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Abstract
Fluid reductions of the Vlasov–Ampère equations that preserve the Hamilto-
nian structure of the parent kinetic model are investigated. Hamiltonian clo-
sures using the first four moments of the Vlasov distribution are obtained, and
all closures provided by a dimensional analysis procedure for satisfying the
Jacobi identity are found. Two Hamiltonian models emerge, for which the
explicit closures are given, along with their Poisson brackets and Casimir
invariants.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The Vlasov–Ampère set of equations is a suitable framework for describing the dynamics of
systems interacting through electrostatic forces. In this work, we focus on the study of
electrostatic plasmas even though the results may be applied to more general systems
described in part by the Vlasov equation. We consider a one-dimensional plasma made
of electrons of unit mass and negative unit electric charge, evolving in a neutralizing back-
ground of static ions. The evolution of the distribution function of the electrons f, defined on
phase space with coordinates x v( , ), and electric field E is given by the Vlasov–Ampère
equations

f v f E f , (1)t x v∂ = − ∂ + ∂∼
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E j4 , (2)t π∂ = − ∼

where E
∼

and j
∼

are the fluctuating parts of the electric field E and the current density
j vf vd∫= − respectively. We assume vanishing boundary conditions at infinity in the
velocity v so that integrals such as the charge and current densities are well-defined. In this
work, we limit ourselves to the study of systems of unit length in the spatial domain x with
periodic boundary conditions. The fluctuating part of the electric field is defined by

E E E xd
0

1∫= −∼
. The system is fully nonlinear, but has a form that builds in the

preservation of the spatial average of E and maintains momentum conservation.
The use of fluid reductions to describe the dynamics of a plasma is ubiquitous in plasma

physics. Indeed, this usually allows one to decrease the complexity of the problem at hand
and to gain physical insight into the phenomenon under investigation since the dimension of
phase space is reduced. Fluid reductions of the Vlasov–Ampère equations are done by
introducing fluid quantities such as the fluid moments

P v f x v t v( , , ) d . (3)n
n∫=

The associated dynamical equations are then obtained by multiplying equation (1) by v n and
integrating with respect to the velocity. This leads to

P P nP E , (4)t n x n n1 1∂ = −∂ − ∼
+ −

E P4 , (5)t 1π∂ = ∼

for all n ∈ . In order for this system to be reduced, one has to truncate the infinite sequence
of equation (4). Truncating this system at order N, that is considering P P P E( , ,..., , )N0 1 as
dynamical field variables, one can see from equation (4) that the time evolution of PN depends
on PN 1+ . As a consequence, it is necessary to express PN 1+ in terms of P P P E( , ,..., , )N0 1 in
order to close equations (4) and (5) and thereby obtain a fluid reduction.

Many models have been proposed based on as many closures with various requirements
(see, e.g., [1–4]). A usual procedure consists in assuming a particular form for the distribution
function f (e.g., Dirac, Maxwellian,...) depending on a finite number of parameters, and
expressing the closure with respect to these parameters [5]. Alternatively, closures have been
constructed in order to recover certain kinetic effects [6–12]. In any event, a reduction by
closure should be such that, if the parent model possesses a Hamiltonian structure [13–16],
then the resulting fluid model should also have one, after discarding all the terms that are
supposed to provide dissipation. A closure procedure ignoring this aspect could potentially
lead to the introduction of some nonphysical dissipation [17, 18]. Consequently, here we use
a procedure that preserves the Hamiltonian structure of the parent kinetic (Vlasov–Ampère)
system, which is one of its most important structural features. Specifically, in this work we
present a model for the first four fluid moments of the distribution function, namely the
density ρ, the fluid velocity u, the pressure P and the heat flux q. This allows us to account for
the time evolution of the heat flux, which is of great importance for the study of transport
phenomena inside the plasma. For such a model with four moments, one has to find a closure
for the fifth order moment of the distribution function, namely P4. Here, we determine all the
closures, obtained from a procedure based on dimensional analysis, that preserve the
Hamiltonian structure of the parent model [14, 19] given by equations (1) and (2). We show
that there are only two such Hamiltonian closures. The equations of motion of one of these
two models are identical to the ones obtained with a bi-delta reduction [20–22], i.e., assuming
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that the Vlasov distribution has the form

f x v t v v( , , ) ( ) ( ),1 1 2 2ω δ μ ω δ μ= − + −

where 1,2ω and 1,2μ depend on space and time. It should be noted here that we obtain these
equations without any assumption on the special form of the distribution function. We
provide the explicit expressions of the Hamiltonian and the Poisson bracket for the two
Hamiltonian models. In addition, we derive the global Casimir invariants, which are specific
invariants resulting from the knowledge of the Poisson bracket. These conserved quantities
can be used, e.g., to ensure the validity of a numerical simulation of the equations of
motion.

The paper is organized as follows. In section 2 we describe the methodology used for the
derivation of the two Hamiltonian reduced models. We start from the definitions of the
appropriate variables, namely, the reduced fluid moments. Subsequently, we introduce our
method, based on dimensional analysis, which leads to models that obey the Jacobi identity.
We show that there are only two such models. In section 3, we analyze the two resulting
Hamiltonian closures, providing explicit expressions for their Hamiltonians, Poisson brackets,
and Casimir invariants.

2. Method

2.1. Reduced moments

Our purpose is to build a Hamiltonian fluid model for the first four moments of the
distribution function, namely the density ρ, the fluid velocity u, the pressure P, the heat
flux q and the electric field E. These models will be referred to as 4 + 1 field models,
where the 4 refers to the four first moments of the Vlasov distribution (or equivalently to
ρ, u, P and q) and the 1 refers to the electric field E. We begin by considering the Poisson
structure of the parent model with f E( , ) as dynamical field variables. It was shown in
[23] that the system of equations (1)–(2) possesses a Hamiltonian structure with Poisson
bracket

