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A systematic study of energy conservation for extended magnetohydrodynamic models that

include Hall terms and electron inertia is performed. It is observed that commonly used models do

not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In

particular, a term in the momentum equation that is often neglected is seen to be needed for

conservation of energy. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4890955]

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD) has a long history

of wide application to various types of plasmas, including

those of relevance in astrophysics, geophysics, and nuclear

fusion science. However, it is well-known to plasma physicists

that ideal MHD is deficient in many respects and that some of

these deficiencies are accounted for by extending Ohm’s law

as in the early work of Refs. 1 and 2 (see also Refs. 3 and 4).

And, it is also well-known that the inclusion of additional

terms in Ohm’s law breaks the frozen flux condition of ideal

MHD and gives rise to specific regions where magnetic recon-

nection takes place and that this phenomenon is important for

energy transfer. Reconnection is most well-studied when it is

induced by resistivity (e.g., Ref. 5), but there is significant

work on the Hamiltonian reconnection afforded by other

effects such as electron inertia (e.g., Refs. 6–8). Because a va-

riety of effects can be important, many researchers have inves-

tigated various extended MHD models both analytically and

numerically, and many reduced models based on geometric

reduction have been used as well (e.g., Refs. 9–11).

Different versions of extended MHD models have been

implemented, e.g., Refs. 2, 5, and 12–14, and some of the

relationships between these models and their limitations

seem to be unknown. All of these models differ only in the

choice of the generalization of Ohm’s law, with the momen-

tum equation being the same as that for usual MHD. We will

see that in some instances, energy conservation requires

modification of the momentum equation.

The goal of this paper is to sort out which extended

MHD models conserve energy and which do not. Upon

returning to the original two-fluid derivation of extended

MHD of L€ust,1 we find that energy conservation requires a

term that is often neglected in the momentum equation and

that retention of this term is consistent with the appropriate

ordering. Various reductions of the full extended MHD

model are investigated, including Hall MHD (HMHD) and

Inertial MHD (IMHD).

This paper is organized as follows. In Sec. II, we

describe briefly extended MHD and generalize the thermody-

namics of the fluid to allow for more general equations of

state with the inclusion of electron pressure and anisotropic

pressure of the form of Chew, Goldberger, and Low.15 Next,

in Sec. III, we begin our discussion of energy conservation.

We first consider HMHD, which is a well-known consistent

model in its own right and verify its energy conservation

including the generalized thermodynamics. Then, we intro-

duce IMHD by employing an ordering of the full extended

MHD in which the terms of Ohm’s law of HMHD are domi-

nated. Thus, we are able to treat the energy conservation of

IMHD independently, but our results apply to the full

extended MHD model without the ordering. Since various

IMHD-like models in the literature do not conserve energy,

these are of main concern. For this reason, in Sec. IV, we

systematically determine which MHD models with electron

inertia conserve energy and which do not—the results are

summarized in Table I. Finally, we conclude in Sec. V,

where we discuss some limitations and possibilities.

II. EXTENDED MHD AND THERMODYNAMICS

In this section, we first state the extended MHD model.

As is well-known, such a one-fluid model can be derived

from kinetic theory (see, e.g., Refs. 2, 13, and 16), but we

begin with the results of L€ust,1 who appears to be the first to

derive the generalized Ohm’s law for a one-fluid model by

adding and subtracting individual electron and ion fluid

equations, enforcing quasineutrality and expanding in the

smallness of the electron mass. His derivation yields a term

in the one-fluid momentum equation that is often neglected

and is necessary for energy conservation. Next, we extend

L€ust’s model by completing the thermodynamics and, in

addition, we show how one can incorporate anisotropic pres-

sure into the thermodynamics.

