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Abstract
This paper investigates hybrid kinetic-magnetohydrodynamic (MHD) models, where a hot
plasma (governed by a kinetic theory) interacts with a fluid bulk (governed by MHD).
Different nonlinear coupling schemes are reviewed, including the pressure-coupling scheme
(PCS) used in modern hybrid simulations. This latter scheme suffers from being
non-Hamiltonian and is unable to exactly conserve total energy. Upon adopting the Vlasov
description for the hot component, the non-Hamiltonian PCS and a Hamiltonian variant are
compared. Special emphasis is given to the linear stability of Alfvén waves, for which it is
shown that a spurious instability appears at high frequency in the non-Hamiltonian version.
This instability is removed in the Hamiltonian version.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Several configurations in plasma physics involve the
interaction of a hot plasma species with a lower temperature
bulk component. Typical examples are those of nuclear fusion
devices, in which the energetic alpha particles produced by the
fusion reactions interact with the ambient plasma, and those of
space plasmas, involving the interaction between the energetic
solar wind and Earth’s magnetosphere. Such plasmas have
been studied for decades and yet continue to be the subject of
current research.

For such configurations, one is first interested in
ascertaining the stabilizing or destabilizing effects that the
energetic component can have on the overall system. In order
to address this question, various mathematical models have
been formulated to include the combined effects of both the
energetic particles and the bulk plasma. Although the bulk

can be well described by ordinary magnetohydrodynamics
(MHD), adequately modeling the hot species requires the use
of kinetic theory. This multiscale, multi-physics approach
leads to the formulation of hybrid kinetic-MHD models
that couple the MHD equations to a kinetic equation for
the hot component. Then, the question of which kinetic
equation to use for the hot particles arises. Typically
drift-kinetic, gyrokinetic, or the full Vlasov system are
used. In plasma fusion, the first two options are used
most often, while the full Vlasov description is needed for
e.g. reverse field pinch plasmas [11]. The full Vlasov
description solves for effects at all scales and thus is
less convenient when the hot particle gyromotion can be
averaged out, in favor of drift-kinetic and gyrokinetic models.
Nevertheless, this paper aims to account for hot particle effects
at all possible scales, so that the full Vlasov description is
adopted.
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Another more important question emerges in the
formulation of hybrid kinetic-MHD models, viz., the particular
type of coupling scheme that should be used in the model. Two
coupling schemes are present in the literature: the current-
coupling scheme (CCS), found for example in [1, 3, 30] and
the pressure-coupling scheme (PCS), examples of which are
used in [4, 7, 12]. While the CCS involves the hot momentum
and density

K =
∫

p f (x, p) d3p, (1)

n =
∫

f (x, p) d3p, (2)

the PCS involves the following tensor:

P = 1

mh

∫
pp f (x, p) d3p, (3)

which is the pressure tensor of the hot component, calculated
with respect to a zero mean velocity. All these quantities are
defined as above in terms of moments of the kinetic probability
density f (x, p) on phase space. Here, p denotes the kinetic
momentum p = mhv, while mh denotes the hot particle mass.
Normally, the PCS is derived from the CCS [24, 25], under
the assumption that the hot component is rarefied, so that
its density levels are much lower than those of the MHD
component. Also, the PCS often appears in two different
versions depending on whether the definition of the pressure
tensor involves the absolute [4, 7] or relative [12, 29] velocity.

All of the nonlinear PCS models commonly found in
plasma physics literature suffer from the defect that they do not
exactly conserve energy. Indeed, exact energy conservation
is lost when the assumption of a rarefied hot component is
inserted as an approximation in the equations of motion of the
model. Consequently, these models are not Hamiltonian field
theories, ones that are expected to have noncanonical Poisson
brackets akin to those introduced into plasma physics in [21]
for MHD and [19, 20] for the Vlasov equation. Since such
a Hamiltonian structure occurs for all good plasma models,
in their non-dissipative limit, (see [16, 17, 19]), this would
suggest there should be a Hamiltonian model for the PCS,
and indeed this was shown to be the case in recent literature
[10, 23, 31]. This new model not only conserves energy, but
also conserves the cross-helicity invariants (which are also lost
in the non-Hamiltonian case).

A main goal of the present paper is to compare the
Hamiltonian and non-Hamiltonian PCS models, with emphasis
on linear stability analyses. It is important to make clear
that we are not arguing that dissipation is unimportant and
that the Hamiltonian description is the most apt description
of hybrid plasmas; clearly this is not always the case—
collisional effects, albeit small, can give rise to important
consequences, as is evident, for instance, from the massive
body of reconnection studies in the literature. Rather, the
goal here is to investigate some consequences of nonphysical
dissipation (or drive) that exists in hybrid models when all the
clearly identifiable physical dissipative terms are set to zero.
This fake dissipation may also be small, as is often the case for
physical dissipation, but could lead to substantial yet erroneous

consequences. Indeed, we discover a spurious instability in the
non-Hamiltonian model.

The remainder of the paper is organized as follows. In
section 2 we review the two hybrid coupling schemes: the CCS
and PCS models are derived from first principles and general
comments about their structure are made. This is followed
in section 3 by a general treatment of the linear problem for
the incompressible PCS models expanded about homogeneous
isotropic equilibria in a uniform external magnetic field, by
integration over orbits. This is followed, in section 4, by
a study of the dispersion relation for transverse disturbances
parallel to the magnetic field. It is in this special case that we
compare the Hamiltonian and non-Hamiltonian PCS models
and discover the spurious instability. For completeness we also
compare them to the CCS models. The dispersion relation is
analyzed numerically and analytically and is shown to have a
crossover to instability at high frequencies. Next, in section 5,
comments are made about the behavior of perpendicular
disturbances. Finally, in section 6 we summarize and conclude.
The paper contains two appendices that are included for
completeness. In appendix A the noncanonical Poisson
brackets for the Hamiltonian hybrid models are given, while
appendix B records some details of our calculations leading to
the dispersion relation used in section 4.

