibilities:

1. If g ∈ H , then δφ(e)i ≡ 0, and the G-invariance condition for V (12) is identically

satisfied, that is V (φ(e)) = V (φ(e)), since Mijδφ(e)iδφ(e)j + · · · ≡ 0.

2. If g ∈ G/H , then δφ(e)i 6= 0, and so G-invariance of V now would require that Mij

have null eigenvectors:

Mij [Θ
′|0φ(e)]j = 0.

There are dim G/H = dim G − dim H null eigenvectors of the form {Θ′|0φ(e)}, of

eigenvalue zero, that represent massless fields, called Goldstone (or Nambu-Goldstone)

bosons, and the homogeneous space G/H parameterizes the space of Goldstone bosons

via the action map Θ : G×V −→ V.
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Before we move on to the next subsection, a few comments are in order. The number of

massive fields (those with nonzero eigenvalues to the mass matrix) is dim H . If H happens

to be the isotropy subgroup Gφ(e)
for the equilibrium point, φ(e), then these modes are

transversal to the orbit of the group action, and represent the ‘difficulty’ in getting away

from the orbit, as they are massive modes, and doing so would cost energy. Suppose now

the potential depended on some number of control parameters (these could be coupling

constants, classical masses, charges, background field strengths, etc.), that is, we write

V = V (φ, γ), where γ are the controls. Extremizing the potential (supposed G-invariant) as

above, we would arrive at equilibria that depended on the control parameters, φ(e) = φ(e)(γ).

As the controls are varied, we are led from solution to solution. Formally, this happens

in an infinite dimensional space of solutions (moduli space) of the classical potential [52],

but we shall restrict our attention to what goes on in the orbit space decomposition (cf.

Section IIIA) for V. For some values of the control parameters, the isotropy subgroup of

the solution may change, so we are led from leaves of one dimension to leaves of other

dimensions, and across orbit types. Then invariant theory (cf. Section IIIC) shall relate

the gradients of the potential and the null eigenvalues of the mass matrix. Referring all this

back to the Poisson manifold we began with, the picture we seek would be complete.

B. Extrema and strata

In this section, we use the invariants provided by the gradients of theG-invariant potential

V (φ, γ), with φ ∈ V
n and γ ∈ Qs, where the latter notation means the control parameters are

derived from some s-dimensional manifold of controls. (In what follows, the structure of Q

will play no role, although its dimension is relevant.) The orbit in V to which the equilibrium

belongs is characterized by the orbital stratum, and the equations of the stratum are carved

out by these gradients. In making this relation, the geometry of the tangent space and

normal space to an orbit (cf. Section IIIB) shall be extensively invoked.

Recall that the tangent space to the principal stratum comprises both the tangent space

to the orbit, Tφ(Ω) = {ξ · φ| ξ ∈ g}, and the Gφ-invariant normal slice N0
φ transversal to it.

By the results stated in Section IIIB, the main observation about the generators of N0
φ is

the following: the invariant normal slice is the span of ∂θa(φ), a = 1, . . . , q. The proof may

be found in [33]. Note that q is the minimal number of basis elements θi(φ), guaranteed to
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exist by Hilbert’s theorem.

Furthermore, any orbital invariant on V, such as a G-invariant potential for symmetry

breaking, can be expressed in terms of the Hilbert basis as a function in the orbit space

V /G:

V (φ) = V̂ (θ1(φ), . . . , θq(φ)), (13)

∀φ ∈ R
n. It follows at once by differentiating the G-invariance condition for the potential

that its gradients span the invariant normal slice: V (g ·φ) = V (φ) =⇒ 〈ξ ·φ, ∂V (φ)〉 = 0 for

every one parameter subgroup g(t) = exp tξ ∈ G; by referring to Section IIIB, this is seen

to be the condition for an invariant normal vector. We note that any G-invariant function

on the orbits has the spanning property; so the orbit geometry is a lot more general than

the system specifically requires. However, a physical potential (or Hamiltonian) naturally

allows for controls (masses, coupling constants, various length scales, etc.), and these can

be manipulated to enable wandering across orbit types.