( )F G f F G G F F G G F x v{ , } 4 d d , (6)x f v f x f v f E v f E v f
⎡⎣ ⎤⎦∫ π= ∂ ∂ − ∂ ∂ + ∂ − ∂ 

where Ff (respectively FE) denotes the functional derivative of F with respect to f
(respectively E). In addition, bracket (6) is bilinear and satisfies the Leibniz rule and the
Jacobi identity. The Hamiltonian of the system is given by

f
v

x v
E

x
2

d d
8

d , (7)
2 2

∫ ∫ π
= +

where the first term accounts for the kinetic energy of the particles and the second one
corresponds to the energy of the electric field. Together with bracket (6), this Hamiltonian
leads to equations (1) and (2) by using f f{ , }t∂ =  and E E{ , }t∂ =  . We recall that such a
bracket has Casimir invariants, i.e., functionals C that Poisson-commute with any other
functionals of the Poisson algebra, C F{ , } 0= for all F. Bracket (6) has the following global
(i.e., independent of the coordinates x and v) Casimir invariants

C f x v( ) d d ,1 ∫ φ=
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C E xd ,2 ∫=

for any scalar function φ, and a local Casimir invariant

C E f v4 d ,xL ∫π= ∂ +

which is equivalent to Gaussʼs law.
The change from the kinetic to the fluid description is done by performing the change of

variables defined by equation (3) in bracket (6) and Hamiltonian (7). The latter becomes

P
E

x
1

2 4
d .2

2⎛
⎝⎜

⎞
⎠⎟∫ π

= +

Making use of the chain rule to transform the functional derivatives, bracket (6) becomes
[24–26]

( ) ( )F G j P G F F G P G F F G x{ , } 4 d , (8)i j j x i j x i j j E j E1 1
⎡⎣ ⎤⎦∫ π= ∂ − ∂ + −+ − −  

where Fn denotes the functional derivative of F with respect to Pn, and summation is
implicit over the repeated indices i and j. Because we want to construct a Hamiltonian
model for the first four moments of the distribution function, we consider functionals of
the kind F P P P P E[ , , , , ]0 1 2 3 . However, the Poisson bracket (8) of two functionals of this
kind depends explicitly on two additional moments, namely P4 and P5. In order to close
the system, these two additional moments need to be expressed in terms of Pn 3⩽ and E. As
a result, the Jacobi identity is no longer satisfied in general, and the resulting truncated
and closed bracket is not of Poisson type. Consequently, the resulting system is not
Hamiltonian, or in other terms, the reduction procedure potentially includes dissipation.
We notice that the closure has to be performed on two moments, P4 and P5, which
slightly differs from what has been stated in the introduction, concerning the closure
performed on the equations of motion directly, where only one additional moment, P4,
needs to be closed. However we shall see in section 2.2 that the expression of P5 is
entirely determined by P4.

We introduce the reduced fluid moments, which we find to be more suitable variables for
our purpose

f v u vf v S v u f vd ,
1

d ,
1

( ) d , (9)n n
n

1∫ ∫ ∫ρ
ρ ρ

= = = −
+

for all n 2⩾ . The first and second ones correspond respectively to the usual density and
fluid velocity. The higher-order moments are the central fluid moments with a specific
scaling with respect to the density. The change from the usual fluid moments Pn to the
reduced fluid moments u S( , , )nρ , used hereafter, is invertible so that the results, even
though they are expressed in a different set of coordinates, are equivalent. This change is
given by

P u
P

P
S

P

n

m

P

P
P, ,

1
,n n

m

n n m

m0
1

0 0
1

0

1

0

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟∑ρ = = =

−
+

=

−
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for all n 2⩾ . The inverse of this transformation is given by

P P u P u
n

m
u S, , .n

n

m

n
m n m

m0 1

2

⎜ ⎟
⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥∑ρ ρ ρ ρ= = = +

=

−

Explicitly for the first four moments of the distribution function, this change of variables is
given by

P u
P

P

S
P

P
P

P
S

P
P

P P

P

P

P

, ,

1
,

1
3 2 ,

0
1

0

2
0
3 2

1
2

0
3

0
4 3

1 2

0

1
3

0
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ρ = =

= − = − +

with the inverse

( ) ( )P P u P u S P u uS S, , , 3 .0 1 2
2 2

2 3
3 2

2
3

3ρ ρ ρ ρ ρ ρ ρ= = = + = + +

In terms of the moments, Hamiltonian (7) is

u S
E

x
1

2 4
d . (10)2 3

2

2⎛
⎝⎜

⎞
⎠⎟∫ ρ ρ

π
= + +

The first part of Hamiltonian (10) accounts for the kinetic energy of the system while its
second part corresponds to the internal energy. The last term, which accounts for the electric
energy, remains unchanged compared to equation (7). By considering functionals of the kind
F u S S E[ , , , , ]2 3ρ and using the chain rule for the functional derivatives (see appendix C for
more details), bracket (6) takes the form

( )

( )

F G G F F G G F F G

G F F G S
F G F G

x

{ , } 4

1
d , (11)

u x u x u E u E

u i u i x i ij
i j

x
i

ij
j

⎡⎣
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

∫ π

ρ
α

ρ ρ ρ
β

ρ

= ∂ − ∂ + −

− − ∂ + + ∂

ρ ρ  

where Fi denotes the functional derivative of F with respect to Si. From now on and unless
otherwise stated, summation from 2 to 3 over repeated indices is implicit. The matrices α and
β have indices ranging from 2 to 3 such that

S S S

S S S S S

S S S

S S S S S

2 2 3

3 6 3 12
,

4 5 9

5 9 6 24
. (12)x

3 4 2
2

4 2
2

5 2 3

3 4 2
2

4 2
2

5 2 3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α β= ∂

−
− −

=
−

− −

We notice that x
tβ α α∂ = + , a property that ensures that bracket (11) is antisymmetric. From

definitions (12) we see that the closure requires reexpression of S4 and S5, i.e., one has to
express these two reduced moments with respect to the dynamical variables u S S E( , , , , )2 3ρ
such that bracket (11) satisfies the Jacobi identity.

