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A necessary and sufficient condition for linear
stability of inviscid parallel shear flow is formulated
by developing a novel variational principle, where
the velocity profile is assumed to be monotonic
and analytic. It is shown that unstable eigenvalues
of Rayleigh’s equation (which is a non-self-adjoint
eigenvalue problem) can be associated with positive
eigenvalues of a certain self-adjoint operator. The
stability is therefore determined by maximizing
a quadratic form, which is theoretically and
numerically more tractable than directly solving
Rayleigh’s equation. This variational stability
criterion is based on the understanding of Kreĭn
signature for continuous spectra and is applicable
to other stability problems of infinite-dimensional
Hamiltonian systems.

1. Introduction
In this paper, ideas from the theory of Hamiltonian
systems are used to obtain both necessary and sufficient
stability conditions by a variational procedure. The
proposed procedure is of general utility, but the
treatment here will be confined to plane parallel inviscid
shear flow (e.g. [1]). In this section, we give an overview
of the underlying basis for the procedure in terms of
a finite-dimensional Hamiltonian framework, and then
place the present contribution in the context of the many
previous results for shear flow.

For some Hamiltonian systems, the sign of the
curvature of the potential energy function provides a
necessary and sufficient condition for stability. This is
referred to as Lagrange’s theorem, which is the crux of
many fluid and plasma stability results including the

2014 The Author(s) Published by the Royal Society. All rights reserved.
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‘δW’ energy principle of ideal magnetohydrodynamics (MHD) [2]. For a more general class
of Hamiltonian systems, definiteness of the Hamiltonian Hessian matrix evaluated at the
equilibrium point of interest provides only a sufficient condition for stability. This is sometimes
referred to as Dirichlet’s theorem, which is the crux of many sufficient conditions for stability in
the fluid and plasma literature. The essential reason that Dirichlet’s theorem does not provide
a necessary condition for stability is the possible existence of negative energy modes. Negative
energy modes are modes of undamped oscillation, for which the Hamiltonian decreases when the
mode is excited, i.e. the second variation of the Hamiltonian evaluated on the mode is negative.
For stable (non-degenerate) Hamiltonian systems of n degrees-of-freedom the linear dynamics
can be brought by a canonical transformation into the following normal form:

H =
n∑

α=1

σαωα

2
(p2

α + q2
α), (1.1)

where (q1, q2, . . . , qn; p1, p2, . . . , pn) are the canonically conjugate coordinates, ωα are positive real
numbers representing the mode frequencies, and σα ∈ {±1} are the signatures of the mode, often
called Kreĭn signature, with +1 and −1 corresponding to positive and negative energy modes,
respectively. Evidently, systems with both positive and negative energy modes are linearly stable
but do not have a definite Hessian matrix. (See [3] for review.)

An advantage afforded by Lagrange’s criterion over Dirichlet’s is the powerful Rayleigh–Ritz
variational method [4], which underlies the MHD and other energy principles. With this method,
one needs to only produce a trial function that makes the Rayleigh quotient negative in order to
show instability and, also in this way, threshold parameter values for the transition to instability
can be determined. When this method is applicable, it is of great utility because linear stability
conditions for interesting fluid and plasma systems are generally difficult to derive theoretically.
However, it only applies to a restricted class of Hamiltonian systems for which the eigenvalue
problem is self-adjoint, i.e. systems with steady-state bifurcations to instability through zero
frequency that have pure exponential growth upon transition, and it is known that systems
with shear flow are not self-adjoint and have instead Kreĭn bifurcations [5] to overstability, i.e.
unstable eigenvalues with both non-zero real and imaginary parts. Such bifurcations are often
called Hamiltonian–Hopf bifurcations [5–8] and can be viewed as a resonance between positive
and negative energy modes leading to instability.

Thus, we are led to re-examine Dirichlet’s principle and seek an alteration that affords the
utility of the Rayleigh–Ritz variational method for investigation of Kreĭn bifurcations. For finite-
dimensional Hamiltonian system written in the normal form of (1.1), it is evident that Iα = p2

α + q2
α

is a constant of motion for each α. From these constants of motion, one can construct a constant
of motion with definite Hessian simply by flipping the signs of the signature in the normal form
Hamiltonian. Unfortunately, a priori knowledge of the existence of such a definite constant of
motion is generally not at hand, and one must actually solve the eigenvalue problem in order
to be informed of its existence. This is the essential reason Dirichlet’s theorem does not give
both necessary and sufficient conditions for stability and a Rayleigh-like variational method is
not at hand.

However, there are two related discoveries that we can exploit to circumvent this deficiency
for problems with continuous spectra, such as those related to the Vlasov equation, MHD and
the plane shear flow problem considered here. The first is the infinite sequence of constants of
motion discovered in [9], which were elaborated on in [10] and used in the present context in
[11]. The second is the discovery of a Kreĭn-like signature for the continuous spectra of Vlasov–
Poisson equilibria in [12,13], which was applied to plane shear flow in [14] and extended to a
large class of systems in [15–17]. These constants of motion in conjunction with the definition
of signature allow the construction of a quadratic form, which we will call Q, the variation of
which can be used in a manner akin Rayleigh’s principle for ascertaining necessary and sufficient
conditions for stability. A version of the quadratic form Q was previously given in [11], but it was
not used to obtain sufficient conditions for instability. We note in passing that the discovery of
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signature for the continuous spectrum has also led to rigorous Kreĭn-like theorems [18–20], where
discrete eigenvalues emerge from the continuous spectrum, termed Continuum Hamiltonian
Hopf bifurcations. (See also [21,22] on infinite-dimensional Hamiltonian systems and many other
contributions in the recent book [23].)

There have been many significant contributions to the classical plane parallel shear flow
problem; thus, it is important to put our contribution into perspective, which we do here. The
most famous condition is Rayleigh’s criterion [24] that stipulates the existence of an inflection
point in the velocity profile is necessary for instability, a criterion that was improved by
Fjørtoft [25]. These criteria were obtained by direct manipulation of Rayleigh’s equation (see
equation (2.4)), which governs linear disturbance about a base shear flow. The first allusion to
Hamiltonian structure for this system appears in the works of Arnold [26–28], who obtained more
general sufficient conditions for stability by making use of additional invariants. This idea was
anticipated in the plasma physics literature [29], where the additional invariants were referred
to as generalized entropies; today, the generalized entropies are referred to as Casimir invariants
and the general procedure is called the energy-Casimir method (e.g. [3,30–32]). In [14], it was
shown explicitly that all of the above criteria amount to a version of Dirichlet’s theorem for this
infinite-dimensional Hamiltonian system, where it was also shown how to explicitly map the
system into the infinite-dimensional version of the normal form of (1.1). In this way, a signature
for the continuous spectrum was first defined for this system, by paralleling the analogous
procedure for the Vlasov–Poisson system [12,13]. Arnold also introduced an important kind of
constrained variation he termed isovortical perturbations (e.g. [33]), which are a special case
of the dynamically accessible variations of [34,35] that are generated by Poisson brackets [3,36].
Isovortical perturbations together with a more general Dirichlet-like sufficient condition for shear
flow due to Barston [11] play important roles for obtaining the results of the present paper. The
general idea of these earlier works is to obtain improved sufficient conditions for stability by
constructing a suitable quadratic form (or the Lyapunov function) with the aid of additional
invariants. This idea is powerful especially for integrable systems (e.g. [37,38]), in which abundant
constants of motion are available not only for linearized but also for nonlinear dynamics.

We also note that prior to our variational approach, necessary and sufficient stability
conditions were obtained for certain classes of shear flows using two other non-Hamiltonian
approaches. One is the perturbation expansion around a neutrally stable eigenmode, which was
pioneered by Tollmien [39] and developed by many authors [40–43], and the other is analysis
based on the Nyquist method [44,45] (applied to MHD in [46]). These two approaches, however,
require detailed probing of Rayleigh’s equation to obtain information under specific conditions.
Our variational approach is not only consistent with these earlier results, but also advantageous
in that we do not have to solve Rayleigh’s equation in a rigorous manner. Namely, we can prove
the instability by simply finding a test function (in the appropriate function space) that makes our
quadratic form Q positive. This is useful because explicit solutions for Rayleigh’s equation are
generally not available for a given velocity profile. Moreover, in numerical calculation, one can
obtain stability boundaries more efficiently from this variational problem (i.e. the maximization
of Q), compared to solving Rayleigh’s equation. We emphasize that our approach is not limited
to shear flow with rather simple velocity profiles, but the same idea is applicable to various fluid
and plasma stability problems to which it can be of practical use.