The final step in the process of using gradients to characterize strata is counting dimen-

sions. Let φP denote a point that belongs to a principal stratum, and φS to a singular

or nonprincipal stratum. We note that from the relation (8), it follows that the sum of

the dimensions of the orbit tangent Tφ and of the two normal components, N0
φ and N1

φ is

fixed, at n = dim V. Since the singular stratum bounds the principal stratum, ΣS ⊂ ∂ΣP ,

thinner orbits have fatter normal spaces, and these are characterized by the appearance of

extra gradients. These gradients will, however, not be GφP
-invariant, that is, they get moved

around in the ‘extra’ dimensions transverse to the thinner orbit. The larger invariance group,

GφS
⊃ GφP

means at once two things: a larger number of invariants (that are left invariant

with respect to the larger subgroup); and a larger number of dependent relations (that is,

the representation when restricted to the singular orbit is no longer cofree).

Next, we refer to the orbit space, V /G, where distinct points are separated by invariants

using the Hilbert map; this map takes both the vector space strata and the orbit space strata

to the corresponding semialgebraic varieties S and Ŝ both of which live in the Euclidean

space R
q.

Define the real, symmetric, positive semi-definite (no eigenvalues less than zero) matrix
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formed of the gradients of the invariant polynomials,

Rab(φ) =
n

∑

i=1

∂iθa(φ)∂iθb(φ)

= R̂ab(θ(φ)),

with a, b = 1, . . . , q and ∂i stands for derivative w.r.t. φi.

The number of independent vectors in {∂θa} is equal to rank R̂ab(φ) = dim N0
φ. The strata

and their images in the orbit space are carved out by the locus of the determinants of

the principal minors of the above matrix (compare the example from Section IIIC). The

gradients of these determinants in the orbit space can be shown to span the null space of

the matrix R̂ab, defining the ‘normal’ directions for the image of the stratum to which φ

belongs.

Introducing a potential that needs to be extremized is the same as finding the null

eigenvectors of the R matrix above, since ∂iV (φ) = 0 implies, by using (13) the same as
∑q

a=1 R̂ab(θ)∂bV̂ (θ) = 0. This is a locus of algebraic equations and inequalities in orbit space

V /G (a semialgebraic variety) with the determinants of the minors of corank the dimension

of the strata Σ̂φ serving as the Lagrange multipliers. Extremizing this system of equations

yields an optimal set of values for both basis invariants and the control parameters; the mass

matrix (11) may be then formed out of these. [53]

C. Goldstone modes and Poisson geometry

For a Poisson manifold P , the Casimirs arise as constraint surfaces that are defined by

a generalized distribution associated to the Poisson structure J . Although the procedure

for finding subcasimirs reduces to computing the null eigenvectors of the Poisson structure

matrix restricted to the orbit in question, our aim here is to connect the subcasimirs with

null eigenvectors of the mass matrix (11). With controls added, the mass matrix has the

form,

Mij = ∂i∂jV (φ, γ̄)|φ=φ(e)
,

i, j = 1, . . . , n. Here, the controls themselves have been solved with the principal minor

determinants added to the potential as constraints and extremized collectively (to yield γ̄)

with respect to both the invariant polynomials and the Lagrange multipliers (as many added
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as there are normal directions to the orbit space stratum, Σ̂). We implicitly assume that

any smooth variation δγ in the controls changes the vacuum solution perturbatively; that is,

if δγ −→ 0, then δφ(e) −→ 0 as well.

Now, it can be shown using the above, that the mass matrix decomposes into two parts:

M1 and M2, such that M1 ·N0
φ(e)

= 0, M2 ·N1
φ(e)

= 0, in addition to the usual equations for

the scalar Goldstone modes tangent to orbit: M1 · Tφ = 0 = M2 · Tφ.

The former Goldstone bosons correspond to the directions which arise from adding the

constraint conditions, and must therefore be regarded as new features that arise due to

the orbital structure [54]. In the context that we are working within, these are precisely

the subcasimirs that would arise upon a process of partial symmetry restoration, where

the isotropy group of the equilibrium segues into one of larger dimension (and does so in

a continuous manner since it is perturbative). Let φ(e) denote the generic vacuum, with

isotropy Gφ(e)
, and φ(e′) the new vacuum upon variation of the control parameters, with

isotropy Gφ(e′)
, with Gφ(e′)

⊃ Gφ(e)
. Conversely, when the controls are reversed, these extra

Goldstone modes from the normal directions become the Goldstone bosons for a symmetry

breakdown from the larger isotropy group Gφ(e′)
to the smaller one, Gφ(e)

. The number of

extra Goldstone modes that are needed for this is, by Goldstone’s theorem, equal to the

difference in the orbit dimensions of the fatter and thinner orbits, which is the dimension of

the homogeneous space Gφ(e′)
/Gφ(e)

. These new modes may be regarded as the embedding

coordinates for the singular leaf into a regular leaf. Formally, the Symmetry Breaking map

(SB) may be defined as the projection π̂ : G/Gφe
−→ G/Gφ′

e
, as defined in Section IIIA,

and the Symmetry Restoration map (SR) is simply the inverse of the above bundle map.