We remark that bracket (11) has several subalgebras. Trivial ones include F [ ]ρ (i.e., the
algebra of functionals of the type F [ ]ρ ), F u[ ], F E[ ], F E[ , ]ρ , and non-trivial ones include
F u[ , ]ρ , F S S[ , , ]2 3ρ , F u E[ , ], F u S S[ , , , ]2 3ρ , F u E[ , , ]ρ and F S S E[ , , , ]2 3ρ . The most
interesting one is the subalgebra of functionals F S S[ , , ]2 3ρ for which ρ becomes a Casimir
invariant. The existence of this subalgebra is the reason for considering the reduced fluid
moments Sn.
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2.2. The Hamiltonian constraints

In order to be a Poisson bracket, bracket (11) must satisfy the Jacobi identity

F G H H F G G H F{ , { , }} { , { , }} { , { , }} 0.+ + =

Here we determine the conditions on S4 and S5 resulting from the Jacobi identity. We begin
by assuming that S4 and S5 depend on ρ, u, S2, S3, E and their derivatives x

nρ∂ , ux
n∂ , Sx

n
2∂ , Sx

n
3∂ ,

Ex
n∂ for n lower than some order ν. Using the result obtained in appendix A, we conclude that

S4 and S5 do not depend on ρ, u, E and their derivatives x
nρ∂ , ux

n∂ , Ex
n∂ . In addition, we show

in appendix B that in order for the Jacobi identity to be satisfied, we need to impose

,ljm kij kjm lijγ γ γ γ=

for all i, k, l and m ranging from 2 to 3, where the summation is implicit on j, and

( )S S S
S

, ,..., .ljm k x k x k
lj

x m

1γ
α

∂ ∂ =
∂

∂∂
ν

ν
−

For instance, for l = 2, m = 3, i = 2 and k = 3, we end up with 0233 323γ γ = since 0222γ = and
0223γ = for 2ν ⩾ . From equation (12), we have 3 2233 323γ γ= , therefore 0233γ = , or

equivalently

S

S
0.

x

4
1

3

∂
∂∂

=ν−

Using equation (B.5) leads to

S
S

0.
x

3
23

2

α∂
∂∂

=ν

Since this has to be true for any value of S3, we thus conclude that 0232γ = , i.e.,

S

S
0.

x

4
1

2

∂
∂∂

=ν−

Concerning S5, equation (B.5) for l i 3= = leads to

S

S
0. (13)kj

x j

5
1

β
∂

∂∂
=ν−

There are two solutions to equation (13). The first solution is given by

S

S

S

S
0, 0.

x x

5
1

2

5
1

3

∂
∂∂

=
∂

∂∂
=ν ν− −

The second solution requires det 0β = , which, using equation (12), can be written as

( )
S S S

S S

S
4

5 9

4
.5 2 3

4 2
2 2

3
= +

−

Since S4 does not depend on Sx
1

2∂ν− and Sx
1

3∂ν− , we again have

S

S

S

S
0, 0.

x x

5
1

2

5
1

3

∂
∂∂

=
∂

∂∂
=ν ν− −

In what follows we will see that the second solution does not lead to a Hamiltonian closure.
By induction on ν down to 2ν = we show that S4 and S5 have to be functions of S2 and S3
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only. These conditions are necessary but not sufficient, i.e., for any functions S4 and S5 of S2
and S3, bracket (11) does not satisfy the Jacobi identity in general.

We compute in appendix C the necessary and sufficient conditions on the closures for a
fluid bracket of the type (11) to satisfy the Jacobi identity. For four fluid moments,
equations (C.9) and (C.10) are

S

S
S

S

S

S

S
S4 3 , (14)5

2
3

4

3

4

2
2

⎛
⎝⎜

⎞
⎠⎟

∂
∂

= +
∂
∂

∂
∂

−

S

S

S

S

S

S
, (15)5

3

4

3

2
4

2

⎛
⎝⎜

⎞
⎠⎟

∂
∂

=
∂
∂

+
∂
∂

( )S S S
S

S

S

S
S S6 4 3 9 5 . (16)5 3 2

4

2

4

3
2
2

4

⎛
⎝⎜

⎞
⎠⎟= +

∂
∂

−
∂
∂

−

We see from equation (16) that the expression of S5 is fully determined by S4. By introducing
the expression for S5 given by equation (16) into equations (14) and (15), we end up with the
following two nonlinear second order partial differential equations:

( )S
S

S

S

S S
S S

S

S

S

S
S4 9 5 12 , (17)3

2
4

2
2

2
4

2 3
2
2

4
4

2

4

3
3

∂
∂

−
∂

∂ ∂
− −

∂
∂

∂
∂

=

( )S
S

S S

S

S
S S S

S

S

S

S
4 9 5 12 2 . (18)3

2
4

3 2

2
4

3
2 2

2
4 2

4

3

2
4

2

⎛
⎝⎜

⎞
⎠⎟

∂
∂ ∂

−
∂
∂

− + =
∂
∂

+
∂
∂

Provided that these two equations are satisfied, bracket (11) is a Poisson bracket and the
resulting system is Hamiltonian. Solving these equations in general is challenging;
consequently, in what follows we restrict ourselves to the set of solutions provided by
dimensional analysis [27].

2.3. Closures based on dimensional analysis

We consider all the closures for the fifth-order moment S g S S( , )4 2 3= that satisfy the con-
straints given by equations (17) and (18) based on a dimensional analysis argument. In order
to proceed, we assume that the closure S g S S( , )4 2 3= does not depend on any further
dimensional parameters. This would not be the case for, e.g., diffusion-like closures (Four-
ierʼs law, Fickʼs law, etc...) that introduce phenomenological parameters resulting from
various hypotheses based on characteristic scales of the dynamics of the system. Indeed, in
diffusion processes, diffusion coefficients replace information on the particle interactions,
thus removing small scale dynamics. Instead, we would like our reduction procedure to be
very general and not to depend on the geometry of the system. Consequently, we seek
Hamiltonian closures where S g S S( , )4 2 3= do not depend on any further dimensional
parameters.

