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1. Introduction

The most important physical systems are either governed by evolution equations that are, in one
sense or another, Hamiltonian or possess Hamiltonian limits in which dissipative or transport terms
associated with phenomenological constants are dropped. This imposes strong constraints on their
dynamics with, for instance the existence of differential invariants, and the possibility of symmetry-
related conservation laws. The existence of a Hamiltonian structure is particularly important for
perturbative problems. The structure can not only be exploited to simplify asymptotic developments
considerably; it also leads to several results, such as the adiabatic invariance of action, without
counterparts in non-Hamiltonian systems.
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Hamiltonian perturbation has been largely developed for canonical systems, with equations

) oH . oH a
Pa= o ={pa,H}, q =—8pa={q,H},
associated with the Hamiltonian H and canonical Poisson bracket
of 9 ag d
{f.gt= aTj;ajl Bzi ac{a’ (1.1)
wherea = 1, ..., N and repeated indices here and henceforth are summed. The perturbative methods

typically rely on canonical transformation, which, after truncation, simplify the Hamiltonian while
leaving the form of the Poisson bracket unchanged. This is particularly efficient since the computation
is focused on a scalar - the Hamiltonian - rather than on the evolution equations themselves. The
approach is well illustrated by the classical results on averaging, passage through resonance, adiabatic
invariance, etc. (e.g. [1,2]).

Here, we are interested in the more general class of noncanonical Hamiltonian systems (a termi-
nology introduced [3], see also e.g. [4,5]) that have the form

L . O0H )
' =]%2)— = {z',H}, (1.2)
0z
where H is the Hamiltonian, i,j = 1, 2, ..., M, and J¥ denotes the components of the Poisson matrix,
which is skew-symmetric, satisfies the Jacobi identity
i O 3] 3y
ik jk 1k _
I i L (13)
and defines the P01sson bracket
of ;08
(.80 = (14)

In general, J¥ depends on z and is often degenerate (singular), unlike the canonical form where it is
given by

_( On Iy
Je = (_,N ON), (15)
with Iy the N x N identity matrix and Oy an N x N block of zeros. Substitution of (1.5) into (1.4) yields
(1.1).
For the degenerate case, it was known by S. Lie (see e.g. [6,7]) that the null-space of ] is spanned by
the gradients of the Casimir functionals C* (referred to as distinguished functions by Lie) that satisfy

L 0CY
ij
J 0z

where 2N is the rank of J¥. Note, we will systematically use Greek symbols to index the Casimirs
functionals in what follows. Systems of the form (1.2) emerge in many areas of physics, such as
fluid and plasma models in terms of Eulerian variables. They are typically obtained from canonical
systems after symmetry reduction, and have therefore the advantage of a state space of reduced
dimensionality [4,5,8,9].

However, when in comes to the development of perturbation theories, the form (1.2) is generally
considered inconvenient, notwithstanding the efficacious use of noncanonical coordinates for
perturbation theory in some cases [10]. The difficulty stems from the z-dependence of J¥(z): when
z is expanded, for instance in power series of a small parameter, J(z) also needs to be expanded. If
this expansion is then truncated, the Jacobi identity (1.3) then usually ceases to hold, and the system
loses its Hamiltonian nature.

In this paper, we discuss how this difficulty can be overcome in order to study perturbatively the
weakly nonlinear dynamics of noncanonical systems in the neighborhood of a (stable) equilibrium

=0, a=1,2,...,M—2N, (1.6)
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Zo. The idea is to perform a near identity change of variables that transforms J¥(z) into its (constant)
value J¥(z) at the equilibrium. Because transforming the Poisson matrix to a constant, i.e., a form
independent of z, is the first step of canonization, transforming to canonical form, we refer to this
procedure as beatification. This change of variables is then introduced in the Hamiltonian, which can
be truncated. The result is a Hamiltonian system with constant (but noncanonical) Poisson matrix,
where nonlinearity has been transferred from the Poisson bracket to the Hamiltonian. This system
can then be studied perturbatively, by applying further changes of variables that either leave the
constant Poisson matrix invariant or transform it into the canonical form of (1.5), which is known
to be always possible by Darboux’s theorem (e.g. [11]). Here, we provide a practical implementation
for systems near an equilibrium. In principle, the approach can be carried out order by order in the
small parameter that measures the size of the perturbation away from the equilibrium. We limit our
discussion to the first step in the procedure. This is sufficient to describe the leading-order effect of
the nonlinearity and study effects such as quadratic resonance and possible explosive instabilities, a
special case of which was considered in detail in [12].