As an illustration, to connect with the SO(3) case, imagine the isotropy of the “double

well” solution to increase from U(1) at the trough (flat direction), to SO(3) at the top of

the hillock of the well, at the center. Clearly the new equilibrium, for any intermediate

hillock shape, is an unstable one, a fact reflected in the degeneracy in the modified mass

matrix. (Thus, without the controls, the origin would never become a preferred point of

rest. It would, if the shape were modified so much by the controls that it became favorable

to rest there.) In general, if the equilibrium is a stable (or neutrally stable) one, then the

pseudo-Goldstone bosons are absent; if the latter manifest themselves, then stability is lost.

It would be very interesting to see if such equilibrium analyses for the examples of Section V

below, using the methods of invariant theory and symmetry breaking as above, would yield
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a similar simple stability criterion.

V. SOME EXAMPLES OF RANK CHANGE

We consider situations where rank change phenomena manifest themselves, and to which

the foregoing observations apply. Details and background material are provided in [5]. We

begin with the n-dimensional generalization of the rigid body, and end with the prototype

for an infinite-dimensional context for rank-change. A word of caution is in order: while

the preceding sections require that G be compact, the examples below do not assume this.

As observed in the first footnote to Section III, this does not change the counting of the

Casimirs or subcasimirs, although the topology of the level sets they would define (even the

number and types of connected components!) can be wildly different for the compact and

the noncompact cases, as we see below.

A. n-D rigid body

The symmetry group is taken to be SO(n), or as a generalization, any semisimple Lie

group, G (in which event the term ‘rigid body’ ought not to be taken literally). As in the

3-dimensional case, we write the Lie-Poisson bracket (6) to be the one suggested by the

structure constants of the Lie algebra g; for any functions f, g ∈ C∞(g∗) we set

{f, g}(µ) :=

〈

µ,

[

δf

δµ
,
δg

δµ

]〉

= µi

[

δf

δµ
,
δg

δµ

]

i

, (14)

where δf

δµ
= ( δf

δµ
)le(l),

δg

δµ
= ( δf

δµ
)me(m), where {e(i)} is a basis for g∗, and the inner bracket

[ , ] stands for the Lie algebra bracket,

[e(l), e(m)] = Cnlme(n)

and Cnlm the structure constants of the Lie algebra. The Poisson tensor now becomes

J lm = C lm
n µn. (15)

The origin is once again a point of total degeneracy, where rank of the Poisson tensor is

zero. Elsewhere, it is equal to the corank of the Lie algebra, which is also the codimension of

its Cartan subalgebra. In fact, the Cartan torus is generated by the duals of the differentials
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of the Casimirs, which are each responsible for one U(1) ≃ SO(2) factor. These various

U(1) factors commute, as they must for a torus, and this fact is captured in one of the orbit

theorems that distinguish between regular and singular points. When rank of J is less than

full, the differentials of the Casimirs of the reduced dimensional orbit, which now include

subcasimirs, no longer commute, and hence form a nonabelian subalgebra of g.

Elsewhere, away from the origin, the leaves have the dimensionality given by the difference

between dimension d of g and its rank r, which is always an even integer, as it also equals

the number of roots (which are none other than weights of the adjoint representation). So

the orbits are always even dimensional, and there is in fact a nondegenerate symplectic form

(the Kirillov-Kostant form) that inverts (14) away from the origin [55].