It can be shown from equation (9) that the dimensions of the Snʼs, denoted S[ ]n , are not
independent. Indeed, for all n 2⩾ we have S[ ] An

n= , where A L T2 1= − with L and T
denoting the units of length and time, respectively. As a consequence, the closure
S g S S( , )4 2 3= involves three quantities and a unique physical dimension A. Making use of
the Buckingham π theorem [27], there exists two dimensionless quantities, denoted ζ and ξ,
such that S g S S( , )4 2 3= reduces to R ( )ζ ξ= . Therefore, this procedure eliminates one of the
variables in the closure. Defining S S4 2

2ζ = and S S3 2
3 2ξ = and inserting these expressions
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into equations (17)–(18), we get the following two constraints:

( ) ( )R R R R R R3 6 9 5 3 18 9 16 24 , (19)2 2ξ ξ ξ ξ ξ ξ″ + − + ′ ′ − + − + =

( )R R R R R6 9 5 ( 5 ) 4 12. (20)2ξ ξ″ + − + ′ ′ − + =

To solve equations (19)–(20), we compute their values for 0ξ = . Defining R R (0)0 = ,
R R (0)0′ = ′ , and R R (0)0″ = ″ , equations (19) and (20) become

( )R R 9 0, (21)0 0′ − =

( )R R R R9 5 4 12. (22)0 0 0
2

0″ − + ′ + =

Equation (21) has two solutions: R 00′ = and R 90 = . Equation (22) then reads
R R R4(3 ) (9 5 )0 0 0″ = − − for R 00′ = and R R12(3 2)0

2
0′ = ″ − for R 90 = . We now

differentiate equations (19) and (20) with respect to ξ and evaluate them at 0ξ = . This gives
us

( )R R R R9 7 2 8 12, (23)0 0 0
2

0″ − + ′ + =

( ) ( )R R R R9 5 3 1 0. (24)0 0 0 0− − ′ ″ + =‴

Using R 90 = , equation (23) together with equation (22) leads to R 2 30″ = − and R 480
2′ = − .

As a consequence, this solution is not real and of no interest for our purpose. The other
solutions satisfy R R R R( , , , ) (0, 0, 4 3, 0)0 0 0 0′ ″ =‴ and R R R R( , , , ) (1, 0, 2, 0)0 0 0 0′ ″ =‴ ,

where R R (0)0 = ‴‴ . Since the solution is unique for a given set of initial conditions, there
exist only two solutions to equations (19) and (20). Moreover, one can see that R ( )ξ− is also
a solution of these equations. Consequently, the two solutions R are even with respect to ξ.
These two solutions are described in the next section.

3. Hamiltonian fluid models with 4 + 1 fields

3.1. Model with normal variables

The first solution to equations (19)–(20) corresponds to the branch
R R R R( , , , ) (1, 0, 2, 0)0 0 0 0′ ″ =‴ found in section 2.3, and is given by

R ( ) 1 .2ξ ξ= +
This leads to

S S
S

S
, (25)4 2

2 3
2

2
= +

S S S
S

S
2 . (26)5 2 3

3
3

2
2

= +

These functions are plotted in figures 1 and 2. By defining the skewness S S S3 2
3 2= and the

kurtosis K S S4 2
2= of the distribution function f, equation (25) becomes K S1 2= + . This

relation is a particular case of more general parabolic relations that appear in various natural
systems including plasma edge turbulence [30–33]. Here we show that this relation results
from the Hamiltonian structure of the system. The Hamiltonian and the Poisson bracket
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resulting from this closure are given respectively by equations (10) and (11) with α and β
given by equation (12) and by replacing the closures S4 and S5 by equations (25) and (26).

In order to further characterize this Poisson bracket, we investigate its Casimir invariants.
These are functionals C u S S E[ , , , , ]2 3ρ that commute with any other functionals F, i.e.,
F C{ , } 0= for all F. In particular, C commutes with the field variables. As a consequence,
we must impose

C C{ , } 0,x uρ = −∂ =
which leads to

[ ] [ ]C u S S E K u x D S S E, , , , d , , , ,2 3 1 2 3∫ρ ρ= +

Figure 1. Color map of S4 (in A4 units as defined in section 2.3) given by equation (25)
as a function of S2 (in A2 units) and S3 (in A3 units).

Figure 2. Color map of S5 (in A5 units as defined in section 2.3) given by equation (26)
as a function of S2 (in A2 units) and S3 (in A3 units).
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where K1 is constant. Imposing that C commutes with u leads to

u C D D D S{ , } 4
1

0,x E i x iπ
ρ

= −∂ − + ∂ =ρ 

whose solution is given by

[ ] ( )D S S E K S S x K E x, , , , d d ,2 3 2 2 3 3∫ ∫ρ ρϕ= +

where K2 and K3 are constant. Imposing that C commutes with Si leads to

( ){ }S C
K

S K
K

, 0, (27)i x i
ij

j x ij j
1

2
2

ρ
α
ρ

ϕ
ρ

β ϕ= − ∂ + − ∂ =

where Si iϕ ϕ= ∂ ∂ . We then solve the associated homogeneous equation (K 01 = ). Again
making use of the Buckingham π theorem, we assume that there exist a real number a and a
function ψ such that S S S S( ) ( )a a

2 3 2
3 2

2ϕ ψ ψ ξ= = . The resulting equations are

( )a a a a8( 1) (9 14 ) 8 3 4 0, (28)2 2⎡⎣ ⎤⎦ξψ ξ ψ ξ ξψ− + − − ′ + + ″ =

( )a a2 (4 3) 4 0, (29)2ψ ξψ ξ ψ+ − ′ − + ″ =

(30)a a a a4 [ 2 4 (5 7) ] 9 [ (3 4 ) ( 4 ) ] 0,2 2 2ξ ψ ξ ξψ ξ ψ− + − + − ′ + + ″ =

( )a a a8 (10 9) 8 3 4 . (31)2 2⎡⎣ ⎤⎦ξψ ξ ψ ξ ξ ψ+ − − ′ = + ″

Combining equations (28)–(29) leads to

( )a 4 0.2⎡⎣ ⎤⎦ξψ ξ ψ− + ′ =

A first solution is given by a = 0. Inserting this constraint into equations (28)–(31) provides

the solution ( ) 4 2ψ ξ ξ ξ= + . The second solution reads a 1 2= and ( ) 4 2ψ ξ ξ= + .
An additional invariant can be computed by solving equation (27) in the non-homogeneous
case (K 01 ≠ ). Eventually, we show that this Poisson bracket possesses five global
(independent of the space coordinate x) Casimir invariants, i.e., as many Casimir invariants as
field variables, given by