Our paper is organized as follows. In §2, Rayleigh’s equation is first introduced, and in
§3, the notion of isovortical variation is reviewed. Here, we describe the quadratic form Q,
which provides the necessary and sufficient conditions if the velocity profile satisfies the
assumptions of analyticity and monotonicity. In particular, we present the main theorem of
this work (theorem 3.1), in which the quadratic form Q is given explicitly. Then, in §4, the
proof of the main theorem is given. Here, we first focus on restricting perturbations to the
appropriate function space, and then perform the spectral decomposition in a rigorous manner,
which largely reproduces the well-known spectral properties of Rayleigh’s equation (e.g. [47]).
Next, we calculate the signature of Q by applying techniques [14,16,17] for the action–angle
representation of continuous spectrum, where the positive signature of Q indeed predicts the

 on October 12, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140322

...................................................

existence of unstable eigenvalues. Finally, in §4, we show that the function space (the search
space on which Q should be maximized) can be extended to a larger one, which is actually
beneficial for solving the variational problem more effectively. Section 5 contains a demonstration
that our variational criterion reproduces the earlier results of the Nyquist method [44,45] and the
perturbation analysis of the neutral modes [39–43], while §6, contains several numerical examples
that demonstrate of our theorem. We summarize in §7.

2. Rayleigh equation
We consider the linear stability of inviscid parallel shear flow U = (0, U(x)) on a domain
(x, y) ∈ [−L, L] × [−∞, ∞] bounded by two walls at x = ±L, where the flow is assumed to
be incompressible and two-dimensional. By introducing the z-component of the vorticity
disturbance as w(x, t) eiky + c.c. for a wavenumber k > 0, the linearized vorticity equation is
written as follows:

i∂tw = kUw + kU′′Gw

=: kLw, (2.1)

where the prime (′) indicates the x derivative, and the convolution operator G is defined by

(Gw)(x, t) =
∫L

−L
g(x, s)w(s, t) ds, (2.2)

with a kernel,

g(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

− sinh k(s − L) sinh k(x + L)
k sinh 2kL

x < s

− sinh k(s + L) sinh k(x − L)
k sinh 2kL

s < x.
(2.3)

The stream function φ(x, t) is therefore given by φ = Gw or w = G−1φ = −φ′′ + k2φ. By assuming
an exponential behaviour φ(x, t) = φ̂(x) e−iωt with a complex frequency ω ∈ C, the eigenvalue
problem for (2.1) is known as Rayleigh’s equation [24]

(c − U)(φ̂′′ − k2φ̂) + U′′φ̂ = 0 (2.4)

and
φ̂(−L) = φ̂(L) = 0, (2.5)

where c = ω/k is a complex phase speed. If this equation has a non-trivial solution φ̂ for c with
a positive imaginary part, Im c > 0, the linearized system (2.1) is spectrally unstable due to an
exponentially growing eigenmode.

3. Variational stability criterion
Hamiltonian structure of the linearized vorticity equation (2.1) is highly related to its adjoint
equation for ξ (x, t) [14,16,33]

i∂tξ = kUξ + kG(U′′ξ )

=: kL∗ξ , (3.1)

where L∗ is the adjoint operator of L with respect to the inner product,

〈ξ̄ , η〉 =
∫L

−L
ξ (x)η(x) dx for ξ , η ∈ L2 + iL2. (3.2)

Here, ξ̄ denotes the complex conjugate of ξ , and we consider the function space for disturbances
w and ξ to be the complex Hilbert space L2 + iL2 on [−L, L] that is defined by the norm
‖ξ‖2

L2+iL2 = 〈ξ̄ , ξ〉.
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Since the relation U′′L∗ =LU′′ holds, w = −U′′ξ is found to be a solution of (2.1) if ξ is a
solution of (3.1). This solution must vanish at positions where U′′ = 0, and hence it does not
span the whole space L2 + iL2 when U′′ = 0 somewhere. This class of perturbations belonging
to the range of U′′ is said to be isovortical because the vorticity disturbance (w) is induced by a
displacement (ξ ) of the fluid while preserving the conservation law of circulation [33] (see also
appendix A). In this manner, Arnold [33] derived a constant of motion

δ2H =
∫L

−L
ξ̄U′′[Uξ + G(U′′ξ )] dx. (3.3)

Arnold showed that this is the second variation of the energy with respect to the isovortical
variation, while in [14] it was shown that this quantity is in fact the Hamiltonian for the linear
Hamiltonian dynamics and there the diagonalizing transformation to action–angle variables was
first obtained. In a frame moving at a velocity U∗, Arnold replaced U by U − U∗ in δ2H to obtain

δ2H∗ =
∫L

−L
ξ̄U′′[(U − U∗)ξ + G(U′′ξ )] dx

=
∫L

−L
w̄
(

U − U∗
U′′ + G

)
w dx, (3.4)

which is also a constant of motion, while the last expression may not be well-defined when U′′
becomes zero and w is not isovortical. In [14], it was shown explicitly that δ2H∗ is in fact the
second variation of the full Hamiltonian in the inertial frame boosted by velocity U∗ by adding
the appropriate total momentum.

Thus, we have a version of Dirichlet’s theorem, where the shear flow U(x) is stable in the sense
of Lyapunov, if there exists U∗ ∈ R such that the quadratic form δ2H∗ is either positive or negative
definite, i.e. ∃ε > 0 such that δ2H∗ ≥ ε〈w̄, w〉 or −δ2H∗ ≥ ε〈w̄, w〉. For example, when U′′ �= 0
everywhere, one can make δ2H∗ positive definite by choosing U∗ such that (U − U∗)/U′′ > 0 holds
everywhere, which reproduces the Rayleigh criterion [24]. When U(x) has only one inflection
point xI (i.e. U′′(xI) = 0), the choice U∗ = UI := U(xI) is made by Arnold. Then, δ2H∗ is positive
definite if (U − UI)/U′′ > 0 holds everywhere, in agreement with the Fjørtoft criterion [25]. These
facts imply that this variational criterion of Arnold [26–28] applies to a larger class of flow profiles
than Rayleigh–Fjørtoft’s stability theorem. However, all these criteria, including a generalization
by Barston [11], are still sufficient conditions for stability and, hence, are indeterminate when δ2H∗
is indefinite, as discussed in §1 there could be negative energy modes.

In this work, we obtain an improved variational criterion, but this requires introducing the
following assumptions on U(x).

Assumption.

(A 1) U(x) is an analytic (i.e. regular) and bounded function on [−L, L].
(A 2) U(x) is strictly monotonic [i.e. U′(x) �= 0 for all x] and, if U′′(xI) = 0 at x = xI, then U′′′(xI) �= 0.

The last statement implies that the inflection point xI must be a simple zero of U′′(x) and the
sign of U′′(x) must change at x = xI. We expect that it is not difficult to relax these restrictions
on U(x) except for the monotonicity. To simplify our mathematical arguments, we will not pursue
generalization in the present work, but we do remark upon this point in our summary of §7.

Our main result is that a necessary and sufficient condition for spectral stability is attained by
the following variational criterion.

Theorem 3.1. Let U(x) satisfy (A 1) and (A 2). Denote the inflection points of U by xIn, n = 1, 2, . . . , N,
and define a quadratic form Q = 〈ξ ,Hξ〉 as

Q = ν

∫L

−L
ξ

N∏
n=1

[U − UIn + U′′G]U′′ξ dx, (3.5)
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where UIn = U(xIn) and either ν = 1 or ν = −1 is chosen such that

νU′′
N∏

n=1

(U − UIn) ≤ 0 (3.6)

holds for all x ∈ [−L, L]. Equation (2.1) is spectrally stable if and only if

Q = 〈ξ ,Hξ〉 ≤ 0 for all ξ ∈ L2. (3.7)

In this theorem, we have introduced Q on the real Hilbert space L2 defined by the norm ‖ξ‖2
L2 =

〈ξ , ξ〉, which indicates that in practice the search space of this variational criterion is the half
of L2 + iL2 since H is a real self-adjoint operator. Actually, the stability condition (3.7) can be
replaced by Q = 〈ξ̄ ,Hξ〉 ≤ 0 for all ξ ∈ L2 + iL2, and we will prove the latter by regarding ξ ∈
L2 + iL2 as a solution of (3.1).