A. Extended MHD

The assumptions of quasineutrality and smallness of the

electron mass compared to the ion mass leads to a model that

we will refer to as extended MHD. It is given by the

following:

the continuity equation

@q
@t
¼ �r � qVð Þ ; (1)

the momentum equation
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q
@V

@t
þ V � rð ÞV

� �
¼ �rpþ J � B� me

e
J � rð Þ J

en
;

(2)

and the generalized Ohm’s law

Eþ V � B� J

r
¼ 1

en
J � B�rpeð Þ

þ me

e2n

@J

@t
þr � VJ þ JVð Þ

� �

� me

e2n
J � rð Þ J

en
; (3)

where q is the mass density of plasma, V is the bulk velocity,

p is the pressure, B is the magnetic field, J¼r�B/l0 is the

current density, me is the electron mass, e is the elementary

charge, n is the number density of each species of charged

particles, E is the electric field, r is the conductivity, and pe

is the electron pressure.

Although this generalized Ohm’s law arises upon sub-

tracting the individual electron and ion fluid momentum

equations, with velocity fields ve and vi, respectively, and

contains electron momentum dynamics, we will refer to this

system of Eqs. (1)–(3), supplemented by the thermodynam-

ics of Sec. II B, as a single fluid model.

B. Extended thermodynamics

In the original article of L€ust1 and to our knowledge

elsewhere, the thermodynamics of the two-fluid to one-fluid

extended MHD reduction has not been treated in full gener-

ality. L€ust assumes polytropic laws for pi and pe and con-

structs the extended MHD pressure as p¼ piþ pe, in

accordance with Dalton’s law on the addition of partial pres-

sures. Because of quasineutrality, q¼qiþqe¼minþmen
¼mn, where m¼miþme.

Here, we generalize this by using entropy as the second

thermodynamic variable for each species. With this choice,

the thermodynamics of species a � {e, i} is determined from

an internal energy function Uaðqa; saÞ, the internal energy

per unit mass ma, where sa is the entropy per unit mass ma.

Since 1/qa is the specific volume, this thermodynamic repre-

sentation is the one in terms extensive variables, with the in-

tensive quantities determined by

Ta ¼
@Ua

@sa
and pa ¼ q2

a
@Ua

@qa
: (4)

For isothermal processes Ua ¼ jðsaÞlnðqaÞ, while for a poly-

tropic equation of state, Ua ¼ jðsaÞqc�1
a =ðc� 1Þ, whence

pa ¼ jðsaÞqc
a. For these choices, one can substitute the vari-

able pa in lieu of sa, as is more common in plasma physics.

For the ideal, energy conserving, fluid, the Fourier and

other heat flux terms are dropped and the two entropies obey

the advection equations

@sa

@t
þ va � rsa ¼ 0 : (5)

Since entropy is extensive, it is natural to introduce the total

entropy for one-fluid extended MHD as follows:

s ¼ ðmisi þ meseÞ=m : (6)

In addition, if Hall MHD is to have a complete set of thermo-

dynamic variables, one must retain the electron entropy, se.

Using V ¼ ðmivi þ meveÞ=m and J ¼ enðvi � veÞ, a simple

calculation gives

@s

@t
¼ �V � rs (7)

and

@se

@t
¼ �V � rse þ

1

en
J � rse ; (8)

where we have dropped terms of order me/m.

Again, appealing to the extensive property of energy,

the total internal energy per unit volume of the two species is

given by

qU ¼ qiU iðqi; siÞ þ qeUeðqe; seÞ : (9)

Because of quasineutrality, n is the only density variable; for

our purposes, it is sufficient to rewrite this, again correct to

order me/m, as

nUðn; s; seÞ ¼ nUiðn; sÞ þ nUeðn; seÞ ; (10)

where mU ¼: U and maUa ¼: Ua. Evidently, the pressures

satisfy p ¼ q2@U=@q ¼ n2@U=@n ¼ pi þ pe. Consistent with

TABLE I. Classification of energy conserving IMHD models. The values of

the epsilons in the generalized Ohm’s law are listed in the first four columns,

and the generalized Ohm’s law is described by the fifth column. The epsilon

values in the momentum equation are listed in the sixth column. When the

total energy is conserved “Yes” is written in the last column, otherwise the

deficit terms are written in the last column. Note that for incompressible

plasma, there is no �cp—term in the generalized Ohm’s law; consequently,

we write “–” in the third column for this case.