2. Hybrid coupling schemes

Turning now to the two coupling schemes, we first consider
the CCS, then the PCS.

2.1. Current-coupling schemes

In order to derive the hybrid CCS model [25], one starts with
the equations of motion for a multifluid plasma in the presence
of an energetic component. Upon formally neglecting the
vacuum permittivity (see e.g. [5]), one writes

ρs

(
∂us

∂t
+ us · ∇us

)
= −∇ps

+ρsas (E + us × B) , (4)
∂ρs

∂t
+ ∇ · (ρsus) = 0, (5)

∂f

∂t
+

p

mh

· ∂f

∂x
+ qh

(
E +

p

mh

× B

)
· ∂f

∂p
= 0,

∇ × B = µ0J

= µ0

∑
s

asρsus + µ0 ahK, (6)

∂B

∂t
= −∇ × E, (7)

0 =
∑

s

asρs + qhn, ∇ · B = 0, (8)

where as = qs/ms is the charge-to-mass ratio for the fluid
species s, while ρs and us are its mass density and velocity,
respectively. The symbol ps , on the other hand, indicates the
partial pressure of the fluid species s, which is assumed to be
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a function of ρs , through the relation ps = ρ2
s ∂Us/∂ρs , with

Us(ρs) indicating the corresponding specific internal energy.
For simplicity, we consider from now on, the case in which

the bulk plasma is composed by two species, one consisting of
ions and the second one of electrons. It is customary to reduce
the two-fluid system by neglecting the inertia of the electron
species (taking the limit m2 → 0), thereby obtaining a one-
fluid momentum equation. With this assumption, summation
of equations (4) for s = 1, 2 produces

ρ1

(
∂u1

∂t
+ u1 · ∇u1

)
= (a1ρ1 + a2ρ2) E

+ (a1ρ1u1 + a2ρ2u2) × B − ∇p , (9)

where p = p1 + p2. Then, upon using Ampère’s law (6) and
the quasineutrality relation of (8), equation (9) becomes

ρ1

(
∂u1

∂t
+ u1 · ∇u1

)
= −qhnE

+ (J − ahK) × B − ∇p, (10)

while equation (4) for the second species yields

E = − u2 × B +
1

a2ρ2
∇p2

= 1

a2ρ2
(a1ρ1u1 + ahK − J) × B +

1

a2ρ2
∇p2.

Next, one imitates the derivation of ideal MHD [5] and assumes
that J×B and ∇p2 are both negligible compared to the Lorentz
force a1ρ1u1 ×B. This step leads to an Ohm’s law of the form

E = −
(

a1ρ1u1 + qhnV

a1ρ1 + qhn

)
× B, (11)

where V = m−1
h K/n is the hot mean velocity. Note, this

means magnetic flux is frozen-in at a velocity given by

W = a1ρ1u1 + qhnV

a1ρ1 + qhn
. (12)

However, if V and u1 are comparable and a1ρ1 � qhnh, then
one can replace (11) by the Ohm’s law of ideal MHD,

E = −u1 × B, (13)

and the magnetic flux is then frozen into the MHD bulk flow.
Finally, inserting (13) into equations (10), (5), and (7) yields
the Hamiltonian CCS:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p

+ (qhnu − ahK + J) × B, (14)

∂ρ

∂t
+ ∇ · (ρu) = 0, (15)

∂f

∂t
+

p

mh

· ∂f

∂x
+ qh

(
p

mh

− u

)
× B · ∂f

∂p
= 0, (16)

∂B

∂t
= ∇ × (u × B) , (17)

where the subscript 1 has been dropped. The system (14)–(17)
is identical to the current-coupling hybrid scheme presented
in [1, 3, 25], except for the fact that the hot particle dynamics

is governed by the Vlasov equation rather than gyrokinetic or
drift-kinetic counterparts.

Note, we always assume that the mean velocity V =
m−1

h K/n of the energetic component is either very low or
at most comparable with the MHD fluid velocity u. This
is consistent with the hypothesis of energetic particles, since
the latter hypothesis involves the temperature rather than the
mean velocity. Denoting the temperatures of the hot and fluid
components by Th and Tf , respectively, we have Th � Tf

(see [4]). With the definition of the temperature Th =
(mh/3nkB)

∫ |v − V |2f d3v (where kB denotes Boltzmann’s
constant), the assumption on the energetic component amounts
to an assumption on the trace of the second-order moment of
the Vlasov density with no assumption on the mean velocity,
which is actually low for hot particles close to isotropic
equilibria [29].

Notice that equation (14) involves the Lorentz force term
qhnu×B, which should normally be negligible for consistency
with the approximation mhn � ρ, which yields equation (13)
from equation (11). A variant of the above CCS also exists [30],
which, by virtue of the approximation mhn � ρ neglects the
term qhnu×B, but on the other hand retains the term K ×B

even though the two terms are in principle of the same order
(as long as V is comparable with u).

One can check directly that the hybrid CCS model of (14)–
(17) exactly conserves the following total energy:

E = 1

2

∫
ρ|u|2d3x +

1

2mh

∫
f |p|2 d3x d3p

+
∫

ρ U(ρ) d3x +
1

2µ0

∫
|B|2 d3x, (18)

(see [30]) where U(ρ) is the internal energy per unit mass, from
which the pressure is determined by p = ρ2∂U/∂ρ. Moreover,
this system is Hamiltonian, with a noncanonical Poisson
bracket [31] (recorded for completeness in appendix A) and
it conserves the usual cross-helicity invariant

∫
u ·B d3x [10].

2.2. Pressure-coupling schemes

Let us consider now the two models that use the PCS—first
the non-Hamiltonian version then the Hamiltonian one.