This Q = 〈ξ̄ ,Hξ〉 is equivalent to the constant of motion derived by Barston [11] (except for
the coefficient ν), and Q = −νδ2H∗ with U∗ = UI for the case of single inflection point. Hence, our
theorem claims that Arnold–Barston’s stability criteria (Dirichlet sufficient stability conditions)
are in fact necessary and sufficient when U(x) satisfies (A 1) and (A 2).

We remark that Q = 〈ξ̄ ,Hξ〉 no longer represents the second variation of the energy for the
case of multiple infection points. Actually, it belongs to the class of infinite number of constants
of motion introduced in [9–11].

Proposition 3.2. Let f (c) be any real polynomial of c ∈ R. Then,

Qf =
∫L

−L
ξ̄U′′f (L∗)ξ dx =

∫L

−L
ξ̄ f (L)(U′′ξ ) dx ∈ R (3.8)

is a constant of motion for equation (3.1).

Proof. Using U′′L∗ =LU′′ and L∗f (L∗) = f (L∗)L∗, we can directly show that Qf is real and
dQf /dt = 0. �

Therefore, we have specifically chosen f (c) = ν
∏N

n=1(c − UIn) to generate Q of theorem 3.1.
The proof of theorem 3.1 is given in the next section and our strategy is as follows. First,

we reduce the function space L2 + iL2 to a smaller one that will be denoted by X + iX, to
which unstable eigenfunctions must belong. Then, we decompose the spectrum σ ⊂ C of the
operator kL∗ into the neutrally stable part σc ⊂ R (which is mostly a continuous spectrum) and
the remaining part σ\σc ⊂ C\R (which is a set of pairs of growing and damping eigenvalues). By
proving that Q ≤ 0 for all the neutrally stable disturbance ξ belonging to σc, we will claim that
Q > 0 for some ξ ∈ X indicates the existence of at least one unstable eigenvalue, ω ∈ σ\σc that has
a growth rate Im ω > 0.

4. Proof of theorem 3.1

(a) Reduction to isovortical disturbance
For the purpose of seeking unstable eigenmodes, we restrict the function space of disturbance to
X + iX, where

X = H1
0 ∩ H2. (4.1)

As usual, we denote by Hn the real Sobolev space on [−L, L];

Hn =
⎧⎨
⎩ξ ∈ L2

∣∣∣∣∣∣
∑
j≤n

‖∂ j
xξ‖L2 < ∞

⎫⎬
⎭ (4.2)

and H1
0 denotes the subspace of H1 in which the boundary conditions, ξ (−L) = ξ (L) = 0, are

imposed on ξ ∈ H1
0. The restriction from L2 + iL2 to X + iX is feasible when U(x) is a sufficiently

smooth function. In this work, we simply assume (A 1) is sufficient for the following:
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Proposition 4.1. Let U(x) satisfy (A 1). Given the initial condition ξ (x, 0) = ξ0(x) ∈ X + iX, the
solution ξ (x, t) of (3.1) belongs to X + iX for all t. Moreover, w = −U′′ξ ∈ X + iX is a solution of (2.1).

Proof. By noting that G : L2 → X is one to one and onto, we find that L∗ is a bounded operator
on X + iX and, hence, the solution ξ = e−ikL∗tξ0 belongs to X + iX for all t. Using the property
U′′L∗ =LU′′, it is obvious that w = −U′′ξ is automatically a solution of (2.1) and also belongs to
X + iX. �

When U′′ vanishes somewhere on [−L, L], the function space of w = −U′′ξ is further restricted
to the range of U′′ (i.e. the isovortical disturbance). We can find that all unstable eigenfunctions
must belong to this space as follows.

Proposition 4.2. Let U(x) satisfy (A 1). Equation (2.1) is spectrally stable if and only if the adjoint
equation (3.1) for ξ ∈ X + iX is spectrally stable.

Proof. If c ∈ C and ŵ = −φ̂′′ + k2φ̂ ∈ L2 + iL2 satisfy Rayleigh’s equation with a growth rate
Im c > 0, then (c − U) �= 0 holds everywhere and

ξ̂ = − 1
c − U

Gŵ ∈ X + iX (4.3)

is found to be an eigenfunction of the adjoint equation (3.1) with the same eigenvalue c. Hence,
the adjoint equation on X + iX is also spectrally unstable.

Conversely, if c and ξ̂ ∈ X + iX satisfy the adjoint eigenvalue problem with Im c > 0, then U′′ξ̂
is not identically zero and ŵ = −U′′ξ̂ satisfies the Rayleigh equation with the same c. �

(b) Spectral decomposition
Next, we investigate the spectrum σ ⊂ C of the operator kL∗. For a given initial condition ξ (x, 0) =
ξ0(x) ∈ X + iX, let Ξ (x, Ω) ∈ X + iX be the solution of

(Ω − kL∗)Ξ (x, Ω) = ξ0(x), (4.4)

for Ω ∈ C\σ . Then, the solution of (3.1) is formally represented by the Dunford integral (or the
inverse Laplace transform)

ξ (x, t) = 1
2π i

∮
Γ (σ )

Ξ (x, Ω) e−iΩt dΩ , (4.5)

where Γ (σ ) is a path of integration that encloses all the spectrum σ ⊂ C of kL∗ counterclockwise
(as shown in figure 1). In terms of Φ(x, Ω) = −(Ω/k − U)Ξ (x, Ω), equation (4.4) is transformed
into

E(Ω)Φ(x, Ω) = 1
k

(ξ ′′
0 − k2ξ0) (4.6)

and
Φ(−L, Ω) = Φ(L, Ω) = 0, (4.7)

where

E(Ω) = − ∂2

∂x2 + k2 − kU′′

Ω − kU
. (4.8)

Suppose that we have solved

E(Ω)Φ<(x, Ω) = 0, Φ<(−L, Ω) = 0, Φ ′
<(−L, Ω) = 1 (4.9)

and
E(Ω)Φ>(x, Ω) = 0, Φ>(L, Ω) = 0, Φ ′

>(L, Ω) = −1, (4.10)

to obtain two linearly independent solutions Φ<(x, Ω) and Φ>(x, Ω). Then, by using the method
of Green’s function, the solution of (4.6) and (4.7) can be expressed as

Φ(x, Ω) = 1
W(Ω)

∫L

−L
ΦG(x, s, Ω)

1
k

[ξ ′′
0 (s) − k2ξ0(s)] ds, (4.11)
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Im w

Re w

G (s)

G (sc)

G (s \sc)
w1

w2

w2

w1

sc

–
–

Figure 1. Schematic view of contour integralΓ (σ )= Γ (σc) ∪ Γ (σ\σc) in the case ofσ\σc = {ω1,ω2, ω̄1, ω̄2}.

where
ΦG(x, s, Ω) = Φ>(s, Ω)Φ<(x, Ω)Y(s − x) + Φ<(s, Ω)Φ>(x, Ω)Y(x − s), (4.12)

with Y(x) being the Heaviside function, and

W(Ω) = −Φ<(x, Ω)Φ ′
>(x, Ω) + Φ ′

<(x, Ω)Φ>(x, Ω)

= Φ>(−L, Ω)

= Φ<(L, Ω) (4.13)

is the Wronskian. When Ω avoids the range of kU, denoted by

σc = {kU(x) ∈ R | x ∈ [−L, L]}, (4.14)

the operator E(Ω) is non-singular and both Φ< and Φ> are regular functions of Ω . Therefore,
the spectrum σ of the operator kL∗ is composed of a continuous spectrum σc [47,48] and some
eigenvalues ωj ∈ C, j = 1, 2, . . . (i.e. point spectra) that satisfy W(ωj) = 0. Owing to the property

W(Ω) = W(Ω̄), the eigenvalues always exist as pairs of growing (ωj) and damping (ω̄j) ones when
Im ωj > 0, a spectral property of Hamiltonian systems (cf. [18–20]). To be more precise, σc is mostly
the continuous spectrum because some real eigenvalues (ωj ∈ R) may exist in it. In the remainder
of this subsection, we will ascertain these spectral properties of kL∗, which will be summarized
explicitly in proposition 4.6.

For the purpose of showing the existence or non-existence of such eigenvalues, we will
frequently use the following lemma.