�ti �ad �cp �ohm Ohm’s law Eþ V � B ¼ �mom Conserved?

Compressible plasma

1 1 1 1 me

e2n

@J

@t
þr � ðVJ þ JVÞ

� �
1 Yes

1 1 1 me

e2n

@J

@t
þr � ðVJÞ

� �
Yes

1 me

e2n

@J

@t

me

e2n

jJj2

2

r � ðnVÞ
n

1 1 me

e2n

@J

@t
þ ðV � rÞJ

� � me

e2n
jJj2ðr � VÞ

1 1 1 1 me

e2n

@J

@t
þr � ðVJ þ JVÞ

� � me

e
V �
�
ðJ � rÞ J

en

�

Incompressible plasma

1 – me

e2n0

@J

@t

1 Yes

1 1 – me

e2n0

@J

@t
þ ðV � rÞJ

� �
Yes

1 1 – 1 me

e2n0

@J

@t
þr � ðVJ þ JVÞ

� �
Yes

1 1 – 1 me

e2n0

@J

@t
þr � ðVJ þ JVÞ

� � me

e2n0

V � ððJ � rÞJÞ
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the derivation of extended MHD, we can expand (10) in the

smallness of me/mi. Because the only thermodynamic devia-

tion from single fluid MHD occurs in the Hall term rpe, it is

sufficient to retain only the leading order in this expansion in

order to ensure energy conservation. This will be shown in

Sec. III A where we examine the total energy conservation

for Hall MHD.

Since it is not widely known, we review here the thermo-

dynamics for anisotropic pressure in a magnetofluid model,

which to our knowledge was first given in Ref. 17 (see also

Ref. 18). The generalization follows upon adding B ¼ jBj as

an additional thermodynamic variable, i.e., now Uðq; s;BÞ,
and the parallel and perpendicular pressures are given by

pjj ¼ q2 @U
@q

and Dp ¼ �qB
@U
@B

; (11)

where Dp ¼ pjj � p?.

Expressions (11) can be seen to be consistent with the

natural extensive thermodynamic variables (q�1, s, B), all

being specific quantities. The intensive thermodynamic dual

variables associate with this set are (pk, T, M) with the mag-

netization M being given by

M :¼ Dp

qB
¼ � @U

@B
: (12)

In (12), Dp ¼ pjj � p? is related to the work done when mag-

netic flux is held fixed. Note the magnetic moment

l ¼ mv2
?=ð2BÞ; thus, the magnetization per unit volume is

M¼ nmv2
?=ð2BÞ or one can argue macroscopically

M� p=B. Therefore, the specific magnetization would be

M� p/(qB); thus, (12) makes sense as a relative magnetiza-

tion. Alternatively, one can use H as the variable thermody-

namically conjugate to B by introducing the “total” energy,

U tot ¼ qU þ B2=2l0. Then, the conjugate to B is given by

@U tot=@B ¼ H ¼ �Mþ B=l0, as expected. In Ref. 17, it

was shown that this way of introducing anisotropy is energy

conserving. For simplicity, in the following, we will restrict to

isotropic pressure, but the generalization is straightforward.

III. ENERGY CONSERVATION

Because the examination of general energy conserva-

tion of extended MHD is complicated, we divide the calcu-

lation into two parts. We first consider HMHD and then its

complement IMHD. Results for total energy follow upon

superposing the calculations. In addition, we give an order-

ing for IMHD, an energy conserving model in its own

right.

A. Hall MHD

Setting me¼ 0 in (2) and (3) gives resistive HMHD.

Since electron inertia is absent, the energy is expected

to be composed of the sum of kinetic, internal, and

magnetic, i.e.,

HH :¼
ð

D

d3x q
jVj2

2
þ qU þ jBj

2

2l0

 !
; (13)

where it remains to determine the function U that will ensure

conservation of HH when the resistivity r�1 is set to zero.