Let us consider a few semisimple Lie algebras. G = SU(n) has dim G = d = n2 − 1,

rank G = r = n−1, so d−r = n(n−1), which is always even. SO(n) has d = n(n−1)/2 and

r = (n− 1)/2 (n odd), or r = n/2 n even). In either event, d − r = (n − 1)2/2 (n odd), or

d− r = n2/4 (n even). Similar situations obtain for other Lie algebras. Symmetry breaking

and restoration via maps SB and SR (see Section IVC) away from the origin occur between

two leaves of non-maximal isotropy. But it must be emphasized that the totality of these

phenomena involving SB and SR maps far exceeds the actual number of Poisson structures

that could be put on a semisimple Lie group. With some exceptions, in most Lie-Poisson

groups, the only degenerate leaf is the origin. That is, admissible Poisson structures have

orbit structure that are a small subset of the possible structures that could be arranged

through a G-invariant potential. Indeed, in some cases, an SB or SR map need not be rank-

changing [29]. Examples of the latter occur when partial symmetry breaking occurs with

respect to product groups, so that the leaf dimension decreases while the rank remains the

same if the product factors are arranged to come from the diagonal of the original group.

B. Rigid body in gravity and underwater

Departing from the notation of the 3-D rigid body a bit, we denote by ~µ = (µ1, µ2, µ3),

the angular momentum of the body, and by ~z = (z1, z2, z3), the (constant) gravitational

vector from the center of mass. The configuration space is the 6-dimensional vector (~µ, ~z).

SO(3) acts according to the semidirect product bracket, so we write W = (SO(3)⋉ϑ R
3),
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where ϑ is the Adjoint representation, and define the product rule at the group level

(R, v) · (R′, v′) = (RR′, Rv′ + v)

with R,R′ ∈ SO(3), v, v′ ∈ R
3.

The dual of the Lie algebra of the semidirect product group is w∗ = so(3)∗⋉ϑ∗ R
3, where

ϑ∗ is the coadjoint representation, with the semidirect product Poisson structure given by

J(~µ, ~z) =



































0 µ3 µ2
... 0 z3 z2

−µ3 0 −µ1
... −z3 0 −z1

−µ2 µ1 0
... −z2 z1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 z3 z2
... 0 0 0

−z3 0 −z1
... 0 0 0

−z2 z1 0
... 0 0 0



































. (16)

The matrix can be abbreviated for convenience, by

J(~µ, ~z) =





µ̂ ẑ

ẑ 0



 , (17)

where the hatted entries correspond to the sub-blocks in the above matrix (or in other words,

µ̂ could be viewed as the isomorphism between a cross product and its antisymmetric matrix

representation in the semidirect algebra).

The rank of the matrix (16) is easily seen to be 4. There are two Casimirs, C1 = ~µ ·~z and

C2 = ‖~z‖2 generically, which means that in Darboux’ coordinates, the maximal symplectic

leaves have dimension 4. When zi ≡ 0 ∀i, then the matrix reduces to that of a free rigid

body. A new subcasimir function that arises is C3 = ‖~µ‖2. The leaves are 2-spheres, as

in the rigid body case, with a totally degenerate origin when all subcasimirs collapse to

arbitrary functions of µ and z which intersect at zero.

Consider an extension of the above to include one more force that operates on an un-

derwater vehicle, namely buoyancy, so there are more rank changes here [39]. Denote the

buoyancy vector by~b = (b1, b2, b3), the phase space vector by (~µ, ~z,~b), the semidirect product

group by W = SO(3)⋉ (R3,R3) ≃ (SO(3)⋉ R
3) ⋉ R

3, with the group product operation

defined as:

(R, v, w) · (R′, v′, w′) = (RR′, Rv′ + v, Rw′ + w).

23



The coadjoint space is given by w∗ = so(3)⋉R
3
⋉R

3, with the Lie-Poisson structure (in

the condensed notation of (17))

J(~µ, ~z,~b) =











µ̂ ẑ b̂

ẑ 0 0

b̂ 0 0











,

which is now a 9 by 9 matrix. At a generic point the coadjoint orbit has dimension 6, as

there are 3 Casimirs C1 = ~b · ~z, C2 = ‖~z‖2, C3 = ‖~b‖2. Nongeneric orbits come about in two

stages of rank change:

1. 4-dimensional orbits that occur when ~z || ~b, which leads to two subcasimirs, C4 = ~µ ·~z,

C5 = ~µ ·~b.

2. 2-dimensional orbits (akin to free rigid body) that arise when ~z = ~b = 0, with the

nontrivial subcasimir C6 = ‖~µ‖2. As before, the origin in all 9 coordinates is a totally

degenerate point.

C. Moment algebra for (2 + 1)-D Ideal Fluid

This example has several rich and mysterious features which shall be explored in another

publication [40]. Here we confine the discussion to rank change. For the physics background,

and details of the invariant theory computations, see [5].