We note, the linearization problem of literature [ 13-15] of smoothly transforming general brackets
to local Lie-Poisson form, differs from the procedure here: our goal is to ‘flatten’ brackets to first order
and thereby remove the linear dependence replacing it by a constant.

The paper is organized as follows. In Section 2 we consider finite-dimensional systems of the form
(1.2). For these, an explicit formula is given for the change of variable that makes the Poisson matrix
constant to leading order. We consider both the cases of nondegenerate and degenerate Poisson
matrices, and we give a simplified formulation for systems with Lie-Poisson structure. Applications
based on the real semi-simple Lie algebras so0(2, 1) and s0(3), where the former applies to the Kida
vortex and the latter to the rigid body, the heavy top, and a two-spin system, are presented in Section 3
to illustrate the method. Infinite-dimensional systems are discussed in Section 4. For these, we do not
give a general form for the change of variables, which would be overly complicated. Rather, we derive
the transformation explicitly for Poisson brackets of fluid dynamics and plasma physics when the
equilibrium depends on only a single coordinate. In Section 5 we first consider the Lie-Poisson bracket
for the two-dimensional Euler equation that describes the ideal fluid, which is identical to the bracket
that describes the one-dimensional Vlasov-Poisson and other systems. Then, in Section 6, we consider
the bracket for two-dimensional stratified fluids and for two-dimensional magnetohydrodynamics.
For these four physical systems, we implement the relevant change of variables in the Hamiltonian and
derive the equations of motion in the transformed variables. These equations are suited for the study
of the weakly nonlinear interactions of waves or more generally modes, for instance in the statistical
treatment of weak turbulence (e.g. [16,17]). We conclude in Section 7 where we summarize and
discuss our results and consider some future applications. The paper also contains several appendices
that expand upon material presented in the main text. In particular, Appendix E demonstrates how a
canonical structure for the weakly nonlinear Vlasov-Poisson equation can be obtained by building on
the coordinate transformation of Section 6 and on earlier work on the canonization of the linearized
system.

2. Finite-dimensional systems

Our treatment of finite-dimensional systems is divided into three subsections. In Section 2.1 we
set up the basic expansion formulation, in preparation for Section 2.2 where beatification is explicitly
undertaken. Then, in Section 2.3 we consider the special case of Lie-Poisson systems where the initial
Poisson vector is linear in z.

2.1. Formulation

An equilibrium zq of (1.2) satisfies
: i OH . oH
2= = Ji(zy) (?0) =0. (2.1)
0z} 9z}




120 PJ. Morrison, J. Vanneste / Annals of Physics 368 (2016) 117-147

Provided that the rank of J¥ does not change at zo, z, is a critical point of the combination
F(z) := H(2) + A (20) C*(2)
for some A, i.e.
oF (Z,O) _0
z)

To study the evolution of a small disturbance to zy, we write

z=2z9+€Z, (2.2)

where € < 1. In what follows, we will omit the prime, using z for the disturbance. Its evolution
equation is governed by

i qidF
VN
where
JV =]z +e€z) and F, :=e *[F(zo+ €z) — F(2)]. (2.3)

The Hamiltonian F,, which we will refer to as the free energy, is sometimes called the pseudoenergy.
The O(¢) approximation of this equation reads

, YA 92F, 3°F,
=+ ei‘?z’ o ey € TP pkm) 0(e?). (24)
3z, dzpdzl 2 3z)0zfdz]