Determination of U will be tantamount to the determination

of the entropy dynamics.

Upon calculating dHH/dt, it is readily seen that the

MHD terms cancel as usual and that the Hall term J � B pro-

duces the energy flux B� ðB� JÞ=ðl0enÞ. Consequently,

only the thermodynamic terms are of concern for the energy

of (13) to satisfy a conservation law. Assuming Uðq; s; seÞ
and p ¼ q2@U=@q, one obtains the usual internal energy flux

of MHD, ðpþ qUÞV. Thus, we are left with the following

upon neglect of surface terms:

dHH

dt
¼
ð

D

d3x
1

en
J � rpe þ

q
en

@U
@se

J � rse

� �
; (14)

where use has been made of (7) and (8).

For barotropic electron pressure, U has no dependence

on the electron entropy se and, consequently, only the first

term of (14) is present and rpe=ðenÞ ¼ rðqUÞ0=e, where

prime denotes d/dn. Then, upon integration by parts we

obtain

dHH

dt
¼
ð

D

d3x J � r qUð Þ0=e
� �

¼
ð

D

d3xr � J qUð Þ0=e
� �

;

(15)

using r � J ¼ 0. Thus, for this case, the energy flux is

�JðqUÞ0=e.

The barotropic model is incomplete, since electron pres-

sure can change at fixed electron density. To account for

this, we have included the electron entropy in the dynamics

via U. Using (10) with pe ¼ n2@Ue=@n and

q@U=@se ¼ n@Ue=@se, (14) becomes

dHH

dt
¼ 1

e

ð
D

d3x
1

n
J � r n2 @Ue

@n

� �
þ @Ue

@se
J �rse

� �
;

¼ 1

e

ð
D

d3x r � J n
@Ue

@n

� �
þ @Ue

@n
J �rn þ @Ue

@se
J �rse

� �

¼ 1

e

ð
D

d3xr � J n
@Ue

@n
þUe

� �� �
; (16)

yielding �Jðn@Ue=@nþ UeÞ=e as another contribution to

the energy flux.

Thus, we conclude that HMHD has the integrand of (13)

as an energy density, say EH, and this quantity satisfies a

conservation law of the form @EH=@tþr � JH ¼ 0 for an

energy flux JH given by

JH ¼ JMHD þ
B2

l0en
J? �

1

e
n
@Ue

@n
þ Ue

� �
J ; (17)

where JMHD is the usual MHD energy flux.

B. Inertial MHD

Now let us consider the remaining terms of extended

MHD. The last term on the right-hand-side of the momentum

Eq. (2) exists due to electron inertia, and we will see that its

retention is crucial when electron inertia terms are included
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in Ohm’s law. We will call the second term on the left-hand-

side of the generalized Ohm’s law (3) the “nonlinear term,”

the third term on the left-hand-side the “collision term,” the

first line on the right-hand-side the “Hall term,” and the

remaining terms on the right-hand-side the “electron inertia

terms.” To compare the sizes of these terms, we use the fol-

lowing dimensionless numbers:

RM :¼ Nonlinear term

Collision term
¼ rl0UL;

CH :¼ Hall term

Collision term
¼ rB

en
;

CI :¼ Electron inertia term

Collision term
¼ rme

e2ns
;

where U, L, B, and s are the characteristic velocity scale,

length scale, magnitude of magnetic field, and time scale of

current change, respectively. Here, RM is the usual magnetic

Reynolds number or Lundquist number as it is sometimes

called. The two Hall terms are comparable in size if B2� pe,

i.e., be� 1.