Lemma 4.3. Let U(x) satisfy (A 1) and (A 2). For any ω ∈ R, the general solution Φ(x, ω) of
E(ω)Φ(x, ω) = 0 has at most one zero on each of the following intervals:

(i) [−L, L] if there is no critical layer, i.e. �ω ∈ R that satisfies ω = kU(x)∀x ∈ [−L, L],
(ii) [−L, xc] and [xc, L] if there is a critical layer xc ∈ [−L, L] that satisfies ω = kU(xc).

Proof. (i) A consequence of E(ω)Φ(x, ω) = 0 is the following identity (see the Appendix of [45]):[
Φ

(
Φ ′ − U′Φ

U − c

)]x2

x1

=
∫ x2

x1

[(
Φ ′ − U′Φ

U − c

)2

+ k2Φ2

]
dx, (4.15)

which is valid for any solution Φ and subinterval [x1, x2] ⊆ [−L, L]. This identity follows directly
from Rayleigh’s equation by multiplying by Φ, manipulating and integrating. If there are two
zeros (i.e. xz1 and xz2) that satisfy Φ(xz1, ω) = Φ(xz2, ω) = 0, choosing x1 = xz1 and x2 = xz2 implies

∫ xz2

xz1

[(
Φ ′ − U′Φ

U − c

)2

+ k2Φ2

]
dx = 0, (4.16)

which requires Φ to be the trivial solution Φ ≡ 0. Thus, any (non-trivial) solution has at most one
zero on [−L, L].
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(ii) Consider the interval [xc, L] (the same argument goes for [−L, xc]). The identity (4.15) again
holds for xc < x1 < x2 ≤ L and, hence, there is at most one zero on (xc, L]. In the neighbourhood
of xc, the solution Φ is expressed by a linear combination of the Frobenius series solutions, in
which Φ(xc, ω) is always bounded (see (4.21)). If Φ(xc, ω) �= 0, the lemma is automatically proved
(although both sides of (4.15) go to infinity as x1 → xc). If Φ(xc, ω) = 0, the identity (4.15) is still
valid for x1 = xc and we can prove that there is no other zero (xz2) except for xz1 = xc on [xc, L], in
the same manner as (i). �

It is well known from Tollmien’s argument [39–41] that, as k varies, an unstable eigenvalue
Im c > 0 of Rayleigh’s equation emerges through a neutrally stable eigenvalue c = U(xI) ∈ R where
U′′(xI) = 0. In other words, the neutrally stable eigenvalue c ∈ R can exist only if U′′(xc) = 0 at
the corresponding critical layer xc = U−1(c). Unfortunately, this argument is not always true
especially for non-monotonic profiles of U(x) (see [42,43,45] for mathematical justification in the
shear flow context and [18,19] for a discussion of k �= 0 bifurcations in the Vlasov context). In this
work, we simply assume the monotonicity (A 2) and verify Tollmien’s argument as follows.

Proposition 4.4. Let U(x) satisfy (A 1) and (A 2). Denote the inflection points of U by xIn, n =
1, 2, . . . , N and define UIn := U(xIn). Then, the function W(ω ± i0) of ω ∈ R can vanish only at ω = kUIn,
n = 1, 2, . . . , N, and moreover

lim
Ω→ω±i0

∏N
n=1(Ω − kUIn)

W(Ω)
< ∞. (4.17)

Proof. For ω ∈ R\σc, there is no critical layer and, from lemma 4.3, the solution Φ<(x, ω) does
not have zero on [−L, L] except for x = −L. Hence, W(ω) = Φ<(L, ω) �= 0.

For ω ∈ σc, there is only one critical layer xc = U−1(ω/k). Since U(x) is analytic, Φ<(x, Ω) can be
expressed by a linear combination of the Frobenius series solutions (so-called Tollmien’s inviscid
solutions) around xc. By taking account of the branch cut of the logarithmic function, it is written
in the limit Ω → ω ± i0 as

Φ<(x, ω ± i0) = Cr(ω)Φ1(x, ω)

+ Cs(ω)
{
Φ2(x, ω) + U′′(xc)

U′(xc)
Φ1(x, ω)[log |x − xc| ∓ π iY(x − xc)]

}
, (4.18)

where Φ1(x, ω) and Φ2(x, ω) are real and regular functions with Φ1(xc, ω) = Φ ′
2(xc, ω) = 0 and

Φ ′
1(xc, ω) = Φ2(xc, ω) = 1 [49]. From definition (4.9), the coefficients Cr(ω) and Cs(ω) are found to

be real and so is Φ<(x, ω ± i0) on [−L, xc] since Y(x − xc) ≡ 0 for x < xc. Lemma 4.3 shows that
Φ<(x, ω ± i0) has no zero on [−L, xc] other than x = −L and hence Cs(ω) > 0 (since Φ1(xc, ω) = 0).

If ω �= kUIn (i.e. xc �= xIn), then U′′(xc) �= 0 holds and Φ<(x, ω ± i0) possesses the imaginary part
on [xc, L]. Lemma 4.3 again shows that this imaginary part has no zero on [xc, L] other than
x = xc. Therefore, we conclude that Im W(ω ± i0) = Im Φ<(L, ω ± i0) �= 0 for all ω ∈ R\{kUIn|n =
1, 2, . . . , N}.

If ω = kUIn, then Φ<(x, kUIn) is a real and regular function on the whole domain [−L, L] due to
U′′(xc) = 0 and has at most one zero on [xc, L]. Therefore, W(kUIn) = 0 may occur only when this
zero corresponds to x = L, and as such the zero must be simple, namely, (4.17) holds. �

Besides the singularity stemming from the zeros of W(Ω), Φ(x, Ω) has also the following
essential singularity along the continuous spectrum σc.

Proposition 4.5. Let U(x) satisfy (A 1) and (A 2). For all ξ0 ∈ X + iX and ω ∈ R,

Ψ (x, ω ± i0) ∈ H1
0 + iH1

0, (4.19)

where

Ψ (x, Ω) := Φ(x, Ω)
N∏

n=1

(
Ω

k
− UIn

)
. (4.20)
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Proof. For any fixed s ∈ [−L, L], the function ∂ΦG/∂x(x, s, ω ± i0) is regular almost everywhere
except that it has a logarithmic singularity, log |x − xc|, and discontinuities, Y(x − xc) and Y(x − s).
Hence, ∫L

−L

∣∣∣∣∂ΦG

∂x
(x, s, ω ± i0)

∣∣∣∣dx < ∞. (4.21)

Since ξ ′′
0 − k2ξ0 ∈ L2 + iL2, the following convolution integral is also square-integrable:

lim
Ω=ω±i0

[W(Ω)Φ ′(x, Ω)] =
∫L

−L

∂ΦG

∂x
(x, s, ω ± i0)

1
k

[ξ ′′
0 (s) − k2ξ0(s)] ds ∈ L2 + iL2, (4.22)

that is,
lim

Ω=ω±i0
[W(Ω)Φ(x, Ω)] ∈ H1 + iH1. (4.23)

In combination with (4.17) and the boundary condition Φ(±L, Ω) = 0, the proposition is proven.
�

In summary, the spectrum is decomposed as follows.

Proposition 4.6. Let U(x) satisfy (A 1) and (A 2). The spectrum σ ⊂ C of kL∗ on X + iX is composed of

(a) point spectra σ\σc = {ωj, ω̄j ∈ C|Im ωj �= 0, W(ωj) = 0, j = 1, 2, . . . , Np}, where Np is finite.
(b) point spectra σI = {kUIn ∈ R|W(kUIn ± i0) = 0, n = 1, 2, . . . , N}.
(c) continuous spectrum σc\σI.

where (c) always exists while (a) and (b) can be empty. The residual spectrum is always empty.

