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The dynamics of an ideal fluid or plasma is constrained by topological invariants such as the circulation of

(canonical) momentum. In the Hamiltonian formalism, topological invariants restrict the orbits to submani-

folds of the phase space. While the coadjoint orbits have a natural symplectic structure, the global geometry

of the degenerate (constrained) Poisson manifold can be very complex. Some invariants are represented by

the center of the Poisson algebra (i.e., the Casimir elements such as the helicities), and then, the global

structure of phase space is delineated by Casimir leaves. However, a general constraint is not necessarily

integrable, which precludes the existence of an appropriate Casimir element; the circulation is an example

of such an invariant. In this work, we formulate a systematic method to embed a Hamiltonian system in an

extended phase space; we introduce mock fields and extend the Poisson algebra. A mock field defines a new

Casimir element, a cross helicity, which represents topological constraints which are not integrable in the

original phase space. Changing the perspective, a singularity of the extended system may be viewed as a

subsystem on which the mock fields (though they are actual fields, when viewed from the extended system)

vanishes, i.e., the original system. This hierarchical relation of degenerate Poisson manifolds enables us to

see the “interior” of a singularity as a sub Poisson manifold. The theory can be applied to describe the

bifurcation and instabilities in a wide class of general Hamiltonian systems [Yoshida & Morrison, Fluid Dyn.

Res. 46 (2014), 031412],

1. Introduction

The aim of this work is to delineate the topological con-

straints on an ideal fluid (or a plasma) by constructing

Casimir elements and foliating the phase space; the state

vector is constrained to move on a submanifold that is an

intersection of the level-sets of the Casimir elements (which

we call Casimir leaves).(1) Casimir elements are the invari-

ants (first integrals) of the Hamiltonian mechanics, but are

not pertinent to symmetries of a specific Hamiltonian; in-

stead, Casimir elements are the attributes of the underlying

Poisson algebra.

The “integrability” of the determining equation of Casimir

elements is the mathematical issue to be explored. A general

constraint is not necessarily integrable, which precludes the

existence of an appropriate Casimir element; the circulation

is an example of such an invariant. In this work, we formu-

late a systematic method to embed a Hamiltonian system in

an extended phase space; we introduce mock fields and ex-

tend the Poisson algebra. A mock field defines a new Casimir

element, a cross helicity, which represents topological con-

straints which are not integrable in the original phase space

(see Morrison(2) for an early precursor to this idea.).

The singularities of the determining equation of Casimir

elements are also of particular interest, which give rise to

singular Casimir elements.(3, 4) Viewing from the extended

phase space, the original Poisson manifold is the singularity

of the extended system. One can probe into the singularity

(which contains an infinite number of degrees of freedom) by

the help of the singular Casimir elements.

2. Noncanonical Hamiltonian system (Poisson algebra)

A general Hamiltonian system may be written as

d

dt
z = J (z)∂zH(z), (1)

where z is the state vector, a member of the phase space X

(here a Hilbert space endowed with an inner product ⟨ , ⟩; in
the later discussion, X will be a function space, and then we

will denote the state vector by u), H(z) is the Hamiltonian

(here a real-valued functional on X), ∂z is the gradient in X,

and J is the Poisson operator. We allow J to be a function

of z on X, and write it as J (z). We assume that the bilinear

product
{F,G} = ⟨∂zF (z),J ∂zG(z)⟩

is antisymmetric and satisfies the Jacobi identity; then { , }
is a Poisson bracket. By a “general Hamiltonian system” we

mean a Poisson algebra C∞
{ , }(X).

A canonical Hamiltonian system is endowed with a sym-

plectic Poisson operator where

Jc =
(

0 I
−I 0

)
.

However, our interest is in noncanonical systems endowed

with Poisson operators J that are inhomogeneous and degen-

erate (i.e., Ker(J (z)) contains nonzero elements, and its di-

mension may change depending on the position in X). Since

J is antisymmetric, Ker(J (z)) = Coker(J (z)), and hence,

every orbit is topologically constrained on the orthogonal

complement of Ker(J (z)).
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A functional C(z) such that {C,G} = 0 for all G is called

a Casimir element (or an element of the center of the Poisson

algebra). If Ker(J ) = {0}, the case for a canonical Hamilto-

nian system, then there is only a trivial element C = constant

in the center. Evidently, a Casimir element C(z) is a solution

to the differential equation

J (z)∂zC(z) = 0. (2)

When the phase space X has a finite dimension (n), (2) is

a first-order partial differential equation. If Ker(J (z)) has

a constant dimension ν in an open set Xν ⊆ X, and n − ν

is an even number, we can integrate (2) in Xν to obtain ν

independent solutions, i.e., Ker(J (z)) is locally spanned by

the gradients of ν Casimir elements (Lie-Darboux theorem).

The intersection of all Casimir leaves (the level-sets of Casimir

elements) is the effective phase space, on which J (z) reduces

to a symplectic Poisson operator.