For IMHD, we focus on the situation where the electron

inertia term is larger than the collision and Hall terms; how-

ever, the nonlinear term is still considered to be comparable

with the electron inertia term, that is,

RM � 1; CI � 1;
CI

CH
� 1:

Since the last inequality is equivalent to

CI

CH
¼ me

eB

1

s
¼ 1

Xes
� 1;

where Xe is the electron gyro-frequency, this relation can be

interpreted as saying that the characteristic time scale of the

current change is much shorter than the gyro-period of the

electron.

With the above ordering, extended MHD reduces to the

IMHD model given by the following set of equations:

@q
@t
¼ �r � qVð Þ; (18)

q
@V

@t
þ V � rð ÞV

� �
¼ �rpþ J � B� � me

e
J � rð Þ J

en
;

(19)

Eþ V � B ¼ � me

e2n

@J

@t
þr � VJ þ JVð Þ

� �

� d
me

e2n
J � rð Þ J

en
; (20)

@s

@t
¼ �V � rs; (21)

where s is the entropy per unit mass of the plasma and the

last equation means the plasma is adiabatic. Note, we have

artificially inserted book keeping parameters � and d in order

to identify terms—in reality, both of these parameters have

value unity. The above equations are to be solved with the

pre-Maxwell’s equations

r� E ¼ � @B

@t
and r� B ¼ l0J ; (22)

with the initial condition r � B ¼ 0. Note, consistent with

quasineutrality and the neglect of the Maxwell displacement

current, the current density is solenoidal, r � J ¼ 0.

We stress that the energy conservation results we obtain do

not depend on the IMHD ordering, but exist with the inclusion

of the Hall terms, provided one extends the thermodynamics as

in Sec. III A. For IMHD, one only needs to consider Uðq; sÞ,
but it could also be generalized to include dependence on jBj.

Upon considering a candidate energy for this IMHD

model by taking the scalar product of V and the momentum

equation, the scalar product of J and the generalized Ohm’s

law, and using the pre-Maxwell equations, we obtain the fol-

lowing energy relation:

@

@t

q
2
jVj2 þ qU þ � me

e2n

jJj2

2
þ jBj

2

2l0

 !

þr � q
2
jVj2 þ pþ qU þ � me

e2n

jJj2

2

� �
V

�

þ � me

e2n
V � Jð ÞJ � d

me

2e3n2
jJj2J þ E� B

l0

�
¼ 0: (23)

Observe the new term of the energy density of (23),

mejJj2=ð2e2nÞ, which arises from electron inertia and repre-

sents the electron kinetic energy density. Note that, from the

generalized Ohm’s law, because of the dependence of E� B
in the energy flux of (23), the flux includes the time deriva-

tive term �me@J=@t=ðe2nÞ, so the above formulation is not in

the usual conservation form. However, upon integrating the

above energy relation over the whole domain D with appro-

priate boundary conditions, it is revealed that the total energy

H, which is defined as

H :¼
ð

D

d3x
q
2
jVj2 þ qU þ � me

e2n

jJj2

2
þ jBj

2

2l0

 !
;

is conserved.

Note, if we were to consider the governing Eqs.

(18)–(21) with the full Maxwell’s equations, then the follow-

ing energy relation applies:

0 ¼ @

@t

q
2
jVj2 þ qU þ � me

e2n

jJj2

2
þ jBj

2

2l0

þ �0

2
jEj2

 !

þr � q
2
jVj2 þ pþ qU þ � me

e2n

jJj2

2

� �
V

�

þ � me

e2n
V � Jð ÞJ � d

me

2e3n2
jJj2J þ E� B

l0

�
;

and this relation is of the usual conservation form since E is

now a dynamical variable.