C x C E x

C
S S

S
x C

S

S S
x

C u
S

S
x

d , d ,

4
d ,

4
d ,

2
d ,

1 2

3
2
3

3
2

2
4

3

2
3

3
2

5
3

2

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫ ∫

∫

ρ

ρ ρ

ρ

= =

=
+

=
+

= +

where C1 and C2 are Casimir invariants inherited from the Vlasov–Ampère equations. From
these expressions for the global Casimir invariants, we introduce the normal variables ρ,
M u S S(2 )3 2ρ= + , Q S S S42 2

3
3
2

2ρ= + , Q S S S43 3 2
3

3
2ρ= + and E. Consequently,

bracket (11) takes the particularly simple (normal) form

( )F G G F F G G F F G G F G F x{ , } 4 2 2 d .M x M x M E M E x x3 2 2 3
⎡⎣ ⎤⎦∫ π= ∂ − ∂ + − − ∂ − ∂ρ ρ  

The resulting model is referred to as a Hamiltonian four moments model with normal
variables because of the existence of (normal) variables such that the coefficients in the
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Poisson bracket are constant. Hamiltonian (10) becomes

M M
Q

Q
Q

E
x

1

2 4 4
d ,2 3

2
2
2

2⎛
⎝⎜

⎞
⎠⎟∫ ρ ρ

π
= − + +

and the Casimir invariants C3, C4 and C5 become

C Q x C Q x C M xd , d , d .3 2 4 3 5∫ ∫ ∫= = =

As mentioned in section 1, one may be interested in using the pressure P and the heat flux
q as dynamical variables, instead of S2 and S3. Indeed, even though the reduced moments
appear to be very convenient, their physical meaning may not be as clear as the usual pressure
and heat flux quantities. The latter quantities can be expressed in terms of the reduced
moments in the following way:

P S P
P

P
q S

P P P

P

P

P
,

2 2

3

2
,3

2 2
1
2

0

4

3
3 1 2

0

1
3

0
2

ρ ρ= = − = = − +

in terms of which the closures take the form

S
P q

P
S

q P q

P

1 4
,

4 2
.4 5

2 2

5 6

2

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ ρ ρ ρ

= + = +

Expressed in terms of these variables, bracket (11) becomes

( ) ( ) ( )
( )

( ) ( )

( )

( )

( )

F G G F F G
P

G F F G

G F F G G F F G P
q

G F F G

G F F G q F G F G F G

F G G F G F G F

G F x

{ , }
3

4
2 4

3
¯ ¯ ¯

¯ ¯ ¯ ¯

¯ d ,

u x u x u x P u x P

u E u E u P u P x u x q u x q

u q u q x P P P q q P

q q P x P q x P P x q

q x q

4
22

5
23

5
32

6
33

2
22

2 3
23

2 2
32

3

3
33

3

⎡
⎣⎢

⎤⎦

∫ ρ

π
ρ ρ

ρ
ρ α ρ α ρ α

ρ α ρ β ρ ρ β ρ ρ β ρ

ρ β ρ

= ∂ − ∂ + ∂ − ∂

+ − + − ∂ + ∂ − ∂

+ − ∂ + + +

+ + ∂ + ∂ + ∂

+ ∂

ρ ρ

 

where

( )
( )

( )
( ) ( )

q q P P

q P P q P Pq
¯

4 4 2

6 3 2 6 3
,x

4 2 5 2 6

2 5 2 6 3 6 2 7

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟α

ρ ρ ρ

ρ ρ ρ ρ
= ∂

−

− −

and

( )
( ) ( )

q q P P

q P P q P Pq
¯

8 10 2

10 2 12 6
.

4 2 5 2 6

2 5 2 6 3 6 2 7

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟β

ρ ρ ρ

ρ ρ ρ ρ
=

−

− −

Hamiltonian (10) takes the simple form

u P
E

x
1

2 4
d ,2

2⎛
⎝⎜

⎞
⎠⎟∫ ρ

π
= + +
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and the equations of motion, obtained from F F{ , }t∂ =  , are

( )

u

u u u P E

P u P P u q

q u q q u
q

P
P

E u

( ),
1

,

3 2 ,

4 2
1

4
,

4 .

t x

t x x

t x x x

t x x x x

t

2

3
2 2

⎛
⎝⎜

⎞
⎠⎟

ρ ρ

ρ

ρ
ρ

πρ

∂ = −∂

∂ = − ∂ − ∂ −

∂ = − ∂ − ∂ − ∂

∂ = − ∂ − ∂ − ∂ + ∂

∂ =

∼



We notice that these equations are identical (at least the ones concerning ρ, u, P and q) to the
equations obtained with a bi-delta reduction [22, 34–36]. Therefore, as a by-product of our
reduction procedure, we have proved here that the bi-delta reduction is Hamiltonian. This can
also be shown by effecting a chain rule calculation relating the Vlasov–Poisson bracket [19]
to that of fluid streams [37]. As a consequence, one can verify that all the even fluid moments,
namely P n2 for all n ∈ , are positive. Indeed for f v u v u( ) ( )1 1 2 2ρ δ ρ δ= − + − we have

P v f v u ud 0n
n n n

2
2

1 1
2

2 2
2∫ ρ ρ= = + > .

A benefit of knowing the Hamiltonian structure of the reduced model is the ability to use
the Poisson bracket to obtain the additional invariants, e.g., Casimir invariants, that can be
tricky to derive directly from the equations of motion. For example, the global Casimir
invariants C3, C4 and C5 for the present system are seen to be

C
P q

P
x C q

P q
x C u

q

P
xd , d , d .3

2

2 4 3 2 5 ⎜ ⎟
⎛
⎝

⎞
⎠∫ ∫ ∫ρ

ρ ρ
ρ

= + =
+

= +

We note that these invariants can be used to check the validity of numerical algorithms used
for the integration of the equations of motion.