Ideal fluids are infinite-dimensional, but they do have a Hamiltonian structure in function

space [41]. We consider the dynamics of the scalar vorticity, ω(x, y, t) = ẑ · ∇× v, where v

is the Eulerian velocity, assumed to be divergence free, ∇· v = 0. In infinite dimensions, the

Poisson bracket is defined in a functional setting. If F,G ∈ C∞(B), with B some Banach

space, are functionals of variables {ωi}, i = 1, . . . , n, which are real-valued functions, then

{F,G} =

∫

D

δF

δωi
Jij δG

δωj
dµ =

〈

δF

δω
, J

δG

δωj

〉

is the Poisson structure. It satisfies the Leibniz rule (1) and Jacobi identities (2), besides —

owing to integration by parts — being manifestly skew-symmetric. For the scalar vortex,

there is a Poisson bracket (cf. [42, 43], [44]) given by

{F,G} =

∫

D

ω

[

δF

δω
,
δG

δω

]

dxdy =

〈

ω,

[

δF

δω
,
δG

δω

]〉

, (18)
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which has a form that resembles the Lie-Poisson bracket (14), with the inner Lie bracket

being a function space tangent algebra bracket. Any arbitrary functional of the form
∫

D
C(ω)dxdy is a Casimir for the above bracket. One of the interesting facts about the

scalar vortex is that the evolution dynamics can be studied entirely in terms of its pro-

jection down to a finite dimensional space of moments [45]. This process is akin to the

reduction in variables of a phase space due to the presence of a symmetry. (In this case the

symmetry group is that of all volume preserving diffeomorphisms.) The reduced dynamics

can be studied in its own right and projected back onto the original (infinite-dimensional)

space to recover the full dynamics.

We suppress the integration measure and domain of integration in what follows. The

moment description involves a space of moments, (a1, a2, a3), where

a1 =

∫

1

2
x2ω,

a2 =

∫

xyω,

a3 =

∫

1

2
y2ω. (19)

The moments could easily be shown to satisfy the following commutation relations, where

we use the Lie-Poisson structure (18) to evaluate them:

{a1, a2} = 2a1,

{a2, a3} = 2a3,

{a3, a1} = −a2, (20)

which is the standard commutation algebra of the Lie algebra of SO(2, 1) ≃ SL(2,R). The

Casimir for this Lie algebra, with the metric induced by the Killing form of signature (1,

1, -1), is C = a21 + a22 − a23. Its level sets are now in several components: a noncompact

hyperboloid in one sheet for nonzero positive values of C, noncompact hyperboloids in two

sheets for nonzero negative values of C, two components of a cone sans vertex for C = 0

(but ai not all zero simultaneously), and the singular origin, for C = 0 (and ai all zero

simultaneously). The topology of the level sets is very different from that of a rigid body’s

Casimir levels, which are a union of compact 2-spheres and a singular origin. But we note

that the number of Casimirs and the dimension of the generic leaves is the same for either

case.
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In physics, when a field theory system is fully describable by a finite set of moments, it is

said to have the property of closure. This moment algebra reduces the infinite dimensional

scalar vortex dynamics to that of a three parameter vortex patch, known as a Kida vortex [41,

45].

Now, let us consider adding a term proportional to the density, ρ(x, y) to the Hamiltonian.

This procedure is called stratification, in the event that the density varies in the vertical

direction alone. We consider a moment expansion for the density profile,

ρ(x, y) ∼
∑

bij ,

with bij representing the moments for density:

bij =

∫

xiyjρ, (21)

where i, j = 0, 1, . . ..

We note that bij are essentially monomials in x and y, so we can form a series of

vector spaces, {Vk} consisting of all moments of homogeneous degree k. For example,

V
2 = (b20, b11, b02) for quadratic order. In general, Vk has k + 1 monomials.

The algebra of homogeneous polynomials under the Poisson bracket like (18) would dis-

play the following derivation rule,

{ , } : Vm ×V
n −→ V

(n+m−2)

so that only the tensor product of all these spaces V1⊗V
2 ⊗ · · · is closed under the bracket

(except for n = m = 3). The situation however changes when we define the following

semidirect generalization of the Lie-Poisson bracket (18)

{F,G} =

∫

ω[Fω, Gω] + ρ([Fω, Gρ]− [Gω, Fρ]), (22)

with F,G arbitrary functionals of both the vorticity and the density, and the subscripts on

them with respect to these arguments stands for the operation of functional derivative.