IV. CLASSIFICATION BY ENERGY CONSERVATION OF
IMHD

In this section, we sort IMHD models into energy con-

serving and non-energy conserving classes.
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We first consider the compressible IMHD model com-

posed of the pre-Maxwell equations and the following:

@q
@t
þr � qVð Þ ¼ 0;

q
@V

@t
þ V � rð ÞV

� �
¼ �rpþ J�B

� �mom

me

e
J � rð Þ J

en
;

EþV� B ¼ �ti

me

e2n

@J

@t
þ �ad

me

e2n
V � rð ÞJ

þ �cp

me

e2n
J r � Vð Þ þ �ohm

me

e2n
J � rð ÞV

� d
me

e2n
J � rð Þ J

en
;

@s

@t
þ V � rð Þs ¼ 0 :

Recall, the parameters d and � were artificially inserted into

(18)–(21) as book keeping parameters, but now � has been

replaced by several parameters that track the various effects: �ti
(current time derivative), �ad (current advection), �cp (compres-

sibility), �mom (term in momentum equation that was �), and

�ohm (term in Ohm’s law partnered with that in the momentum

equation). These parameters are useful for determining how the

various terms in the calculation of the energy may cancel.

Proceeding, we see the various terms involved in energy

conservation combine as follows:

@

@t

q
2
jVj2 þ qU þ �ti

me

e2n

jJj2

2
þ jBj

2

2l0

 !

þr � q
2
jVj2 þ pþ qU þ �ad

me

e2n

jJj2

2

� �
V

�

þ�ohm

me

e2n
V � Jð ÞJ � d

me

e3n2

jJj2

2
J þ E� B

l0

#

¼ �ti � �adð Þ
me

e2n

jJj2

2

r � nVð Þ
n

þ �ad � �cpð Þ
me

e2n
jJj2 r � Vð Þ

þ �ohm � �momð Þ
me

e
V � J � rð Þ J

en
Þ: (24)

Since our main interest here is with electron inertia models, we

do not consider the case where �ti vanishes. Thus, from Eq.

(24), we find that the total energy is conserved only when all

the epsilon terms are non-vanishing or �ti, �ad, and �cp are non-

vanishing. Note, we have conservation for any value of d.

Therefore, we conclude that the epsilon term in the momentum

equation is essential for energy conservation in IMHD models.

Second, we consider the incompressible IMHD model

which is governed by the pre-Maxwell equations and by the

following equations:

q0

@V

@t
þ V �rð ÞV

� �
¼�rpþ J�B� �mom

me

e2n0

J �rð ÞJ;

EþV�B¼ �ti

me

e2n0

@J

@t
þ �ad

me

e2n0

V �rð ÞJ

þ�ohm

me

e2n0

J �rð ÞV� d
me

e3n2
0

J �rð ÞJ ;

together with q¼ q0¼ constant or equivalently n¼ n0

¼ constant. Note that �cp does not occur in the above equa-

tions because of incompressibility. For this system, energy

conservation law is as follows:

@

@t

q0

2
jVj2 þ �ti

me

e2n0

jJj2

2
þ jBj

2

2l0

 !

þr � q0

2
jVj2 þ pþ �ad

me

e2n0

jJj2

2

 !
V

"

þ �ohm

me

e2n0

V � Jð ÞJ � d
me

e3n2
0

jJj2

2
J þ E� B

l0

#

¼ �ohm � �momð Þ
me

e2n0

V � J � rð ÞJÞ:

Thus, it is revealed that total energy is conserved if

�ohm¼ �mom¼ 0 or 1, and there are no other conditions on �ti

and �ad.

All of our results on energy conservation for IMHD

models are summarized in Table I.

V. CONCLUSION

One might argue that the term �meðJ � rÞJ=ðe2nÞ of (2)

may be neglected without consequence, since it is small.

However, doing so would amount to the introduction of non-

physical dissipation. Since the whole point of reconnection

studies is that a small physical dissipation can have impor-

tant consequences, one should view any reconnection calcu-

lation with this nonphysical dissipation with caution. Note,

however, in some geometries, this term may vanish.

