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An algebraic mistake in the rendering of the Energy Casimir stability condition for a symmetric

magnetohydrodynamics plasma configuration with flows made in the article Andreussi et al.
“Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible

stability—Theory,” Phys. Plasmas 20, 092104 (2013) is corrected. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916504]

In Ref. 1, the stability conditions of magnetized

plasma flows were obtained by exploiting the Hamiltonian

structure of the magnetohydrodynamics (MHD) equations.

Three kinds of energy principles were considered: an

energy principle in Lagrangian variables, an energy-

Casimir principle for symmetric equilibria in an Eulerian

variable noncanonical formulation of MHD, and, finally,

an energy principle based on dynamically accessible varia-

tions, i.e., on variations that explicitly preserve invariants

of the system. General criteria for stability were obtained,

along with comparisons between the three different

approaches.

In particular, it was shown that the stability of

helically-symmetric equilibria can be assessed by

considering the second variation of the energy-Casimir

functional
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where Z denotes the set of Eulerian variables

Z ¼ ðq; v?; vh;w;BhÞ and J ;H;H�;G and F are arbitrary

functions of the flux variable w (Casimir functionals). For

the explicit definitions of the quantities in Eq. (1), see Sec.

III of Ref. 1 and in particular, Eqs. (61–63).

The second variation of F yields

d2
F Z½ � ¼

ð
V

q dvð Þ2 þ 2 v� 1

k
Gh

� �
dvð Þ dqð Þ þ qUqq þ 2Uqð Þ dqð Þ2

�

� 2F dBð Þ � dvð Þ þ 1

4p
dBð Þ2 � 2 F0Bþ 1

k
qG0h

� �
� dvð Þ dwð Þ

þ 2 qUqsS0 þ UsS0 � J 0 �
1

k
vhG0

� �
dqð Þ dwð Þ � 2 vF0 þ kH0hð Þ � dBð Þ dwð Þ

þ qTS00 þ qUssS02 � qJ 00 � kBhH00 � k4 l½ �sin 2a
� �

H0� 1

k
qvhG00 � v � BF00

� �
dwð Þ2

�
d3r : (2)

Although the above expression is given correctly in Ref. 1,

when reformulating it in terms of the physical equilibrium

quantities, an algebraic error was made that affects Eq. (74)

of Ref. 1 and modifies the form of the following expressions

in Sec. III. In the present erratum, we provide the correct

form of these equations. In addition, a few notational

changes are introduced to make the present text more

selfcontained.

By grouping as in Ref. 1 the variation of the plasma

equilibrium quantities dq; dv; dB; dw into convenient linear

combinations dS; dQ; dR?; dRh, and dw, but keeping the

components of dR along the symmetry direction h and per-

pendicular to it separate, after some algebra, we obtain the

following from Eq. (1):

d2
F½Z� ¼

ð
V

½a1jdSj2 þ a2ðdQÞ2 þ a3ðdRhÞ2 þ a4jdR?j2

þ a5ðdwÞ2�d3r ; (3)

where
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cs and ca are the sound and the Alfv�en speed, M is the poloi-

dal Alfv�en Mach number defined by Eq. (71) of Ref. 1
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and the derivatives with respect to w at constant ~ZS are

defined in the second paragraph below Eq. (75). In Eq. (3),

the combinations dS, dQ, and dRh correspond to the varia-

tions of

S ¼ qv� FB� 1

k
qGh; (8)

Q ¼ B2

2q2
F 2 þ U þ p

q
� J � 1

2k2
G2; (9)

Rh ¼
1�M2

4p
Bh � kH� 1

k
FG; (10)

where, in the last equation, M2 ¼ 4pF 2=qðw;BÞ is consid-

ered as a function of w and B. The variation of Eqs. (8)–(10)

yields
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while for dR?, we obtain
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Note that Eq. (3) differs from Eq. (74) of Ref. 1 insofar as

the term proportional to dR in Eq. (74) is now split into two

terms with different coefficients (a3 and a4) that take the

place of, and correct, the coefficient a3 of Eq. (74) in Ref. 1.

Setting the variations dS, dQ, and dRh equal to zero (as

follows from the minimization of d2
F½Z�, provided a1, a2,

and a3 are positive) yields

d2
F Z½ � ¼

ð
V

"
1

a4

dB?ð Þ2 þ M4

4pqa4 c2
s �M2 c2

s þ c2
a

� �h i
� B? � dB?ð Þ2 þ 2

dR?
dw

����
~ZS

� dB?ð Þ dwð Þ

þ a5 þ a4

���� dR?
dw

����
2

~ZS

 !
dwð Þ2

#
d3r : (17)

Since the variation of the poloidal magnetic field is related to

the variation of w by the equation

dB? ¼ rdw� kh; (18)

where k is a helical metric factor that reduces to the inverse

of the cylindrical radius in the limit of azimuthal symmetry,

we can rewrite Eq. (3) as

d2
F½Z� ¼

ð
V

½b1jrdwj2 þ b2ðdwÞ2 þ b3jrdw� ewj2�d3r ;

(19)

where ew ¼ rw=jrwj. The third term on the r.h.s. of Eq.

(19) is absent in Eq. (80) of Ref. 1. In order to obtain Eq.

(19), we used the relationshipð
V

2
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(20)

and we have defined the following functions of the equilib-

rium configuration:
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We note that

k2 1�M2

4p
¼ b1 þ b3 ; (24)

which can be convenient if we rewrite Eq. (19) as

d2
F½Z� ¼

ð
V

½b1jr?dwj2 þ b2ðdwÞ2

þ ðb1 þ b3Þjrdw� ewj2�d3r ; (25)

where r?dw denotes the component of the gradient of the

variation dw perpendicular to the equilibrium flux function w.

The Euler-Lagrange equation associated with the

extrema of Eq. (19) is

r � ½b1 I þ b3 ðI � ewewÞ� � rdw� b2 dw ¼ 0 ; (26)

where I is the identity tensor and ðI � ewewÞ is the projector

on the tangent plane to the w-surfaces. Equation (26) should

take the place of Eq. (81) in Ref. 1—it represents the gener-

alized form of the Newcomb equation2 for MHD symmetric

equilibria with flow.
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