3.2. Model without normal variables

We consider the second solution to equations (19)–(20), corresponding to
R R R R( , , , ) (0, 0, 4 3, 0)0 0 0 0′ ″ =‴ . As mentioned in section 2.3, the solution R is even. Thus
we introduce R R( ) ¯ ( )ξ η= , where 2η ξ= . Then, equations (19)–(20) become

( )( )n R R R R R R3 ¯ 6 9 5 ¯ ¯ 9 3 ¯ 7 ¯ 4 ¯ 6 0, (32)⎡⎣ ⎤⎦η η η″ + − + ′ + ′ − + − =

( )( )R R R R R R2 ¯ 6 9 5 ¯ ¯ 9 2 ¯ 5 ¯ 2 ¯ 6 0. (33)η η η η″ + − + ′ + ′ − + + − =

By linearly combining these equations to eliminate terms in R̄″, and introducing the new
variable R( ¯ 3 9) 5μ η= − − − , we end up with an Abel equation of the second kind (see, for
instance, [28]):

6 24

25
,μμ μ η′ − = − +

which has the parametric solution

K K( )
(2 5 )

(3 5 )
4, ( )

(2 5 )

(3 5 )
, (34)

2

3

2

3
η τ τ

τ
μ τ τ τ

τ
= −

−
− = −

−

where K is some constant to be determined. Inserting equation (34) into equations (32)–(33)
implies these equations are satisfied if and only if K = 27. This leads to an explicit expression
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for the closure S S R ( )4 2
2ζ ξ= = given by

( ) ( )
R

t t t t

t t
( ) 3

4 4 ( ) ( ) 8 8 2 2 ( ) ( ) 2 4

1 2 3 ( ) ( )
, (35)

2 2 2 2 2 2

2 2 2

⎡⎣ ⎤⎦⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

ξ
ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ
=

+ − − − + − − −

− + +

where

( )
t ( )

4 2 10

2
.

2 2 3 2 4
1 3⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟ξ
ξ ξ ξ ξ

=
+ − − +

Furthermore, by using equation (16), S5 is given by S S S T ( )5 2 3 ξ= with

T
R R

R
( ) 2

3 ( ) 7 ( )

( ) 3 9
. (36)

2 2

2
ξ ξ ξ ξ

ξ ξ
= − −

− −

In summary, the Hamiltonian and the Poisson bracket resulting from this closure are given
respectively by equation (10) and (11) with α and β given by equation (12) with

S S R
S

S
, (37)4 2

2 3

2
3 2

⎛
⎝⎜

⎞
⎠⎟=

S S S T
S

S
, (38)5 2 3

3

2
3 2

⎛
⎝⎜

⎞
⎠⎟=

where R and T are given by equations (35)–(36). The dependence of the functions R and T in
their arguments is not trivial. In order to help the reader visualize the closure relations
corresponding to equations (37)–(38), we provide, in figure 3 (respectively figure 4), color
maps showing the dependence of S4 (respectively S5) on S2 and S3. As a side note, we remark
that as S3 tends toward 0, S4 also goes to 0, as shown in figure 3. Thus, with this closure,
symmetric distribution functions cannot exist. Consequently, the physical relevance of this
solution in the context of plasma physics is questionable. This is a peculiarity that is not
present in the model of section 3.1 where S4 does not go to 0 as S3 goes to 0 as seen in
equation (25). As a consequence, the model with normal variables allows symmetric
distribution functions as it could be expected. Furthermore, we notice the difference in the
amplitude of the closures between the two models (up to two orders of magnitude) by
comparing figures 1 and 3 and figures 2 and 4.

By using a calculation analogous to the one performed in the section 3.1, we show that
this model does not have Casimir invariants of the entropy-type [29], i.e., of the form

S S x( , ) d2 3∫ ρϕ . Making use of the Buckingham π theorem, we assume that there exist a real

number a and a function ψ such that S S S S( ) ( )a a
2 3 2

3 2
2ϕ ψ ψ ξ= = . The equations that have

to be solved are
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( )
( )

( )
[

]

a a a a R aR R

R

a a R R

a a a R R a a R

a T R T R T

a R a a R T R T
R T

8( 1) 3 18 30 24 3 10 9

3 9 6 5 0,

2 ( 9 4 3 ) 9 6 5 0,

4 [3 9 ( 1 5 ) 3 ] 3 (1 4 ( 17 20 )

8( 1) 6 6 ) 3 (7 5 4 ) ,

4 [3 18 5( 3 2 ) 6 6 6 ]
3 (7 5 4 ) .

2 2

2

2

ξψ ψ ξ ξ ξ

ξ ξ ψ

ψ ψ ξ ξ ξ ψ

ψ ξ ξ ψ
ξ ξ ξ ψ

ψ ψ ξ ξ
ξ ψ

− + ′ − + − − + − ′

+ + − ″ =

+ ′ − + + ′ + − − + ″ =

− + − + − ′ = ′ − + − +
− − − ′ + ′ − + − ″

′ + ′ − + − + + − ′ + ′
= + − ″

Combining the first two equations leads to

( )a a a a a R2 (4 1) 3 1 6 4 ( 3 10 ) 0,2 2⎡⎣ ⎤⎦ξψ ξ ξ ψ− + − + − + − + ′ =

Figure 3. Color map of S4 (in A4 units as defined in section 2.3) given by equation (37)
as a function of S2 (in A2 units) and S3 (in A3 units).

Figure 4. Color map of S5 (in A5 units as defined in section 2.3) given by equation (38)
as a function of S2 (in A2 units) and S3 (in A3 units).
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whose solution is given by

ay a

a y a R y a
y( ) exp

2 (4 1)

3(6 1) 3 (4 1) ( )(3 10 )
d ,0 2

⎛
⎝⎜

⎞
⎠⎟∫ψ ξ ψ= −

− + − + −

ξ

where 0ψ is a constant. Inserting this expression into the previous equations provides the
necessary constraints a = 0 and ( ) 0ψ ξ ψ= , which shows that this model does not have
Casimir invariants of the entropy-type. The Poisson bracket resulting from this closure has
only two global Casimir invariants, given by

C x C E xd and d ,1 2∫ ∫ρ= =

which are also Casimir invariants of the Vlasov–Ampère equations. Consequently, unlike the
previous model, we cannot define normal variables for this closure.

3.3. Comparison with Hamiltonian fluid models with 3 + 1 fields

The same analysis done for 4 + 1 fields can be carried out for fluid models with 3 + 1 fields,
namely with the field variables P P P E( , , , )0 1 2 or equivalently u S E( , , , )2ρ . This was partly
done in [29] (in the absence of electric field), where it was shown that Hamiltonian fluid
models are given by closures S3 that only depend on S2. This is also evident from appendix C,
where the conditions given by equation (B.7) are automatically satisfied (since there is only
one value for the indices). The fact that the closure for 3 + 1 Hamiltonian fluid models only
depends on S2 is similar to the fact that the closures for 4 + 1 fluid models are given by S4 and
S5 as functions of only S2 and S3.