2.2.1. Non-Hamiltonian PCS. Once the CCS has been
obtained, the PCS can be derived by computing the evolution
of the total momentum

M := ρu + K =: ρU , (19)

which gives (cf equation (1) of [25])

∂K

∂t
+ ρ

(
∂u

∂t
+ u · ∇u

)
= −∇ · P − ∇p + J × B. (20)

Since ∂tK = ρ ∂t (K/ρ) + (divu)K/ρ, inserting the
assumption K/ρ � u yields

ρ

(
∂U

∂t
+ u · ∇u

)
= −∇ · P − ∇p + J × B. (21)

3
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Then, upon writing U ∼ u, we obtain the system with the
non-Hamiltonian PCS:

ρ

(
∂U

∂t
+ U · ∇U

)
= −∇p − ∇ · P + J × B (22)

∂ρ

∂t
+ ∇ · (ρU) = 0 (23)

∂f

∂t
+

p

mh

· ∂f

∂x
+ qh

(
p

mh

− U

)
× B · ∂f

∂p
= 0 (24)

∂B

∂t
= ∇ × (U × B) , (25)

Notice that equation (22) is identical to the bulk momentum
equation of the hybrid PCS of Fu and Park (see equation (1)
in [7, 8]), which also includes (23) and (25) (while
replacing Vlasov dynamics by its gyrokinetic approximation).
Analogous PCS models with the same fluid equation (22)
have been formulated by Cheng [4] (see equation (1) therein)
and Park et al [25] (see equation (3) therein). In some
situations, the tensor (3) in (22) is replaced by the relative
pressure tensor P̃ = m−1

h

∫
(p − mhV )(p − mhV )f d3p

(e.g., the PCS model proposed by Kim, Sovinec and
Parker [11, 12, 29]).

All the above mentioned PCS models suffer from not
exactly conserving the total energy. Indeed, if we assume
that the total energy is still given by (18), equations (22)–(25)
give Ė = ∫

U · ∂tK d3x, so that the total energy would only
be nearly conserved if ∂tK is small. Under this assumption,
the CCS and the PCS are completely equivalent, since (16)
yields

∂K

∂t
= −∇ · P + ahK × B − qhnu × B. (26)

However, the assumption that ∂tK is negligible is not
compatible with (16), since the time variation of K may indeed
play a role in the general case.

2.2.2. Hamiltonian PCS. The issue of exact energy
conservation was raised in [31], where an alternative
Hamiltonian version of the PCS was presented. Besides
conserving the energy (18) exactly, this model possesses
a Poisson bracket structure, which was derived by using
well established Hamiltonian techniques in geometric plasma
dynamics [14–21, 27, 28].

In order to derive the Hamiltonian PCS model of [31],
one expresses the Hamiltonian structure of the CCS (14)–(17)
in terms of the total momentum M in (19). Then, instead
of replacing U ∼ u (arising from the original assumption
mhn � ρ) in the equations of motion, one replaces U ∼ u

directly in (18) and derives the equations of motion from
the Poisson bracket structure written in terms of M (see
appendix A). This procedure ensures that the chosen energy
functional is always preserved, as long as no approximations
are made on the Poisson bracket. At this point, one obtains the

following set of equations for the Hamiltonian PCS:

ρ

(
∂U

∂t
+ U · ∇U

)
= −∇p − ∇ · P + J × B (27)

∂f

∂t
+

(
p

mh

+ U

)
· ∂f

∂x
(28)

+
[
p × (

ahB − ∇ × U
) − p · ∇U

]
· ∂f

∂p
= 0,

∂ρ

∂t
+ ∇ · (ρ U) = 0,

∂B

∂t
= ∇ × (U × B) . (29)

We see that the fluid equation (27) is identical to the
corresponding equation (22) of the non-Hamiltonian model.
However, in the Hamiltonian model, hot particles move with
the relative velocity U + p/mh so that the term ∇U · p =
p·∇U+p×(∇×U) appears as an inertial force. Consequently,
both Hamiltonian and non-Hamiltonian PCS’ possess the same
static equilibria, although the dynamics in the vicinity of these
equilibria may be very different, depending on the particular
situation under consideration. Also, we notice that, unlike the
CCS of (14)–(17) and the non-Hamiltonian PCS of (22)–(25),
the Hamiltonian equations of (27)–(29) involve a nontrivial
kinetic-fluid coupling, even in the absence of magnetic
fields.

3. Linearized incompressible PCS

In this section, we consider the linearized equations of
motion for the incompressible limit (e.g. ∇ · U = 0) of
both Hamiltonian and non-Hamiltonian PCS’. For the sake
of simplicity, we shall set all physical constants to unity
(including mh, so that p = v), although we shall restore them
at a later time.

3.1. Equations of motion

Upon following the standard procedure, we linearize each
variable as A = A0 + A1, so that the subscripts ‘0’ and ‘1’
denote an equilibrium and its perturbation, respectively. As a
result, we obtain

∂U1

∂t
= −∇p1 − ∇ ·

∫
vvf1 d3v + (∇ × B1) × B0, (30)

∂f1

∂t
+ v · ∂f1

∂x
+ v × B0 · ∂f1

∂v
(31)

= f ′
0 (αvv : ∇U 1 + βv · U1 × B0) ,

∂B1

∂t
= ∇ × (U1 × B0) , ∇ · U1 = 0, (32)

where the parameters α and β = 1 − α are inserted so that
α = 1 gives the linearized Hamiltonian model, while α = 0
gives the linearized non-Hamiltonian model. In this way,
it is clear that the α-terms identify the Hamiltonian model,
while the β-terms identify its non-Hamiltonian counterpart.
In equations (30)–(32) we assumed a static equilibrium so that
U0 ≡ 0 and p0 ≡ 0. Also, we consider a uniform magnetic
field B0 (aligned with the z-axis) and an isotropic equilibrium
for the energetic component, so that f0 = f0(v

2/2) with
v2 = |v|2. Notice that the special case B0 = 0 yields

4
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free transport for the hot particles, in the case of the non-
Hamiltonian model (α = 0). Conversely, the Hamiltonian
model (α = 1) retains the fluid velocity terms in the
kinetic equation, even in the absence of the magnetic field
(B0 = 0).