Proof. The finiteness of Np is proved in [47]. The existence of (b) follows from proposition 4.4.
The proof of (c) and the absence of the residual spectrum are relegated to appendix B, since the
subsequent discussion will not refer to these facts. �

(c) Signature of Q
Now, let us substitute expression (4.5) into the quadratic form Q = 〈ξ̄ ,Hξ〉, which is a constant of
motion for equation (3.1). By using the property of the resolvent (Ω − kL∗)−1 [16,17], we obtain

Q = 1
2π i

∮
Γ (σ )

h(Ω) dΩ (4.24)

where h : C → C is given by

h(Ω) = ν

∫L

−L
ξ̄0

[
− kU′′

Ω − kU
Ψ (x, Ω)

]
dx. (4.25)

Upon decomposing the spectrum σ ⊂ C into σc ⊂ R and others σ\σc ⊂ C\R and, accordingly,
deforming the contour Γ (σ ) into Γ (σc) and Γ (σ\σc) (figure 1), we obtain Q = Q|σc + Q|σ\σc with

Q|σc = 1
2π i

∮
Γ (σc)

h(Ω) dΩ =
∫
σc

ĥ(ω) dω, (4.26)

where

ĥ(ω) = 1
2π i

[−h(ω + i0) + h(ω − i0)]. (4.27)

The existence of this limit for all ω ∈ σc is guaranteed by proposition 4.5 and ξ0 ∈ X + iX.
Then, we can prove the following inequality.

Proposition 4.7.

Q|σc =
∫
σc

ĥ(ω) dω ≤ 0 (4.28)

for all solutions ξ ∈ X + iX of (3.1) with initial data ξ0 ∈ X + iX.
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Proof. To observe the signature of the function ĥ(ω) more explicitly, we rewrite h(Ω) as

h(Ω) = νk
p(Ω)

∫L

−L
Ψ (x, Ω̄)E(Ω)Ψ (x, Ω) dx − ν

p(Ω)
k

∫L

−L
(|ξ ′

0|2 + k2|ξ0|2) dx, (4.29)

where we have put p(Ω) =∏N
n=1(Ω/k − UIn). Since p(Ω) is an regular function of Ω , we may

neglect the second term on the right-hand side when calculating ĥ(ω). As shown in Proposition
10 of [16], the first term is further transformed into

k
∫L

−L
Ψ (x, Ω̄)E(Ω)Ψ (x, Ω) dx

= −k〈F(x, Ω), E(Ω)F(x, Ω)〉 − k〈G(x, Ω), E(Ω)G(x, Ω)〉
+ p(Ω)〈G(x, Ω), ξ ′′

0 − k2ξ0〉 + p(Ω)〈ξ ′′
0 − k2ξ0, G(x, Ω)〉, (4.30)

where

F(x, Ω) = 1
2 [Ψ (x, Ω) − Ψ (x, Ω̄)] (4.31)

and

G(x, Ω) = 1
2 [Ψ (x, Ω) + Ψ (x, Ω̄)]. (4.32)

In the limit of Ω → ω ± i0, the relations F(ω + i0) = −F(ω − i0) and G(ω + i0) = G(ω − i0) hold.
Using the formula,

−E(ω + i0) + E(ω − i0) = kU′′(x)
ω + i0 − kU(x)

− kU′′(x)
ω − i0 − kU(x)

= −2π i
U′′(xc)
|U′(xc)| δ(x − xc), (4.33)

we finally obtain

ĥ(ω) = νkU′′(xc)
p(ω)|U′(xc)| [|F(xc, ω + i0)|2 + |G(xc, ω + i0)|2], (4.34)

where xc = U−1(ω/k) should be read as a function of ω. According to the definition (3.6) of ν,
this expression indicates that ĥ(ω) is negative for all ω ∈ σc and we conclude that Q is negative
semi-definite on the continuous spectrum. �

If Q = 〈ξ̄ ,Hξ〉 > 0 for some ξ ∈ X + iX, then σ\σc must not be null and there exists at least
one pair of complex eigenvalues, say ωj and ω̄j with Im ωj > 0, which correspond to growing
and damping modes, respectively. Since H is actually a real self-adjoint operator, the condition
Q = 〈ξ ,Hξ〉 > 0 for some ξ ∈ X comes to the same conclusion. Thus, we have proved the instability
if Q > 0 for some ξ ∈ X.

Conversely, if the flow is unstable due to the presence of several pairs of complex eigenvalues
σ\σc = {ωj, ω̄j ∈ C|Im ωj > 0, j = 1, 2, . . .}, the constant of motion Q must be indefinite in the
corresponding eigenspaces, as shown in [6,7,50] for a Hamiltonian function. Indeed, the solution
ξ is subject to the following modal decomposition:

ξ =
∑

j

(ajξ̂j e−iωjt + bj
¯̂
ξj e−iω̄jt) + · · · , (4.35)

where ξ̂j is the eigenfunction for ωj and aj, bj ∈ C are the mode amplitudes which depend on

ξ0. As usual, the eigenfunctions {ξ̂j,
¯̂
ξj|j = 1, 2, . . .} constitute a non-orthogonal basis and its dual

basis is provided by the eigenfunctions {ŵj, ¯̂wj|j = 1, 2, . . .} of L, where ŵj = −U′′ξ̂j holds from
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proposition 4.2. This leads to the following orthogonality relations (see Sec. III of [16] for details):

〈ξ̂l, U′′ξ̂j〉 = 〈 ¯̂ξl, U′′ξ̂j〉 = 〈 ¯̂ξj, U′′ξ̂j〉 = 0 (l �= j), 〈ξ̂j, U′′ξ̂j〉 �= 0. (4.36)

By substituting this modal decomposition into Q and using the above orthogonality, we obtain

Q|σ\σc = ν
∑

j

[ajb̄jp(ωj)〈ξ̂j, U′′ξ̂j〉 + c.c.], (4.37)

whose sign is clearly indefinite. For example, by setting either (aj, bj) = (1, 1) or (aj, bj) = (1, −1), we
can make Q|σ\σc > 0. Thus, we have proved that the equation (2.1) is spectrally stable if and only
if Q = 〈ξ̄ ,Hξ〉 ≤ 0 for all ξ ∈ X + iX, namely, if and only if Q = 〈ξ ,Hξ〉 ≤ 0 for all ξ ∈ X.

(d) Extension of search space
Our remaining task is to extend the search space from X to L2. Maximization of Q = 〈ξ ,Hξ〉 on L2

is, in practice, more tractable than that on X, since the variational problem λmax = max Q/‖ξ‖2
L2

simply searches the maximum eigenvalue λmax of the self-adjoint operator H. Let us consider the
eigenvalue problem (λ − H)ξ̂ = 0 and rewrite H in the form of

H= νU′′
N∏

n=1

(U − UIn) + R, (4.38)

where R represents the sum of all operators that involve at least one multiplication of G,

R= ν

N∑
l=1

⎛
⎝N−l∏

j=1

(U − UIj)

⎞
⎠U′′G

⎛
⎝ N∏

n=N−l+2

[(U − UIn) + U′′G]

⎞
⎠U′′, (4.39)

and hence R : L2 → X. It follows from the condition (3.6) that H has a continuous spectrum for
the negative side, min[νU′′∏N

n=1(U − UIn)] ≤ λ ≤ 0. On the other hand, for λ > 0, the eigenvalue
problem is non-singular and can be rewritten as follows:

ξ̂ = 1

λ − νU′′∏N
n=1(U − UIn)

Rξ̂ . (4.40)

Since Rξ̂ ∈ X, this eigenfunction ξ̂ inevitably belongs to X. If H has such a positive discrete
eigenvalue, the corresponding eigenfunction ξ̂ ∈ X directly proves the instability Q = 〈ξ̂ ,Hξ̂〉 > 0.
Conversely, if Q ≤ 0 for all ξ ∈ L2, then obviously Q ≤ 0 for all ξ ∈ X ⊂ L2. Therefore, we may
replace the search space X by L2; thus, the proof of theorem 3.1 is completed.