A specific closure S S( )3 2 , which corresponds to the dimensional analysis performed in
the present work, is given by

S S ,3 2
3 2λ=

where λ is a dimensionless constant. The Poisson bracket for this closure is

( )

( )

{ }F G G F F G G F F G

G F F G S S
G F F G

x

, 4

1
2 d .

u x u x u E u E

u u x x x

3

2 2 2 2
3 2 2 2 2 2 ⎪

⎪

⎧⎨⎩
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫
⎬
⎭

∫ π

ρ
λ

ρ ρ ρ ρ

= ∂ − ∂ + −

− − ∂ + ∂ − ∂

ρ ρ  

It should be noted that the dimensional analysis provides a family of models (labeled by λ).
However there are only three fundamentally different models: one for 0λ = and the others
for 1λ = ± , since all of the other models can be rescaled to 1λ = ± by an appropriate
rescaling of S2, e.g., S S2̄ 2

2λ= . Moreover, the two models 1λ = and 1λ = − are linked by
symmetry [29]. The model for 0λ = has the two following global Casimir invariants:

C x C E xd and d ,1 2∫ ∫ρ= =

in addition to the family of Casimir invariants

( )C S xd ,2∫ ρκ=

for any scalar function κ. The two Casimir invariants C1 and C2 are identical to the ones for 4
+ 1 fields. Concerning the model with 1λ = , the Poisson bracket with 3 + 1 fields has C1 and
C2 as Casimir invariants, and also has two additional Casimir invariants
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( )C S x C u S xd and 2 d .3 2
1 4

4 2
1 2∫ ∫ρ ρ= = −

Therefore, in total it has four Casimir invariants, i.e., as many as the number of field variables.
The common point between this 3 + 1 model with 1λ = and the 4 + 1 field model with
normal field variables is that both have a generalized velocity as Casimir invariant. It should
also be noticed that the 3 + 1 fluid model has one Casimir invariant of the entropy type, i.e., of
the form S x( ) d2∫ ρϕ , whereas the 4 + 1 fluid model has two of this type.

4. Summary

In summary, starting from the one-dimensional Vlasov–Ampère equations, we build two
Hamiltonian models with the first four moments of the Vlasov distribution function and the
electric field as dynamical variables. Our reduction method relies on the preservation of the
Hamiltonian structure of the Vlasov–Ampère model. The closures we obtain are derived from
a dimensional analysis argument. We show that there are only two Hamiltonian closures
obtained by this method. A fundamental difference between these two models is characterized
by their Casimir invariants: one model has only two global Casimir invariants (preserved
from the Vlasov–Ampère system), whereas the second model has three additional ones, two
of the entropy-type and one generalized velocity.
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Appendix A. Independence of α and β of bracket (11) on ρ;u; and E

In this appendix, we consider the following bracket defined on functionals of the form
F u S S E[ , , ,..., , ]N2ρ for N 2⩾ :

( ) ( )F G G F F G G F F G G F F G S

F G F G
x

{ , } 4
1

d , (A.1)

u x u x u E u E u i u i x i

ij
i j

x
i

ij
j

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

∫ π
ρ

α
ρ ρ ρ

β
ρ

= ∂ − ∂ + − − − ∂

+ + ∂

ρ ρ  

where α and β are matrices satisfying tβ β= and x
tβ α α∂ = + , assuring antisymmetry of the

bracket. Here we assume a priori that α and β depend on both the dynamical variables ρ, u, Sk
(for k 2⩾ ) and E, and their derivatives x

n ρ∂ , ux
n∂ , Sx

n
k∂ and Ex

n∂ for n 1⩾ . Repeated indices
are implicitly summed from 2 to N, unless specified. We seek necessary conditions on α and β
for bracket (A.1) to satisfy the Jacobi identity

F G H H F G G H F{ , { , }} { , { , }} { , { , }} 0.+ + =

In this appendix, we prove that α and β do not depend on the variables ρ, u and E and their
derivatives x

nρ∂ , ux
n∂ and Ex

n∂ for n 1⩾ .
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First we split bracket (A.1) into two parts

F G F G F G{ , } { , } { , }*,J= +
where the first part,

( ) ( )F G G F F G G F F G G F F G S x{ , } 4
1

d ,J
u x u x u E u E u i u i x i

⎡
⎣⎢

⎤
⎦⎥∫ π

ρ
= ∂ − ∂ + − − − ∂ρ ρ  

satisfies the Jacobi identity [14, 15]. The Jacobi identity is then equivalent to

{ } { }{ }F G H F G H F G H, { , } * , { , }* , { , }* *
0, (A.2)J

J

F G H( , , )+ + + ⥀ =

where F G H( , , )⥀ denotes the summation over circular permutation of any three functionals F, G
and H. Using the lemma stating that only the functional derivatives with respect to the explicit
dependence on the variables need be taken into account for the Jacobi identity [14], the first
term becomes

{ }F G H
F

H
G

G
H G

H
H

G

F G
H

H
G x

, { , } *

d , (A.3)

J ij i
u x

j
u x

j j
x u

j
x u

ij
x

i j
x u

j
x u

⎡
⎣
⎢⎢

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

∫ α
ρ ρ ρ ρ ρ ρ

β

ρ ρ ρ ρ

= ∂ − ∂ + ∂ − ∂

+ ∂ ∂ − ∂

where we have used the fact that β is symmetric. The second term in equation (A.2) is

{ } ( )

( ) (A.4)

F G H G H F G H F G H F G H F

G H F F G H S x

, { , }* { , } { , } 4 { , } { , }

1
{ , } { , } d ,

J

u x x u u E E u

u i u i x i

* * * *

* *

⎡
⎣⎢

⎤
⎦⎥

∫ π

ρ

= ∂ + ∂ + −

− − ∂

͠ρ ρ 

where

G H
G H H G G H

G G H

G H
u

G

u

G H

G H
S

G

S

G H

G H
E

G

E

G H

{ , }

( 1)

{ , } ( 1) ,

{ , } ( 1) ,

{ , } ( 1) .