Equations (3.7.1)–(3.7.4) of Ref. 19 do not conserve

energy, whether or not Maxwell’s displacement current is

retained. In this reference and elsewhere, it is described how

the neglected term in the momentum equation can be recog-

nized by reverting to a two-species kinetic theory, where the

pressure tensors for each species are given by

Pa ¼ ma

ð
d3v fa ðv� vaÞ � ðv� vaÞ; (25)

with a � {e, i}, fa being the phase space density of species a,

and the fluid velocities given as usual by

va ¼
Ð

d3v fa vÐ
d3v fa

: (26)

If we follow L€ust’s example for scalar pressure, then the

total pressure is the sum of the partial pressures, i.e.,

P ¼ Pi þPe ; (27)

in accordance with Dalton’s law. However, it is sometimes

suggested that one use pressures defined in terms of the cen-

ter of mass velocity according to

Pa
cm ¼ ma

ð
d3v fa ðv� VÞ � ðv� VÞ; (28)

and define the total pressure by Pcm ¼ Pi
cm þPe

cm. Upon

inserting
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vi ¼ Vþ me

m

J

en
and ve ¼ V� mi

m

J

en
; (29)

in (27), an easy calculation gives

P ¼ Pcm �
memi

me2n
J� J � Pcm �

me

e2n
J� J: (30)

Thus, one could replace the first and last terms on the right

hand side of (2) by �r �Pcm and obtain a tidy equation.

However, if one further makes conventional thermodynamic

closure assumptions on Pcm, e.g., that it is isotropic and ei-

ther barotropic or adiabatic, then one would be in essence

saying that the current is dependent on density, which is

unphysical. This unphysical nature is manifest in the result-

ing violation of energy conservation when this procedure is

employed.

In this paper, we have used physical reasoning and

direct calculation to obtain conserved energy densities.

However, energy should emerge from time translation sym-

metry by means of Noether’s theorem. That this is indeed

the case will be reported in future work20 by deriving the

action for extended MHD and then using the Galilean group

to construct the usual conservation laws. With this formal-

ism, one also obtains the noncanonical Poisson brackets for

this model akin to that of Ref. 21 (see Ref. 22 for review).

This leads to the Casimir invariants and opens up the possi-

bility of applying Hamiltonian techniques for stability such

as in Refs. 23–26.

Finally, we point out that our starting point was two-

fluid theory and gyroviscous effects due to strong magnetic

fields have not been incorporated.23,27,28 This will also be the

subject of a future publication.
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Because of a typesetter’s error, the Incompressible plasma part of Table I has a misplaced 1 in the εmom column.
The correct table (as submitted to Physics of Plasmas) is below.

εti εad εcp εohm Ohm’s law E + V ×B = εmom Conserved?

Compressible plasma

1 1 1 1
me

e2n

(
∂J

∂t
+∇ · (V J + JV )

)
1 Yes

1 1 1
me

e2n

(
∂J

∂t
+∇ · (V J)

)
Yes

1
me

e2n

∂J

∂t

me

e2n

|J|2

2

∇ · (nV )

n

1 1
me

e2n

(
∂J

∂t
+ (V · ∇)J

)
me

e2n
|J|2(∇ · V )

1 1 1 1
me

e2n

(
∂J

∂t
+∇ · (V J + JV )

)
me

e
V ·

(
(J · ∇)

J

en

)

Incompressible plasma

1 − me

e2n0

∂J

∂t
Yes

1 1 − me

e2n0

(
∂J

∂t
+ (V · ∇)J

)
Yes

1 1 − 1
me

e2n0

(
∂J

∂t
+∇ · (V J + JV )

)
1 Yes

1 1 − 1
me

e2n0

(
∂J

∂t
+∇ · (V J + JV )

)
me

e2n0

V ·
(
(J · ∇)J

)

TABLE I. Classification of energy conserving IMHD models. The values of the epsilons in the generalized Ohm’s law are listed
in the first four columns, and the generalized Ohm’s law is described by the fifth column. The epsilon values in the momentum
equation are listed in the sixth column. When the total energy is conserved “Yes” is written in the last column, otherwise the
deficit terms are written in the last column. Note that for incompressible plasma, there is no εcp-term in the generalized Ohm’s
law; consequently, we write “ − ” in the third column for this case.