We can further extend this idea as follows:

Corollary 4.8. The stability condition (3.7) in theorem 3.1 can be replaced by

Q = 〈w,Hvw〉 ≤ 0 for all w ∈ L2, (4.41)

where w = −U′′ξ and, hence,

Hv = ν

U′′
N∏

n=1

[U − UIn + U′′G]. (4.42)

Proof. Since (ν/U′′)
∏N

n=1(U − UIn) < 0 follows from the assumptions, the operator Hv is found
to be bounded; ∃C > 0 such that 〈w,Hvw〉 < C‖w‖2

L2 for all w ∈ L2. Suppose that we find a function

ŵ ∈ L2 that makes Q positive

0 <
〈ŵ,Hvŵ〉

‖ŵ‖2
L2

< C. (4.43)

Then, consider a sequence ξm ∈ L2, m = 1, 2, . . . , ∞, that satisfies ‖ŵ + U′′ξm‖L2 → 0 as m → ∞.
Since 〈ξm,Hξm〉 → 〈ŵ,Hvŵ〉 as m → ∞, 〈ξm,Hξm〉 also becomes positive when m is sufficiently
large.
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On the other hand, if 〈w,Hvw〉 ≤ 0 for all w ∈ L2, then obviously 〈ξ ,Hξ〉 = 〈U′′ξ ,HvU′′ξ〉 ≤ 0
for all ξ ∈ L2. �

We will actually adopt corollary 4.8 in the subsequent sections, because this variational
problem for w ∈ L2 is more beneficial than that for ξ ∈ L2, both analytically and numerically. This
fact is evident from the corresponding eigenvalue problem

(λ − Hv)ŵ = 0. (4.44)

The operator Hv, which is again written as

Hv = ν

U′′
N∏

n=1

(U − UIn) + 1
U′′R

1
U′′ (4.45)

has a continuous spectrum, but it is remarkable that the upper edge of this continuous spectrum,
λu = max[(ν/U′′)ΠN

n=1(U − UIn)], is separated from the origin (λu < 0). Owing to this property, the
variational problem for w ∈ L2 is useful for investigating the stability boundary at λ = 0 without
suffering from any singularity.

5. Comparison with existing results
In this section, we explore several alternative representations of our variational stability criterion
by assuming that we have somehow solved Rayleigh’s equation under specific conditions. As a
consequence of this exploration, we reproduce existing stability theorems and gain a clear-cut
understanding of the onset of instability.

(a) Single inflection point
First consider the case of a single inflection point with the condition (U − UI)/U′′ < 0 for all x ∈
[−L, L], since the opposite case (U − UI)/U′′ > 0 is always stable. According to corollary 4.8, we
maximize Q with respect to w ∈ L2, where the corresponding eigenvalue problem (4.44) is simply

λŵ = U − UI

U′′ ŵ + Gŵ. (5.1)

We are interested in whether a positive eigenvalue λ > 0 exists or not, for its existence is the
necessary and sufficient condition for instability. By focusing on λ > λu, where λu = − min[(UI −
U)/U′′] < 0, the eigenvalue problem is transformed into

φ̂′′ − k2φ̂ + 1
λ + (UI − U)/U′′ φ̂ = 0 (5.2)

and
φ̂(−L) = φ̂(L) = 0, (5.3)

using φ̂ = Gŵ. If (5.2) is viewed as φ̂′′ + f (x, λ, k)φ̂ = 0, we can apply Sturm’s oscillation
theorem [51] to this equation with respect to both λ and k. As the two parameters λ > λu and
k > 0 increase, f (x, λ, k) decreases everywhere on [−L, L] and hence the general solution φ̂ becomes
less oscillatory (i.e. the interval between any two zeros of φ̂ expands). When k2 ≥ 1/(λ − λu), it
becomes non-oscillatory, f (x, λ, k) ≤ 0, and unable to satisfy (5.3). It follows that the eigenvalue λ

is bounded by

λ <
1
k2 + λu. (5.4)

If k2 > −λ−1
u , no positive eigenvalue λ > 0 exists and, hence, the flow U is stable for such large k.

Since marginal stability occurs at λ = 0 in (5.2), we analyse the equation

EIφ̂ := −φ̂′′ + k2φ̂ − U′′

UI − U
φ̂ = 0. (5.5)

If this solution is somehow available, we obtain the following stability criterion.
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Corollary 5.1. If U(x) satisfies (A 1) and (A 2) and has a single inflection point xI, and φc(x) denotes
the solution of

EIφc = 0, φc(−L) = 0, φ′
c(−L) = 1, (5.6)

then (2.1) is spectrally stable if and only if φc(L) ≥ 0.

Proof. According to lemma 4.3, φc does not have zero on [−L, xI] other than x = −L and has at
most one zero on [xI, L]. Note that, by increasing λ from 0, the general solution φ̂ of (5.2) becomes
less oscillatory than φc. If φc(L) < 0, φc(x) has one zero on [xI, L] and hence there must be one
eigenvalue λ ∈ [0, 1/k2 + λu] for which φ̂ satisfies (5.2) and (5.3).

Conversely, if φc(L) ≥ 0, then φc(x) does not have zero on −L < x < L and the solution φ̂ of
(5.2) cannot satisfy the boundary condition (5.3) when λ > 0, i.e. there is no positive eigenvalue
λ > 0. �

In particular, we can obtain an analytical solution φc for the case of k → 0 as

φc(x) = [U(−L) − UI][U(x) − UI]
∫ x

−L

1
[U(s) − UI]2 ds. (5.7)

Then, the necessary and sufficient stability condition φc(L) ≥ 0 becomes

1
U′(s)[U(s) − UI]

∣∣∣∣
L

−L
+

∫L

−L

U′′(s)
U′2(s)[U(s) − UI]

ds ≥ 0, (5.8)

which agrees with the result of Rosenbluth & Simon [44]. (Note, the typographical error in the
final eqn (4) of this paper, in which w′3 should be replaced by w′2.)

Another equivalent approach is to solve the equation EIφc = 0 with boundary conditions
φc(−L) = φc(L) = 0 and with a derivative jump at x = xI

φc(xI + 0) = φc(xI − 0) and α := φ′
c(xI + 0) − φ′

c(xI − 0). (5.9)

In other words, we solve EIφc = −αδ(x − xI) or

− φc + G
(

U′′

UI − U
φc

)
= αg(x, xI), (5.10)

where g is defined in (2.3). By introducing a normalization
∫L

−L(−φ′′
c + k2φc) dx = 1 for φc, we can

determine α as

α = −1 +
∫L

−L

U′′

UI − U
φc dx, (5.11)

and arrive at the integral equation (5.12). This approach reproduces the stability criterion obtained
by Balmforth & Morrison [45].

Corollary 5.2. If U(x) satisfies (A 1) and (A 2) and has a single inflection point xI, and φc(x) denotes
the solution of

− φc(x) + g(x, xI) +
∫L

−L
[g(x, s) − g(x, xI)]

U′′(s)
UI − U(s)

φc(s) ds = 0, (5.12)

then (2.1) is spectrally stable if and only if

− 1 +
∫L

−L

U′′

UI − U
φc dx < 0, (5.13)

Proof. According to lemma 4.3, φc(x) does not have zero on −L < x < L and its sign should
be always positive φc(x) > 0 due to the normalization. If α > 0, we can eliminate this derivative
jump by increasing λ from 0, since the general solution φ̂ of (5.2) becomes less oscillatory than
φc. Therefore, there must be an eigenvalue λ ∈ [0, 1/k2 + λu] for which φ̂ satisfies (5.2) and (5.3)
without the derivative jump.

Conversely, if α ≤ 0, this derivative jump gets large as λ increases from 0 and, hence, there is
no positive eigenvalue λ > 0. �
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(b) Multiple inflection points
Here, we address the problem of multiple inflection points. Recall from proposition 4.4 that
neutrally stable eigenmodes may exist only at the frequencies ω = kUIn, n = 1, 2, . . . , N. In the
same manner as for the case of a single inflection point, we consider the equations for the neutrally
stable eigenmodes

EInφ̂c := −φ̂′′
c + k2φ̂c − U′′

UIn − U
φ̂c = 0 (5.14)

and

φ̂c(−L) = φ̂c(L) = 0, (5.15)

for every inflection point xIn, n = 1, 2, . . . , N. Since these equations do not have non-trivial
solutions for general k, we seek them for some characteristic values of k, in the same spirit as
Tollmien’s approach [39–43].

Proposition 5.3. Let U(x) satisfy (A 1) and (A 2). For each inflection point xIn, there is at most one
critical wavenumber kn > 0 at which the equation

EIn|kn φ̂c = 0, φ̂c(−L) = φ̂c(L) = 0, (5.16)

has a non-trivial solution φ̂c, where EIn|kn denotes the operator EIn at k = kn.

Proof. According to lemma 4.3, the solution φc(x) of EInφc = 0 satisfying φc(−L) = 0 and
φ′

c(−L) = 1 has at most one zero on −L < x ≤ L. This φc(x) becomes less oscillatory as k increases
from 0 to ∞ and eventually has no zero for k2 > max[U′′/(UIn − U)]. Therefore, there exists at
most one value kn of k for which φc(L) = 0 holds. �

Without loss of generality, let us focus on an inflection point xI1 and assume that there is a
critical wavenumber k1 > 0 for it. Namely, we have a solution ŵc = −φ̂′′

c + k2
1φ̂c ∈ L2 that satisfies

− ŵc + U′′

UI1 − U
G|k1 ŵc = 0, or (L|k1 − UI1)ŵc = 0. (5.17)

Now, we again invoke corollary 4.8 and consider the self-adjoint eigenvalue problem (4.44).
The above neutrally stable eigenfunction ŵc clearly corresponds to the marginally stable
eigenfunction (λ = 0) of (4.44) at k = k1, namely, Hv|k1 ŵc = 0.