Notice that, although here we have chosen a Vlasov
equilibrium of the form f0 = f0(v

2/2), other more
realistic choices are also available. For example, in actual
hybrid simulations of the non-Hamiltonian PCS in fusion
devices, toroidal symmetry is involved and the use of
special equilibrium profiles becomes necessary [29]. Another
example arises in reversed field pinch plasmas, in which finite
Larmor radius effects allow for equilibria of the type f0 =
f0(x, v2)−ω−1

c ∇f0 ·v×B (where ωc = qhB0/mh) (see [11]).
On the other hand, the aim here is not to enter into detailed
features of particular fusion devices, but to provide insight
into model differences. Therefore, we focus on distributions
of the type f0 = f0(v

2/2).
Assuming perturbations varying as A1 = Ã1e

i(k·x−ωt)

gives

ωŨ 1 = k p̃1 +
∫

(k · v)vf̃1 d3v + B0 × (k × B̃1), (33)

−ωB̃1 = (k · B0)Ũ1 , k · Ũ 1 = 0. (34)

Dotting equation (33) by k and using equations (34) yields

p̃1 = − 1

|k|2
∫

(k · v)2 f̃1 dv +
1

ω
(k · B0)(Ũ 1 · B0),

and the velocity equation becomes

ωŨ 1 = −
∫ [

(k · v)2

|k|2 k − (k · v)v

]
f̃1 dv

+
1

ω
(k · B0)

2 Ũ 1 (35)

or, upon rearranging the various terms,

Ũ1 = ω

(ω2 − k · B0)2

[
1 − kk

|k|2
]
(k · P̃1), (36)

where P̃1 = ∫
vv f̃1 d3v and 1 − kk/|k|2 projects transverse

to k.
It remains to express f̃1 in terms of Ũ1 in order to obtain

the dispersion relation. This step is performed in section 3.3,
but first the next section contains some relevant properties of
the linearized equation of Vlasov kinetic moments.

3.2. Remarks on linearized moment dynamics

Before analyzing the linear dynamics, it is of interest to explore
some roles played by the α and β terms. To this end it is useful
to introduce equilibrium moments

(
A(0)

n

)
i1i2...in

=
∫

vi1 . . . vin f0 d3v.

since f0 = f0(v
2/2), we notice that A

(0)
2n+1 = 0.

Then, equation (31) leads to the following conclusions

about the equations of motion for the kinetic moments
A

(1)
k = ∫

vkf1 d3v:

• the α-term (of the Hamiltonian model) contributes only
to moments of even order 2n + 2 (e.g. the pressure tensor
P1), i.e., the α-term does not contribute to the dynamics
of odd-order moments;

• the β-term (of the non-Hamiltonian model) contributes
only to moments of odd order 2n + 1 (e.g. the averaged
momentum K1), i.e., the β-term does not contribute to the
dynamics of even-order moments;

• the first three moments obey the equations

∂tn1 + ∇ · K1 = 0

∂tK1 + ∇ · P1 − K1 × B0 = −βn0 U1 × B0

∂tP1 + ∇ · A
(1)
3 +

[
B̂0, P1

] = −2α
(
(P0 · ∇)U1

+((P0 · ∇)U1)
T
)
,

where [·, ·] denotes matrix commutator and we defined the
hat operator by ŵa := w × a (for any two vectors w and
a, so that ŵih = −εihkwk is an antisymmetric matrix).

Thus, there is no contribution of the α-term to the linearized
fluid moments (i.e. zeroth and first-order moments) of the
kinetic component: indeed, the α-term disappears in the
linearized dynamics of the fluid closure for the hot particles.
The α-term contributes only to the dynamics of perturbed
moments at even order (e.g. the pressure tensor). On the other
hand, the β-term contributes only to the dynamics of perturbed
moments with odd order, e.g. it has a non-zero contribution to
the first-order moment (which plays a crucial role in the CCS).

3.3. Solution of the linearized Vlasov equation

Now we solve the linearized kinetic equation (31) in terms
of the fluid velocity U1. This is done by invoking the
method of characteristics (integrating over orbits) as is standard
in plasma physics texts (e.g. [13]) for the Maxwell–Vlasov
system. Following this standard method yields the solution of
the Vlasov equation in the form

f1 =
∫ t

−∞
f ′

0

(
α∇U ∗

1 : v∗v∗ − βU ∗
1 · v∗ × B0

)
dt∗

+f1(x
∗(−∞), v∗(−∞), −∞),

where f ′
0 means derivative of f0 with respect to its argument

v∗2/2 and the variables (x∗(t∗), v∗(t∗), t∗) satisfy

ẋ∗(t∗) = v∗(t∗), v̇∗(t∗) = v∗(t∗) × B0,

with x∗(t) = x, v∗(t) = v and the dot indicating the derivative
with respect to the evolution parameter t∗.