It turns out that [40] the moment algebra of the stratified fluid with the above semidirect

algebra, is actually closed to any order of truncation of the density moments (21). That

is, the space of monomials given by {a1, a2, a3} ∪ {Vk} for any k, is closed with respect to

the above bracket. Hence, the dynamics of the stratified fluid may be projected down to its

space of moments order by order, to any desired level of approximation.
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We note that the above bracket (22) represents the dual to the semidirect product of

sl(2) with V
k via the adjoint action. That is, we collect together the moment algebra and

take their Poisson brackets mutually to get a structure matrix representing the semidirect

product of the dual algebra. For the case of k = 1, we would get a 5 by 5 matrix of quadratic

ai moments, and linear b01, b10 moments. There is one Casimir.

For the case of k = 2, we would end up with a 6 by 6 matrix that is virtually identical to

the semidirect product of the rigid body in gravity (16) (except for scaling, signature, and

a linear transformation to diagonal coordinates). There are two quadratic Casimirs, just as

for (16) (except with one minus sign in each), so similar comments regarding rank change

and subcasimirs apply. The Casimirs are C1
6 = b211 − b20b02 and C2

6 = a1b02 − a2b11 + a3b20.

The Casimirs at any given moment truncation will bring the system down to a certain

6 dimensional manifold. For instance, the Casimir for J7 on V
7 is a quartic, given by

C7 = 4b312b30+4b321b03−6b03b12b21b30+b203b
2
30−3b212b

2
21. The two Casimirs of J8 are a quadratic

and a cubic, given by C1
8 = b04b40 − 4b13b31 + 3b222 and C2

8 = −b322 + 2b13b22b31 − b04b
2
31 −

b213b40 + b04b22b40.

Finally, it is worth emphasizing that all these various Casimirs and the subcasimirs can

be determined using invariant theory computations alone, following [47], without so much

as referring to the Poisson structure. The various computer algebra packages do not yield

compact expressions for the Casimirs as above without some effort in finding integrating

factors by guesswork [5].

VI. CONCLUSION

The problem of rank change in Poisson dynamical systems is important for two reasons.

Systems tend to prefer equilibrium states that are more constrained (by the available degrees

of freedom). Also, a full examination of stability of equilibria requires an assessment of sub-

casimirs that arise upon rank change. Ideas from orbit geometry and invariant theory are

invoked, with the underlying assumption that systems with some sort of symmetry and in-

variance properties prove physically and geometrically interesting. Casimirs and subcasimirs

can be found either by examining the Poisson structure directly, or by using invariant theory

methods, as we show in some examples considered.

Quite apart from all this, symmetry breaking ideas are introduced. A potential invariant
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under the symmetry group is equipped with control parameters. The new Goldstone modes

which appear upon changing the orbit type (using the controls), are shown to be the same

extra data provided by subcasimirs to pin down singular orbits. This demonstration is made

through the geometry of strata in orbit space. Some classes of orbits are seen to carry the

same information as the Poisson structure. In this way, using the glue of orbit geometry

and the associated invariant theory, we see the overlap between two seemingly different

descriptions of the same geometric object.

It would be nice to do away with the compactness requirement of the symmetry group,

which we needed to keep track of the dimensions of the invariant normal directions in the

orthogonal decomposition in Section IIIB. From simply counting the number of Casimirs

and subcasimirs, all the examples seem to go through for both the compact and noncom-

pact groups. Even the strange phenomena reported in the moment truncation example,

Section VC, work analogously for the cases of SO(3) and SO(2, 1) (see [40] for details).

This is strong evidence that compactness plays no role in the identification of kinematical

degrees of freedom we propose in this article. The actual dynamics, as specified by the evo-

lution of Hamilton’s equations would of course differ in the noncompact case, for instance,

Poincare recurrence will no longer apply.

Another issue for future work is using the mass matrix stability to address some of the

stability issues usually addressed using the Energy-Casimir procedure. The mass matrix

does not truly depend on a potential, for all G-invariant potentials sample the same orbit

geometry of whose invariants they are constituted, so by an appropriate choice of potential,

various facets of the orbit geometry, hence possible Poisson structures, may be studied.
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