ji ij i j ij
x

j i
x

i j

n
x
n ij

x
n

i ij

x
n x

i j

u
n

x
n ij

x
n

i ij

x
n x

i j

k
n

x
n ij

x
n

k

i ij

x
n

k
x

i j

E
n

x
n ij

x
n

i ij

x
n x

i j

*

*

*

*

⎛
⎝⎜

⎞
⎠⎟

⎡
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We consider the terms of the type F G H( , , )u i j in the Jacobi identity (A.2). These terms only
come from equations (A.3) and (A.4). By using successive integrations by parts and assuming
that the boundary conditions are such that the associated boundary integrals vanish, the Jacobi
identity for these terms becomes
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Choosing F u xd∫= , G S xdl∫ ρ= and H Smρ= , equation (A.5) leads to the necessary
condition
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where the summation over n is implicit and xlmα∂ ∂ denotes the derivative of lmα with respect
to its explicit dependence on x. Eventually, equation (A.6) writes
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By canceling the only term that depend on x
1ρ∂ν+ in equation (A.7), we can show that

0.lm

x

α
ρ

∂
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=ν

By performing an induction on ν down to 0ν = , we can show that α does not depend on ρ
and its derivatives. Because the dynamical variables are independent, using the same
reasoning we prove that α cannot depend on u, E and their derivatives, nor can it depend
explicitly on x. The same result can be obtained for β by choosingG S x xdl∫ ρ= . Therefore a
necessary (however not sufficient) condition for bracket (A.1) to satisfy the Jacobi identity is
that α and β do not depend explicitly on x, ρ, u and E, as well as the derivatives x

nρ∂ , ux
n∂ and

Ex
n∂ for all n ∈ .

Appendix B. Dependence of α and β of bracket (11) on Sk

In this appendix, we derive some necessary conditions on the dependence of α and β (and
their derivatives) of bracket (11) on Sk. Following appendix A, we consider two sets of
functionals

( )F G H ux x S x S( , , ) d , d , ,l m∫ ∫ ρ ρ=
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and

( )F G H ux x S x x S( , , ) d , d , ,l m∫ ∫ ρ ρ=

which we insert into equation (A.5). Thus we find the necessary conditions
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for all l and m, where we recall the implicit summation over repeated indices. We assume that
α and β depend on the derivatives of Sk up to order ν, where
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From the first of equations (B.1) we have
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Differentiating equation (B.2) with respect to Sj
1∂ν+ leads to
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As a consequence, the highest derivatives of S appear in α; thus ν becomes
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The Jacobi identity (A.2) reduces to:
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This identity corresponds to the Jacobi identity for the subalgebra of observables
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Choosing consecutively
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and

( )F G H S S x S x x( , , ) , d , d ,i k l∫ ∫ρ ρ ρ=

we get the following three conditions:
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Due to the fact that x
tβ α α∂ = + , equations (B.5) and (B.6) are redundant. We assume that α

depends only linearly on Sx k∂ν . We show in appendix C that this is the case for fluid brackets.
As a consequence, we write
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By inserting this expression into equation (B.4), for the Jacobi identity we need to impose
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for all i k l m( , , , ) to make the term proportional to Sx m∂ν vanish. However, thanks to
equation (B.2) we have
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This eventually leads to the following conditions:

. (B.7)ljm kij kjm lijγ γ γ γ=

These commutation relations remind us of the conditions for Lie–Poisson brackets based on
Lie algebra extensions to satisfy the Jacobi identity of [38]. These conditions on the tensor γ
are necessary but not sufficient.
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Appendix C. Jacobi identity for fluid models

In this appendix we find necessary and sufficient conditions for the Jacobi identity for bracket
(11). We start from the one-dimensional Vlasov–Ampère bracket given by equation (6) and
perform a change of variables, from f to u S( , , )n 2ρ ⩾ defined by

f v u v f v S v u f vd , d , ( ) d .n
n

n1∫ ∫ ∫ρ ρ ρ= = = −+

Using the following chain rule expression for the functional derivative with respect to f,
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and after some algebra, we show that the Poisson bracket (6) reduces to equation (A.1) with α
and β given by

n S nS S n m S S nmS S( 1) , (C.1)nm x n m n x m m x n m x n1 1 1 1α = ∂ − ∂ − + ∂ − ∂+ − − − −

m n S m n S S n m S S( ) ( 1) ( 1) , (C.2)nm n m n m m n1 1 1β = + − + − ++ − − −

where n m, 2⩾ and S 01 = . The resulting bracket is of Poisson type. Next, we truncate the
matrices α and β such that 0mnα = and 0mnβ = for m N> and n N> . The matrices α and β
depend on Sn for n N2, , 2 1= … − . We restrict ourselves to the case where α and β are
functions of S S( , , )N2 … , i.e., we introduce N 1− closures S S S S( , , )k k N2= … for
k N N1, , 2 1= + … − . In this truncation/reduction, the bracket is no longer of Poisson
type in general. In this appendix, we establish the necessary and sufficient conditions for the
Jacobi identity to be satisfied. From appendices A and B, this Jacobi identity is seen to be
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Choosing F Siρ= , G S xdk∫ ρ= and H S xdl∫ ρ= , equation (C.3) reduces to
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Equation (C.4) can be split into two terms with only one depending on ρ. To make the term
that depends on ρ vanish, we have to impose
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for all i l k( , , ). In addition, canceling the term in equation (C.4) that does not depend on ρ
leads to

S S S S S S
0, (C.6)ij

lk

j
x

lk

x j
kj

il

j
x

il

x j
lj

ki

j
x

ki

x j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α

α α
α

α α
α

α α∂
∂

− ∂
∂

∂∂
+

∂
∂

− ∂
∂

∂∂
+

∂
∂

− ∂
∂

∂∂
=

for all i l k( , , ). With these constraints, equation (C.3) becomes
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which has to be satisfied for any ρ, and therefore
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for all i l k( , , ). With this additional constraint, equation (C.7) is always satisfied, which
proves that equations (C.5), (C.6), and (C.8) are necessary and sufficient conditions for
bracket (11) to satisfy the Jacobi identity.

By introducing the expressions of α and β given by equations (C.1) and (C.2) into
equations (C.5), (C.6), and (C.8), we end up with the following constraints:
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