Then, upon introducing the notation ω
B0

= |B0| (i.e. the
cyclotron frequency, upon restoring physical quantities) and
the planar rotation

R(τ ) = exp(τ B̂0) =

cos(ω

B0
τ) − sin(ω

B0
τ) 0

sin(ω
B0
τ) cos(ω

B0
τ) 0

0 0 1
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and its antiderivative AR(τ ), we have

x∗ = AR(τ )v + ω−2
B0

B0 × v + x,

together with v∗ = R(τ )v and τ = t∗ − t . Upon Fourier-
transforming in the spatial variable, we obtain

f̃1 =
∫ 0

−∞
f ′

0

(
iα(k · v∗)(Ũ 1 · v∗) + βŨ 1 · B0 × v∗)

×ei(k·X−ωτ)dτ

=
∫ 0

−∞
f ′

0

(
iα(k · R(τ )v)Ũ 1 − βB0 × Ũ 1

) · R(τ )v

×ei(k·X−ωτ)dτ,

where X := x∗ − x and recall v∗
z = vz and z∗(τ ) = vzτ + z,

so that RB0 = B0 and (RŨ1)z = Ũ1z. Thus, since R is a
rotation,

f̃1 =
∫ 0

−∞

∂f0

∂v
·
(
iα(k · R(τ )v)RT (τ )Ũ 1

−βB0 × RT (τ )Ũ 1

)
ei(k·X−ωτ) dτ. (37)

Finally, upon recalling the definition ŵa := w × a of hat
operator, the velocity equation becomes(
ω2 − (k · B0)

2
)
Ũ 1

= ω

[
1 − kk

|k|2
]∫ ∫ 0

−∞
(k · v)

[
R
(
iα(k · Rv)

∂f0

∂v

+βB̂0
∂f0

∂v

)
· Ũ 1

]
vei(k·X−ωτ) dτ dv. (38)

and the dispersion relation is

det

(
k2

(
(k · B0)

2 − ω2
)

1

−ωk̂2
∫∫ 0

−∞
(k · v) v

(
iα(k · Rv)1 + βB̂0

)
× R

∂f0

∂v
ei(k·X−ωτ) dτ dv

)
= 0. (39)

At this point, one may write the general dispersion relation
explicitly. However, we study the linearized system in two
particular cases where k⊥ = 0 and kz = 0, which we turn to
in the next sections.

4. Disturbances with k⊥ = 0

Now we specialize the preceding results to the spe-
cial case k⊥ = 0, thus giving the dispersion rela-
tion for parallel propagating transverse disturbances with
k · Ẽ1 = −k · Ũ1 × B0 = 0.

4.1. Dispersion relation

After setting k⊥ = 0 in equation (38) it is useful to compute
the perturbed moment quantities K̃1 and k · P̃1. Notice that
k⊥ = 0 implies kzŨ1z = 0 ⇒ Ũ1z = 0. We compute K̃1

by taking the first-order moment of (37). Upon integrating by
parts and recalling RT k = Rk = k, we have

K̃1 =
∫

v f̃1(v) dv

=
∫

v
∂f0

∂v⊥
·
∫ 0

−∞

(
iαkzvzRT (τ )Ũ1

−βB0 × RT (τ )Ũ1

)
ei(kzvzτ−ωτ) dτdv⊥dvz

= −
∫ ∫ 0

−∞
f0

(
iαkzvzRT (τ )Ũ1

−βB0 × RT (τ )Ũ 1

)
ei(kzvzτ−ωτ) dτdv

= −
∫ ∫ 0

−∞
f̄0(v

2
z /2)

(
iαkzvzRT (τ )Ũ 1

−βB0 × RT (τ )Ũ 1

)
ei(kzvzτ−ωτ) dτdvz.

Hence,
K̃1z = 0.

The above relation means that the momentum perturbation K̃1

is coplanar with Ũ1, i.e., K̃1 × Ũ1 = 0 and therefore the
density perturbation vanishes, since ñ1 = −k · K̃1/ω ≡ 0.
Here, we have introduced the notation f̄0(v

2
z /2) = ∫

f0 dv⊥.
Notice that, by proceeding analogously, we have

k · P̃1 = −
∫∫ 0

−∞
f̄0(v

2
z /2) kzvz

(
iαkzvzRT Ũ1

−βB0 × RT Ũ 1

)
ei(kzvz−ω)τ dτdvz.

At this point one needs to compute the matrix integral

A =
∫ 0

−∞
ei(kzvz−ω)τR(τ ) dτ,

whose components are

A11 = A22 = −i
kzvz − ω

(kzvz − ω)2 − ω2
B0

, (40)

A12 = −A21 = ωc

(kzvz − ω)2 − ω2
B0

, (41)

A33 = − i

kzvz − ω
.

In the above equations, the integrations are defined for
Im(ω) > 0; following the standard procedure the solution
is extended to the lower complex plane by analytical
continuation. In conclusion, we have

K̃1 = −
∫

f̄0(v
2
z /2)

(
iαkzvz1 − βB̂0

)
AT Ũ1 dvz,

where we recall B̂0ij = −εijkB0k and (AŨ1)z = 0, so that
K̃1z = 0. Similarly, we obtain

k · P̃1 = −
∫

kzvzf̄0
(
iαkzvz1 − βB̂0

)
AT Ũ1 dvz. (42)

Once the moment quantities K̃1 and k · P̃1 are written
explicitly, one is ready to write the dispersion relation for the

6
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case k⊥ = 0. Inserting the relation (42) into (36) yields

(k2
z b

2 − ω2)Ũ1 = ω

∫
kzvzf̄0

(
iαkzvzAT Ũ1

−βB0 × AT Ũ1

)
dvz. (43)

Notice, since Ũ1z = (AT Ũ1)z = (B0 × AT Ũ1)z = 0, this
relation only possesses planar components.

At this point, direct algebraic computations on the above
relation give the following dispersion relation:

D±(ω, kz) := ω2 − k2
z v

2
A + ω(αω ∓ ωc)n0

(
1 +

(ω ∓ ωc)

∫ ∞

−∞

F

kzvz − ω ± ωc

dvz

)
= 0, (44)

where all physical constants have been restored: B0 = B0ez,
ωc = qhB0/mh is the cyclotron frequency of the energetic
component, vA = B0/

√
µ0ρ indicates the Alfvén speed based

on the constant equilibrium magnetic field B0 and the constant
bulk mass density ρ, and F := f̄0/n0 with n0 = ∫ ∞

−∞ f̄0dvz, so
that n0 is a dimensionless number indicating the ratio between
the equilibrium mass density of the energetic component and
that of the bulk component. (For details of this calculation see
appendix B.)