Let us continuously change the parameter k in the neighbourhood of k1 and investigate
how an eigenvalue λ and an eigenfunction ŵ deviate from λ = 0 and ŵ = ŵc, respectively. By
differentiating the identity,

0 =
∫L

−L
ŵ(λ − Hv)ŵ dx, (5.18)

with respect to k and setting k = k1, we obtain

0 =
∫L

−L
ŵc

(
∂λ

∂k

∣∣∣∣
k1

− ∂Hv

∂k

∣∣∣∣
k1

)
ŵc dx

=
∫L

−L
ŵc

[
∂λ

∂k

∣∣∣∣
k1

− ν

U′′
∂L
∂k

∣∣∣∣
k1

(UI1 − UI2)(UI1 − UI3) · · · (UI1 − UIN)

]
ŵc dx, (5.19)

where (5.17) has been used. Since

∂L
∂k

= U′′ ∂G
∂k

= −2kU′′GG, (5.20)

we obtain
∂λ

∂k

∣∣∣∣
k1

‖ŵc‖2
L2 = −2k1ν(UI1 − UI2)(UI1 − UI3) · · · (UI1 − UIN)‖φ̂c‖2

L2 . (5.21)
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Similar relations are available for the other critical wavenumbers k2, k3, . . . , kN if they exist. In the
view of condition (3.6), one can distinguish the sign of ∂λ/∂k|kn from (5.21) as follows;

sgn
∂λ

∂k

∣∣∣∣
kn

= sgn[U′′′(xIn)U′(xIn)] = sgn[(U′2)′′(xIn)], (5.22)

which agrees with Tollmien and Lin’s result [39–41]. In other words, if the absolute value of
the background vorticity |U′(x)| has a local maximum (or minimum) at x = xIn, then a positive
eigenvalue λ > 0 emerges at k = kn as k decreases (or increases).

We note that there is no positive eigenvalue λ > 0 of (4.44) in the limit of k → ∞. As k
continuously changes from ∞ to 0, the number of positive eigenvalues increases (or decreases)
by one when k passes through kn that is associated with the inflection point xIn satisfying
(U′2)′′(xIn) < 0 (or > 0). We can summarize these facts into the following stability criterion.

Corollary 5.4. Let U(x) satisfy (A 1) and (A 2). Suppose that, for every inflection points xIn,
n = 1, 2, . . . , N, the critical wavenumbers kn > 0, n = 1, 2, . . . , N, are either solved or proven to be non-
existent according to proposition 5.3. Then, equation (2.1) is spectrally unstable if and only if N+ − N− >

0, where
N+: number of the critical wavenumbers kn that satisfy k < kn and (U′2)′′(xIn) < 0,
N−: number of the critical wavenumbers kn that satisfy k < kn and (U′2)′′(xIn) > 0.

When N+ − N− is positive, it corresponds to the number of positive eigenvalues λ of (4.44).
This number cannot be greater than the number of the inflection points xIn satisfying (U′2)′′(xIn) <

0, i.e. the number of local maxima of |U′(x)|.
A similar result to corollary 5.4 is shown by Lin [42,43] as a rigorous justification of

Tollmien’s method. While he treats a larger class of flows than ours, his criterion is sufficient
but not necessary for instability in the presence of multiple inflection points [43]. Balmforth &
Morrison [45] have also discussed the case of multiple inflection points in the same manner as
corollary 5.2, where the derivative jump αn is evaluated for each inflection point xIn and then
αn < 0 (or αn > 0) corresponds to k < kn (or k > kn). However, in this work the importance of
sgn(U′2)′′(xIn) was not observed.

6. Numerical tests
Finally, we exhibit numerical results to illustrate the practicability of our method. For three
velocity profiles U(x), we compare the results of two different numerical codes: one code solves
the Rayleigh equation (2.4) directly for complex eigenvalues c = ω/k ∈ C, while the other code
solves for the eigenvalues λ1, λ2, . . ., of the self-adjoint operator Hv in descending order. In
fact, the maximum eigenvalue λ1 can be more easily determined by the variational problem,
λ1 = max Q/‖w‖2

L2 , and the flow U(x) is spectrally unstable if and only if λ1 > 0 (see corollary 4.8).
The first example is

U(x) = tanh(x), x ∈ [−∞, ∞], (6.1)

which is well known to be unstable for 0 < k < 1. The result is shown in figure 2, where we also
plot λ̃1 = max Q/‖ξ‖2

L2 for comparison (the damping eigenvalue Im c < 0 is not plotted since its
presence is trivial). As expected from the results of §4d, λ = 0 is the upper edge of the continuous
spectrum of H. Since the eigenfunction ξ̂1 becomes singular, i.e. ‖ξ̂1‖L2 → ∞, as λ̃1 → +0, the
curve of λ̃1 is tangent to the marginal line λ = 0 and the critical wavenumber k = 1 is not so
evident. On the other hand, the upper edge of the continuous spectrum of Hv is less than zero,
λu = max[tanh(x)/ tanh′′(x)] = −0.5 < 0, and hence the maximum eigenvalue λ1 of Hv smoothly
intersect with λ = 0 at k = 1 in figure 2. Thus, for the purpose of drawing the stability boundary,
the variational principle with respect to the norm ‖w‖L2 is seen to be numerically efficient
and accurate.
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Figure 2. Growth rate Im c (where Re c ≡ 0), λ1 = max Q/‖w‖2L2 and λ̃1 = max Q/‖ξ‖2L2 versus wavenumber k for the
shear flow U(x)= tanh(x).

The second example is

U(x) = x + 5x3 + 1.62 tanh[4(x − 0.5)], x ∈ [−1, 1], (6.2)

which was previously addressed by Balmforth & Morrison [45]. This flow has three inflection
points

xI1 = −0.069, UI1 = −1.65,

xI2 = 0.622, UI2 = 2.55

and xI3 = 0.665, UI3 = 3.07,

⎫⎪⎪⎬
⎪⎪⎭ (6.3)

at which (U′2)′′ is positive, negative and positive, respectively. Only for xI2 and xI3, do the critical
wavenumbers k2 � 1.2 and k3 � 0.4 exist. As predicted in corollary 5.4, the instability occurs only
for finite wavenumbers k3 < k < k2. In figure 3, the positive signature of the maximum eigenvalue
λ1 certainly agrees with this unstable regime. In practice, our variational approach can directly
prove the instability at a fixed k without knowing the existence of nor the values k1, k2 and k3.

The third example is

U(x) = x − 0.02 + sin[8(x − 0.02)]
16

, x ∈ [−1, 1], (6.4)

which has five inflection points

xI1 = −0.765, UI1 = −0.785,

xI2 = −0.373, UI2 = −0.393,

xI3 = 0.020, UI3 = 0.0,

xI4 = 0.413, UI4 = 0.393

and xI5 = 0.805, UI5 = 0.785.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.5)

For this example, there exist three critical wavenumbers k1, k3 and k5 for the inflection points
xI1, xI3 and xI5, all of which have (U′2)′′ negative. Therefore, three unstable eigenvalues emerge at
k1, k3 and k5 with different phase speeds UI1, UI3 and UI5, respectively. Thus, three eigenvalues
λ1, λ2 and λ3 of our variational problem completely predict the onsets of instabilities, as
shown in figure 4.

 on October 12, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


18

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140322

...................................................

0.02

0.01

–0.01

–0.02

3.2

3.1

3.0

2.9

2.8

2.7

2.6

2.5

2.4
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

Im
 c

R
e 

c

UI3

UI2

k3 k2

k3

k

k2

l1

(b)

(a)

Figure 3. (a,b) Growth rate (Im c) and phase speed (Re c) versus wavenumber k for the shear flow U(x)= x + 5x3 +
1.62 tanh[4(x − 0.5)]. The dashed line isλ1 = max Q/‖w‖2L2 .