However, the general (global) integrability of (2) is a math-

ematical challenge. Let us see a simple example that epito-

mizes the problems.

Example 1 Let us consider a two-dimensional system

z = t(x, y) ∈ X = R2 with

J = xJc.

The plane x = 0 is a singularity at which Rank(J ) drops by

two. The kernel of J consists of two eigenvectors:

Ker(J ) = {αxνx + αyνy; αx, αy ∈ R},{
νx = δ(x)ex,
νy = δ(x)ey.

(3)

The first component νx of the kernel is integrable to produce

a singular Casimir element:

νx = ∂zCex(z), Cex(z) = Y (x).,

where Y (x) is the Heaviside step function (with the gap

filled). We call Cex an exterior Casimir element. However,

the second component νy is not a closed 1-form, thus it is not

representable as a gradient of some scalar function, i.e., we

cannot integrate νy to produce a Casimir element. Charac-

terization of this odd element of Ker(J ) is one of the main

issues of this work.

The problems and our strategy of study are summarized as

follows:

1. To see the essence of the problem, let us assume that

X is a cotangent bundle T ∗M of a finite-dimensional

manifold M . Suppose that w is a non-zero element of

Ker(J ). For w ∈ T ∗M to be written as w = ∂zC (=

dC) with a Casimir element (0-form) C, w must be

an exact 1-from (or, for local integrability, it must be

a closed 1-form). This is a rather strong condition;

one can easily construct a counter example that vio-

lates the integrability; see Example 1. Our strategy of

improving the integrability of (2) is to embed the Pois-

son manifold in higher-dimensional spaces; by adding

extra components to w, we may make it exact in a

higher-dimension space.

Table. 1 Hierarchy of two-dimensional vortex sys-

tems. Here [a, b] = ∂ya∂xb− ∂xa∂yb.

system state vector Poisson operator

(I) ω JI = [ω, ◦]

(II)

(
ω

ψ

)
JII =

(
[ω, ◦] [ψ, ◦]
[ψ, ◦] 0

)

(III)

 ω

ψ

ψ̌

 JIII =

 [ω, ◦] [ψ, ◦] [ψ̌, ◦]
[ψ, ◦] 0 0

[ψ̌, ◦] 0 0


2. The point where the rank of J (z) changes is a singu-

larity of (2), from which singular (hyperfunction) so-

lutions are generated.(4) However, the hyperfunction

Casimir elements fall short of spanning Ker(J ); see

Example 1. This problem of “Casimir deficit” suggests

that the interior of the singularity cannot be well de-

scribed by hyperfunctions (which are, in fact, the co-

homology class of the sheaf of holomorphic functions).

We may yet describe the interior of the singularity as

a subsystem (or, a Poisson submanifold), on which a

non-integrable element of Ker(J ) may be integrable to

define a Casimir element of a “reduced” Poisson oper-

ator.

3. Because models of fluids and plasmas are formulated on

an infinite-dimensional phase space, we have to develop

an infinite-dimensional theory. For these systems (2)

is a functional differential equation, and a singularity

may cause an infinite-dimensional rank change. The

reader is referred to Yoshida, Morrison & Dobarro(3)

for an example of a singular Casimir element generated

by singularities in a function space.

3. A hierarchy of vortex dynamics systems

In Table 1 we compare the Hamiltonian formalisms of

well-known examples of two-dimensional vortex dynamics

systems.(5, 6). We denote by ω = −∆φ the vorticity with

∆ being the Laplacian and φ ∈ H1
0 (Ω) ∩H2(Ω) for the two-

dimensional Eulerian velocity field V = t(∂yφ,−∂xφ). Given

a Hamiltonian

HE(ω) = −1

2

∫
d2xω (∆−1ω),

the system (I) is the vorticity equation for Eulerian flow,

∂tω + V · ∇ω = 0.

The Casimir elements of the system (I) are

C0 =

∫
d2x f(ω),

where f is an arbitrary C2 function.

If ψ is the Gauss potential of a magnetic field, i.e.,

B = t(∂yψ,−∂xψ), and the Hamiltonian is

HRMHD(ω, ψ) = −1

2

∫
d2x

[
ω (∆−1ω) + ψ (∆ψ)

]
,

the system (II) is the reduced MHD system,

∂tω + V · ∇ω = J ×B,

∂tψ + V · ∇ψ = 0.
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In the system (II), C0 is no longer a constant of motion, being

replaced by

C1 =

∫
d2xωg(ψ),

C2 =

∫
d2x f(ψ).

However, if the Hamiltonian H is independent of ψ, the

dynamics of ω is unaffected by ψ, while both ω and ψ obey the

same evolution equation. Then, we call ψ a mock field which

can be chosen arbitrarily without changing the dynamics of

the actual field ω. At the special choice of ψ = ω, both C1 and

C2 evaluate as C0, i.e., C0 is subsumed by C1 (so-called cross

helicity)(7) and C2 as their special value (indeed, C1 and C2

carry more information about system (I); in Sec. 4., we will

see how the mock field probes the topological constraints).