4.2. Analysis of dispersion relation

Next we analyze the dispersion relation (44). Recall, if one
sets α = 1 in (44), one obtains the dispersion relation for the
Hamiltonian model, whereas α = 0 gives that for the non-
Hamiltonian model. We will see that neglecting the terms
that make the starting model Hamiltonian leads to important
qualitative differences in the stability properties.

Some consequences of the dispersion relation (44) are
immediate. In the absence of energetic particles (n0 = 0), one
recovers the dispersion relation ω = ±vAkz, describing Alfvén
waves propagating along the z-direction. Next, assume ‘cold
hot’ particles, i.e., the case where F is the Dirac delta function
δ(vz). In this case the hot particle contribution again vanishes,
indicating that thermal effects are necessary to influence the
Alfvén waves for both the Hamiltonian and non-Hamiltonian
models.

To further analyze the two PCS’ consider figure 1,
where results are displayed from a numerical solution of the
dispersion relation of (44) for the kappa distribution,

f
(κ)
0 = n0

(πκv2
0)

3/2

�(κ + 1)

�(κ − 1/2)

(
1 +

v2

κv2
0

)−(κ+1)

. (45)

Here v0 reflects the thermal velocity vth = √
kBT /mh. Note,

for large values of κ the κ-distribution is indistinguishable from
the Maxwellian (see, e.g., [26]), and we have verified this by
direct calculation by comparing the two for κ = 50. In figure 1,
the imaginary part of the frequency, γ , is plotted against
the wavenumber, kz, suitably normalized, for the counter
polarization, i.e., for D+, which gives the weakest damping.
In this figure we consider a hydrogen bulk plasma with a
particle density of 1014 cm−3, a magnetic field of 35 kG, and a
alpha particle component with a temperature of 3.6 MeV and

0 1 2 3 4
−6

−5

−4

−3

−2

−1

0(a)

(b)

x 10
−3

k
z
v

A
/ω

c

γ/
ω

c

κ = 1
κ = 10
κ = 50

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

k
z
v

A
/ω

c

γ/
ω

c

κ = 1
κ = 10
κ = 50

Figure 1. Plots of the normalized damping/growth rates versus
wavenumber kz for the PCS using the kappa distribution of
equation (45) for different values of κ . Here n0 = 5 × 10−3 and
v0/vA = 1.2. (a) corresponds to the Hamiltonian PCS, which shows
the expected damping, while (b) corresponds to the non-Hamiltonian
PCS, which depicts the spurious instability for frequencies above ωc.

fractional density of n0 = 5 × 10−3. This gives v0/vA = 1.2
and ωc = 8.4 × 107 Hz. Since n0 � 1, the real part of
the frequency corresponds nearly to the Alfven wave, i.e.,
ωr ≈ kzvA, so it is not plotted. Figure 1(a) depicts γ for the
Hamiltonian PCS, while figure 1(b) shows the corresponding
plot for the non-Hamiltonian PCS. The same behavior was
found by varying n0 within the range n0 ≈ 10−3–10−1, in
agreement with the relations (48)–(50) below, obtained by the
small growth rate expansion.

The first observation to make is that both the Hamiltonian
and usual non-Hamiltonian models have similar behaviors
for low frequencies. This is to be expected, since the non-
Hamiltonian pressure-coupling model was first developed to
explore linear low frequency behavior. In fact, for example
in [4], low frequency ‘δW ’ type arguments were given that
indicate stability in this frequency regime, which is consistent
with the figures.

7
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However, upon examination of figure 1 for larger values
of kz or ωr ≈ kzvA, we see that figures 1(a) and (b) differ as
ωr approaches and exceeds ωc. Most significantly, we see that
the non-Hamiltonian PCS possess an instability for frequencies
greater than ωc, as is clearly evident in figure 1(b). Since the
equilibrium we are considering has no available free energy,
in either the bulk or in the hot particles, this instability must
be nonphysical and reflects the lack of energy conservation in
non-Hamiltonian PCS. For the Hamiltonian PCS displayed in
figure 1(a), the system damps as expected. The hot particles
provide Landau damping, in much the way one expects for
electron Landau damping of Alfvén and whistler modes, with
the mode at ωc being undamped for one of the polarizations.

For κ = 1, it is easily shown by residue calculus that∫ +∞

−∞

F

kzvz − ω ± ωc

dvz = − 1

ikzv0 + ω ∓ ωc

,

where we recall F = f̄0(v
2
z )/n0 and f̄0(v

2
z ) is obtained from

equation (44) for κ = 1 (i.e. f (1)
0 (v2)), upon integrating out the

perpendicular components of the velocity. Thus (44) becomes

ω2 − k2
z v

2
A + in0 ω

kzv0(αω ∓ ωc)

ikzv0 + ω ∓ ωc

= 0.

From which one obtains for n0 � 1, by expanding about
ω = kzvA + iγ + δωr , the perturbed frequency

γ = −n0

2

kzv0(αkzvA ∓ ωc)(kzvA ∓ ωc)

k2
z v

2
0 + (kzvA ∓ ωc)2

(46)

δωr = −n0

2

k2
z v

2
0(αkzvA ∓ ωc)

k2
z v

2
0 + (kzvA ∓ ωc)2

. (47)

From (46) we see explicitly the spurious crossover to instability
at ωc observed in figure 1(b) that occurs for α = 0. Similar,
although progressively more complicated, formulae exist for
higher values of κ (see, e.g., relation (117) in [26]), but we will
not present these here.