7. Summary
We have investigated the linear stability of inviscid plane parallel shear flow (Rayleigh’s equation)
as a typical example of an infinite-dimensional and non-self-adjoint eigenvalue problem that
originates upon linearizing a Hamiltonian system. By assuming monotonicity and analyticity
of the shear profile, a necessary and sufficient condition for spectral stability was obtained in
the form of a variational criterion (theorem 3.1). Our theory is based on (i) the existence of the
infinite number of constants of motion Qf (proposition 3.2), whose definition includes an arbitrary
real polynomial f (c) and (ii) the rigorous derivation of the Kreĭn signature (i.e. the signature of
δ2H) for the continuous spectrum. Since the energy, δ2H = Qf with f (c) = c, is generally indefinite
due to the presence of both positive and negative energy modes, we have chosen a special f (c)
such that Q = Qf becomes negative semi-definite Q|σc ≤ 0 (proposition 4.7) for the neutrally stable
spectrum σc ⊂ R, which is mostly the continuous spectrum in the present case. Then, a positive
signature of the quadratic form Q = 〈ξ ,Hξ〉 implies existence of an unstable eigenmode. Since
H is self-adjoint, we were able to prove instability must occur if some test function ξ (virtual
displacement) exists that makes Q positive, which is analytically and numerically easier to do
than solving Rayleigh’s equation. Moreover, the singularity at the stability boundary (due to the
continuous spectrum) was shown to be removed technically by maximizing Q with respect to the
vorticity disturbance w ∈ L2, instead of the displacement ξ ∈ L2. However, we remark that, unlike
the Rayleigh–Ritz method, neither max Q/‖ξ‖2

L2 nor max Q/‖w‖2
L2 are quantitatively related to the

maximum growth rate of instability.
Our variational criterion is an improvement of previous sufficient stability criteria [11,33].

Given that Rayleigh’s equation has been solved under a specific condition, we have also
reproduced the earlier results of the Nyquist method [44,45] and Tollmien’s analysis of the neutral
modes [39–41].

In this paper, we have imposed the assumptions (A 1) and (A 2) on velocity profile U(x) to
simplify the discussion. The relaxation of these assumptions is possible to some extent, but it
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Figure 4. (a) Growth rate (Im c) and (b) phase speed (Re c) versus wavenumber k for the shear flow U(x)= x − 0.02 +
sin[8(x − 0.02)]/16. The dashed lines are eigenvaluesλ1, λ2, λ3 ofHv.

would be difficult to overcome the following difficulties: (i) if analyticity is not assumed and U′′
is only continuous, special care is needed for piecewise-linear regions of U. In such a region, say
[x1, x2], all points are regarded as inflection points and we expect that the variational problem
would become a minimax problem like minxI∈[x1,x2] maxξ∈L2 Q > 0, which is not so analytically
tractable. (ii) If monotonicity is not assumed, a serious difficulty arises when the sign of U′′ is
not identical at the locations of multiple critical layers for a phase speed c = ω/k ∈ R. Since at this
frequency ω = kc belongs to degenerate multiple continuous spectra whose signature is indefinite,
our technique for constructing Q breaks down.

In conclusion, we note that our variational approach will be applicable to rather simple
equilibrium profiles which are free from the above difficulties. However, there is a large class
of fluid and plasma systems with existing sufficient stability criteria (e.g. MHD [52,53] with flow)
that have Kreĭn-like signature (or action–angle variables) for a continuous spectrum. This is the
key ingredient needed for constructing the quadratic form. Thus, our techniques are available for
a large class of applications governed by other dynamical systems. We will report our additional
results in future publications.
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Appendix A. Brief review of the isovortical variation
Consider the vorticity equation ∂tw = curl(u × w) where w = curl u. For a given displacement
vector field ξ , let us generate a variation w0 → wε around a steady-state w0 = curl u0 by solving

∂εwε = curl(ξ × wε), wε |ε=0 = w0, (A 1)

in terms of a small parameter ε ∈ R. This so-called isovortical variation automatically preserves
the Kelvin’s circulation law (or the topology of the vorticity w0), where we usually expand wε as

wε = w0 + ε curl(ξ × w0) + ε2

2
curl[ξ × curl(ξ × w0)] + O(ε3) (A 2)

=: w0 + εδw0 + ε2

2
δ2w0 + O(ε3). (A 3)

For the steady-state w0 = (0, 0, U′(x)) and two-dimensional motion ξ = (ξx, ξy, 0) discussed in this
paper, the first variation δw0 = curl(ξ × w0) is reduced to δw0 = (0, 0, −U′′ξx). Then, the second
variation of the Hamiltonian H = ∫ |u|2/2d3x around u0 results in (3.3).

If the dynamics of ξ is taken into account, it must be related to δu0 =P(ξ × w0) (where P is the
projection operator to the solenoidal vector field) by

∂tξ + (u0 · ∇)ξ − (ξ · ∇)u0 = δu0 + O(ε) (A 4)

(see Sec. 6 of [54] or [52,53]). When O(ε) is neglected in the linear analysis, this is indeed the adjoint
equation of the linearized vorticity equation. In this paper, its x component ∂tξx + U∂yξx = δu0x

corresponds to (3.1).

Appendix B. Proof ofσc\σI being the continuous spectrum
Let ω = kc ∈ σc\σI, namely, ω = kU(xc) and W(ω ± i0) �= 0. Using lemma 4.3, one finds Φ<(xc, ω) �= 0
and Φ>(xc, ω) �= 0, which implies that there exists ξ0 ∈ X + iX such that Φ(xc, ω ± i0) �= 0. Then,
Ξ (x, Ω) = (Ω − kL∗)−1ξ0 = −kΦ(x, Ω)/(Ω − kU) becomes singular Ξ (x, ω ± i0) /∈ X + iX as Ω →
ω ± i0, namely, the resolvent operator (ω − kL∗)−1 is unbounded.

Moreover, the range of ω − kL∗ is dense in X + iX as shown below. Therefore, ω is not in the
residual spectrum but the continuous spectrum.

Lemma B.1. Let ω = kc ∈ σc\σI. For any given η0 ∈ X + iX and ε > 0,

∃η ∈ X + iX s.t. ‖(ω − kL∗)η − η0‖X+iX < ε. (B 1)

Proof. Define a neighbourhood of xc as Bε1 := [xc − ε1, xc + ε1] with 0 < ε1 ∈ R. Let us consider
ξ0 = Gθ ∈ X + iX where θ ∈ L2 + iL2 is given by

θ :=
{

−η′′
0 + k2η0 on [−L, L]\Bε1 ,

0 on Bε1 .
(B 2)

As in (4.11), we generate Φ(x, Ω) with this ξ0 and define φ∗(x, ω) as

φ∗(x, ω) = Φ(xc, ω − i0)Φ(x, ω + i0) − Φ(xc, ω + i0)Φ(x, ω − i0)
Φ(xc, ω − i0) − Φ(xc, ω + i0)

∈ H1
0 + iH1

0, (B 3)

which indeed exists due to proposition 4.5. Then, φ∗ satisfies φ∗(xc, ω) = 0 and, from (4.6),

− φ′′
∗ + k2φ∗ − U′′

c − U
φ∗ = −1

k
θ . (B 4)

In the neighbourhood Bε1 , this φ∗ must be the regular Frobenius series solution φ∗(x, ω) = const. ×
Φ1(x, ω) since the right-hand side of (B 4) is zero and φ∗(xc, ω) = 0 (recall (4.18), where Φ1(xc, ω) = 0
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and Φ2(xc, ω) = 1). If we set

η = − φ∗
c − U

, (B 5)

then this η is still regular on Bε1 and hence η ∈ H1
0 + iH1

0. Moreover, η ∈ X + iX because φ′′∗ ∈ L2 +
iL2 follows from (B 4). The relation (B 4) is transformed into (ω − kL∗)η = Gθ , which implies (ω −
kL∗)η ∈ X + iX. Therefore, we obtain (ω − kL∗)η − η0 = G(θ + η′′

0 − k2η0), where

‖θ + η′′
0 − k2η0‖L2+iL2 ≤ 2ε1 sup

x∈[−L,L]
|η′′

0 − k2η0|. (B 6)

By adopting the definition ‖ · ‖X+iX := ‖G−1 · ‖L2+iL2 for simplicity, the required result is obtained
by making ε1 small such that 2ε1 supx∈[−L,L] |η′′

0 − k2η0| < ε. �
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