The constancy of C0 is, then, due to the symmetry ∂ψH = 0.

A modification of the Hamiltonian to involve ψ destroys the

constancy of C0; the electromagnetic interaction is a physical

example of such a modification.

We can extend the phase space further to obtain a system

(III) by adding another field ψ̌ that obeys the same evolution

equation as ψ. In the reduced MHD system, ψ̌ is a mock field,

i.e., it does not have a direct physical meaning; however, in

the original RMHD context such a field physically correspond

to the pressure in the high-beta MHD model.(5) The Casimir

elements of this further extended system are

C2 =

∫
d2x f(ψ),

C3 =

∫
d2xh(ψψ̌),

C4 =

∫
d2x f̌(ψ̌).

Replacing C1, we obtain new Casimir elements C3 and C4.

4. Integrability of topological constraints

An interesting consequence of extending the system from

(I) to (II) is found in the integrability of the Ker(JI). In (I),

Ker(JI(ω)) = {ψ; [ω, ψ] = 0},

which implies that ψ and ω are related, invoking a certain

scalar ζ(x, y), by

ψ = η(ζ), ω = ξ(ζ). (4)

As far as ξ is a monotonic function, we may write ψ =

η(ξ−1(ω)), which we can integrate to obtain the Casimir el-

ement C0(ω) with f(ω) such that f ′(ω) = η(ξ−1(ω)). Other

elements of Ker(JI(ω)) that are given by nonmonotonic ξ are

not integrable to define Casimir elements. Yet, we can inte-

grate such elements as C1(ω, ψ) in the extended space of (II).

In fact, every member of Ker(JI(ω)) can be represented as

∂ωC1 = g(ψ) by choosing ψ in Ker(JI(ω)).

Similarly, in the system (II), we encounter the deficit of

the Casimir element C2 =
∫
d2xf(ψ) in covering all elements

t(0, χ) ∈ Ker(JII(ω, ψ)) such that [ψ, χ] = 0. By the help of a

mock filed ψ̌, we can integrate every element of Ker(JII(ω, ψ))

as C3.

5. Submanifold of singularity

In the preceding section, we extended the phase space to

improve the integrability of the topological constraints (ker-

nel elements). Here we reverse the perspective, and see the

“singularity” as a submanifold of a larger system. We will

introduce a new notion of exterior Casimir elements and in-

terior Casimir elements; the former is a hyperfunction that

identifies the singularity as a cohomology, while the latter

turns out to be a Casimir element of the subsystem, which is

invisible in the larger (extended) system.

Let us start with the system (II). Apparently, the rank of

JII drops (by infinite dimension) at the submanifold ψ =

0. This singularity is a leaf of the singular Casimir element

(which we call an exterior Casimir element)

Cex = Y (∥ψ∥2),

where ∥ψ∥2 =
∫
dx2|ψ|2. Notice that Cex is a special singu-

lar form of the Casimir element C2(ψ). This hyperfunction

Casimir element has only one leaf ψ = 0 (i.e., the equation

Cex = c has a solution, iff c ∈ (0, 1), and then the level-set

is the singularity ψ = 0), in marked contrast to other regular

Casimir elements that densely foliate the phase space.

At the singularity ψ = 0, Cin =
∫
dx2f(ω) satisfies (denot-

ing the state vector by u = t(ω, ψ))

JII∂uCin|ψ=0 = 0.

Notice that Cin is nothing but the Casimir element C0 of the

system (I), which, however, is not a Casimir element of the

system (II).

From these observations, we draw the following conclusion:

a singularity of a Hamiltonian system (where Rank(J ) drops)

defines a submanifold, on which one can introduce a sub

Hamiltonian system. The Casimir elements of the subsys-

tem convert into the interior Casimir elements of the larger

system. Simultaneously, the submanifold is identified as a

singular leaf of the exterior Casimir element which is the hy-

perfunction of the cross helicity describing the coupling of

the submanifold and the mock fields. The pair of the interior

and exterior Casimir elements constitute singular Casimir el-

ements.

6. Conclusion

By embedding a Poisson manifold of a noncanonical Hamil-

tonian system into a higher-dimensional phase space, we

can delineate topological structures within a simpler picture.

Here we invoked the two-dimensional vortex systems to ex-

plain the systematic method of constructing a hierarchy of

Poisson manifolds; we introduce mock fields and extend the

Poisson algebra so that the mock fields are Lie-dragged by

the flow vector. A mock field defines a new Casimir element,

a cross helicity, which represents topological constraints in-

cluding the circulation.

Unearthing a Casimir element brings about immense ad-

vantage in the study of dynamics and equilibria — the so-

called energy-Casimir method becomes ready available. The

theory can be applied to a wider class of fluid and plasma

dynamics; see Yoshida & Morrison (2014).(8)
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