Finally, we further explore the differences between
the Hamiltonian and non-Hamiltonian models for arbitrary
isotropic equilibria by examining the so-called small-γ
approximation for each. Thus, we assume the resonant
denominator of (44) gives rise to weak damping, and write
ω = ωr + iγ , D = D±

r + iD±
i , and then expand as usual to

obtain

D±
r (ωr, kz) = 0, γ = − D±

i (ωr , kz)

∂D±
r (ωr, kz)/∂ωr

. (48)

For n0 � 1, ∂D±
r /∂ωr ≈ 2kzvA, and, thus, γ ≈

−D±
i (kvA, kz)/(2kvA). Using the Plemelj relations we obtain

the following form (44):

D±
i (ωr , kz) = (49)

πn0(αωr ∓ ωc)(ωr ∓ ωc)
ωr

kz

F

(
ωr ± ωc

kz

)
.

For the Hamiltonian PCS, α = 1 and

D±
i = πn0(ωr ∓ ωc)

2 ωr

kz

F

(
ωr ± ωc

kz

)
, (50)

which indicates damping for both polarizations, except for
the upper sign at ωr = kzvA = ωc where the damping
vanishes. However, upon setting α = 0 we obtain for the
non-Hamiltonian PCS, the following:

D±
i (ωr , kz) = πn0ωc(ωc ∓ ωr)

ωr

k
F

(
ωr ± ωc

kz

)
, (51)

which reveals the strange nonphysical crossover to instability
for one of the polarizations when ωr > ωc.

For the record, a calculation similar to that for the PCS
gives for the CCS the dispersion relation

D±(kz, ω) = ω2 − k2
z v

2
A (52)

+ ωωcn0

(
ωc

∫ +∞

−∞

F

kzvz − ω ± ωc

dvz ∓ 1

)
whence we obtain for the Hamiltonian CCS, the following

D±
i (ωr , kz) = πn0ω

2
c

ωr

kz

F

(
ωr ± ωc

kz

)
. (53)

Although (53) indicates a damping rate that is different from
that of the Hamiltonian PCS, it does not possess the spurious
instability possessed by the non-Hamiltonian PCS.

The damping rates indicated by (50), (51), and (53)
have several features in common. First, for low frequencies,
ωr � ωc, their intended regime, they all agree. Next, they all
scale with F (as opposed to its derivative) which is appropriate
for parallel propagating transverse waves for all isotropic
equilibrium distribution functions (not just Maxwellians) [13].
For higher frequencies, (50), (51), and (53) disagree so it is
useful to compare with a full kinetic theory with electrons,
ions, and hot particle components. For cold electron and ion
temperatures, only hot species contributes to the damping, and
it is an elementary exercise to show that Di for this case behaves
precisely as (53), the result for the CCS. Thus, in this frequency
range the CCS gives the best answer, although the Hamiltonian
PCS may be reasonable. Clearly, the non-Hamiltonian result
is unsatisfactory.

5. Disturbances with kz = 0

This Section presents the dispersion relation for certain
linear waves propagating transversely to the magnetic field.
These modes are allowed by the Hamiltonian PCS model
(27)–(29) (with ∇ · U = 0), while they are forbidden by
the (incompressible) non-Hamiltonian variant (22)–(17). In
particular, we study the special case Ũ1⊥ = 0, which is
consistent with the incompressibility relation k · Ũ1 = 0.

In order to find the dispersion relation, we specialize
equation (36) by setting kz = 0. In turn, this affects the Vlasov
perturbation (37). Since Ũ1 = Ũ1z ez and

B0 ×RT (τ )Ũ1 = Ũ1z (B0 ×RT (τ )ez) = Ũ1z (B0 ×ez) = 0,

the Vlasov perturbation (37) becomes

f̃1 = iα

∫ 0

−∞
(k · R(τ )v)

(
∂f0

∂v
· RT (τ )Ũ 1

)
ei(k·X−ωτ) dτ

= iαŨ1z

∂f0

∂vz

∫ 0

−∞
v⊥ · RT (τ )k ei(k⊥·X⊥−ωτ) dτ,

8
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which shows how the non-Hamiltonian model (α = 0)
precludes the existence of transversal modes such that
Ũ1⊥ = 0. In what follows, we consider the Hamiltonian case
by setting α = 1.

Notice that, since X⊥ does not depend on vz, the above
expression yields ñ1 = ∫

f̃1 d3v = 0. Therefore, the relation
ñ1 = k · K̃1 allows the case K̃1 = K̃1zez, where

K̃1z = iαŨ1z

∫∫
vz

∂f0

∂vz

∫ 0

−∞
v⊥ · RT (τ )k ei(k⊥·X⊥−ωτ)

×dτ dv⊥ dvz

= −iαŨ1z k⊥ ·
∫∫∫ 0

−∞
f0 R(τ )v ei(k⊥·X⊥−ωτ) dτ d3v.

Then, combined with the velocity relation (36) and making use
of the moment equation for K1 in section 3.2, the special case
K̃1⊥ = 0 yields Ũ1z = K̃1z along with the dispersion relation

1 + i

∫∫ 0

−∞
(k⊥ · R(τ )v) f0 ei(k⊥·X⊥−ωτ) dτ d3v = 0.

This is an expected Bessel function type of dispersion relation
and its detailed study is left for future work.

6. Summary and conclusions

After a review of hybrid kinetic-MHD models, we presented a
comparative study of Hamiltonian and non-Hamiltonian PCSs,
where the latter suffer by not exactly conserving energy. In
particular, the two models were compared from the point of
view of linear stability and their dispersion relations were
presented and analyzed. The special cases of pure parallel
and perpendicular wave propagation were considered.

Upon considering isotropic equilibria for the hot
component, it was shown that the non-Hamiltonian PCS
possesses an instability absent in its Hamiltonian variant and
in the CCS, which is also Hamiltonian. We argued that
the instability emerging in the non-Hamiltonian model is not
physically viable. Extensive investigation of the dispersion
relation will be considered in future work.

Although the unstable mode is of large frequency and thus
outside the original intent of the PCS models, which were
developed to describe low-frequency behavior, their presence
would suggest results obtained from non-Hamiltonian PCS
models extended into this regime should be viewed with
caution. Even if some artifice, numerical or other, were used to
suppress the unphysical linear instability, nonlinear coupling
could give rise to differences in their turbulent transport
behavior.
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Appendix A. Poisson brackets for Hamiltonian
hybrid MHD models

A Hamiltonian system is a dynamical system generated by a
given Hamiltonian (total energy) and a Poisson bracket in the
form ∂/∂t = {, H }, where  denotes the set of dynamical
variables. The Poisson bracket {·, ·} must be a bilinear,
antisymmetric operator defined on the space of function(al)s.
In addition it must satisfy he Leibniz property

{FG, H } = G{F, H } + F {G, H }

as well as the Jacobi identity

{{F, G}, H } + {{H, F }, G} + {{G, H }, F } = 0.

The Leibniz property, bilinearity and antisymmetry are easily
built into the generic form of the Poisson bracket, but the
proof of the Jacobi identity may require some effort. (See
[16–19] for review and the appendix of [22] for a particularly
onerous direct proof.) Such Poisson brackets need not have the
canonical form of conventional field theories and may possess
degeneracy—because of this they were called noncanonical
in [21].

The Poisson brackets for the Hamiltonian models of the
present paper were given in [31], where it was also shown how
they may be used to formulate new hybrid MHD models that
conserve energy exactly. Indeed, while exact conservation
of (18) is guaranteed for the CCS model (14)–(17) by its
noncanonical Poisson bracket

{F, G}CCS =
∫

m ·
[

δF

δm
,

δG

δm

]
d3x (A1)

−
∫

ρ

(
δF

δm
· ∇ δG

δρ
− δG

δm
· ∇ δF

δρ

)
d3x

+qh

∫
f B ·

(
δF

δm
× δG

δm

− δF

δm
× ∂

∂p

δG

δf
+

δG

δm
× ∂

∂p

δF

δf

)
d3x d3p

+
∫

f

( {
δF

δf
,
δG

δf

}

+qh B · ∂

∂p

δF

δf
× ∂

∂p

δG

δf

)
d3x d3p

+
∫

B ·
(

δF

δm
× ∇ × δG

δB
− δG

δm
× ∇ × δF

δB

)
d3x,

the PCS models available in the literature fail to conserve
energy exactly. For the Hamiltonian PCS (HPCS) (27)–(29),
exact conservation of (14)–(17) follows from the Poisson

9
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bracket

{F, G}HPCS =
∫

M ·
[

δF

δM
,

δG

δM

]
d3x (A2)

−
∫

ρ

(
δF

δM
· ∇ δG

δρ
− δG

δM
· ∇ δF

δρ

)
d3x

+
∫

f

({
δF

δf
,
δG

δf

}

+qh B · ∂

∂p

δF

δf
× ∂

∂p

δG

δf

)
d3x d3p

+
∫

f

({
δF

δf
, p · δG

δM

}
−

{
δG

δf
, p · δF

δM

})
d3x d3p

+
∫

B ·
(

δF

δM
× ∇ × δG

δB
− δG

δM
× ∇ × δF

δB

)
d3x.

In the above formulas, [X, Y ] := −(X · ∇)Y + (Y · ∇)X is
minus the commutator on vector fields. The proof that the
above bilinear, antisymmetric operators are indeed Poisson
brackets (satisfying Leibniz and Jacobi) can be carried out
by explicit verification. However, upon recognizing that these
brackets are composed of terms of the original bracket of MHD
[21] and that of the Maxwell–Vlasov system [14, 15, 19, 20],
together with later work on the two-fluid system [27, 28], it is
not difficult to ascertain the validity of the Jacobi identity.

Alternatively, one can begin with an action principle
and derive the Poisson brackets, thereby ensuring the Jacobi
identity. Such a Lagrangian formulation of the PCS
equations (27)–(29) was given in [10]. We remark also that
an action principle derivation of a linearized PCS model was
presented in [2].

Appendix B. Derivation of dispersion relation for
k⊥ = 0

This appendix contains the main steps leading to the dispersion
relation (44). The starting point is the observation that Ũ1z =
(AT Ũ1)z = (B0 × AT Ũ1)z = 0 forces relation (43) to possess
only planar components. Then, one can write the dispersion
relation as(

ω2 − k2
z v

2
A

ω
−

∫
kz

∂f̄0

∂vz

(iαkzvzA11 + βvAA12) dvz

)2

=
(∫

kz

∂f̄0

∂vz

(iαkzvzA12 + βvAA11) dvz

)2

,

where we recall the definitions (40)–(41). (Notice that f̄0

denotes the distribution function divided by the constant bulk
particle density). Then, after some computations and upon
restoring physical constants, one is led to

ω2 − k2
z v

2
A

ω
+ α

∫ ∞

−∞

(kzvz)
2f̄0

kzvz − ω ± ωc

dvz (B1)

= ±βωc

∫ ∞

−∞

kzvzf̄0

kzvz − ω ± ωc

dvz.

The integrals of (B1) are then rearranged as follows:∫ ∞

−∞

k2
z v

2
z f̄0

kzvz − ω ± ωc

dvz

= (ω ∓ ωc)

(
n0 + (ω ∓ ωc)

∫ ∞

−∞

f̄0

kzvz − ω ± ωc

dvz

)
∫ ∞

−∞

ωckzvzf̄0

kzvz − ω ± ωc

dvz

= ωc

(
n0 + (ω ∓ ωc)

∫ ∞

−∞

f̄0

kzvz − ω ± ωc

dvz

)
.

Finally, upon recalling that β = 1−α, we write the dispersion
relation as

ω2 − k2
z v

2
A

ω
= ( ± ωc(1 − α) − α(ω ∓ ωc)

)
×

(
n0 + (ω ∓ ωc)

∫ ∞

−∞

f̄0

kzvz − ω ± ωc

dvz

)
,

which eventually reduces to (44).
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