In general, this equation is not Hamiltonian: due to the truncation of ];j as

) PYE
e L(; Z. (2.5)
0z,
the Jacobi identity is not satisfied. However, through a change of variable, it is possible to find a new
equation, equivalent to (2.4) up to O(e?), that is Hamiltonian. Let 7 = 7(z) be the new dependent
variable. The corresponding Poisson matrix is given by

i on Kl an’
= Gk o =0
We will choose 1 such that
Ji =3+ 0(ed). (2.7)

In contrast to the truncation of ];j given by (2.5), the truncation of ]g to O(e) satisfies the Jacobi
identity: indeed, it is simply given by ]g and thus has constant coefficients, making satisfaction of
(1.3) immediate. The evolution equation for n takes the Hamiltonian form

y S OF,
i =105, + 0, (238)

where the Hamiltonian

F, = € 2[F(zo + €z(n)) — F(z0)]

can be consistently truncated to O(e).
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2.2. Beatification: flattening the Poisson matrix

We now construct the new variable 5 leading to (2.7). The change of variable is clearly near-identity
so that, to the order of interest, it can be written

. . € .
n=2z+ 3 D\, 22" + 0(e?), (2.9)

where the quantity Dik, is symmetric in kl. Introducing this expression in (2.6), we can rewrite the
condition (2.7) as

iy L ki L o
Sl::jolel+jODkl+F
2y

—0. (2.10)

Because of the skew-symmetry of ](')J, this system contains a maximum of M?(M — 1)/2 independent
equations, while D', contains M?(M + 1)/2 coefficients, and their difference, M?, arises because of
the nonuniqueness of the variables we seek. Eq. (2.10) is akin to the formula obtained in Riemannian
geometry when one seeks coordinates, so-called normal coordinates, in which the metric is flat
(e.g. [18]). In this case the quantities analogous to Dik, turn out to be the Christoffel symbols. In our
case, we will see that the situation is somewhat more complicated.

To solve (2.10) for D'y, we introduce the following decomposition:

19 im 19 im .
= o Im + *jiolwkm + lelv (2.11)

i
= -——w
M3 9k 3 9z}

where wy;, and f)"k, are yet to be determined; wy, is assumed to be skew-symmetric, while f)i,d is
symmetric in kL. Introducing expression (2.11) into (2.10) yields

;o1 V" (g 1o’
ijo_ 0 (gk k 0 Jj ik 0 k
$1 = 3 (o) + 350 (8 —Jiorm) + 3 agi, (Om ~Jon)
+J(i)kﬁjkl +.][’)<jﬁikl —0. (2.12)

We solve this relation for both degenerate and nondegenerate jg .
When ]g is nondegenerate we can immediately enforce S ", = 0 by setting

Yo = 8, (2.13)
and ﬁik, = 0. In this case the quantity wj,, denotes the components of the usual symplectic two-form
dual to the cosymplectic form represented by j(’)".

When jg is degenerate, however, (2.13) cannot be solved, because 8", projects onto the null-space
of](’,"”. Nevertheless, wy,; can be chosen as a generalized inverse [19] of J™, i.e. as solution of the
underdetermined system

blom = 8 — Xa X (2.14)
Here, the covariant vectors
o 0C%(z9)
X = > (2.15)
0z,

span the null space of J¥, while the contravariant vectors le are defined as their duals, i.e. they satisfy
the bi-orthogonality (pairing) relation

x};xla = 550‘. (2.16)
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Observe, the right-hand-side of (2.14) no longer contains components in the null space of ](’)"11 and so
an inverse is possible.

For D', we choose
A 10y
b, = - 2X

1

i i o i o
== +A +A s 2.17
W= 3 02k Xo T Agk Xi al Xk (2.17)

where the coefficients A\, will be determined later. Note that ﬁik, is symmetric in ki as required,
because

axg | 9 axe

= = . 2.18
azk  0zlozk 0z (2.18)
Introducing (2.14) and (2.17) in (2.12), and using (2.18), (2.15) and its consequence
9 im dy®
]Ol o = —jim X (2.19)
0z, dz,
yields
a [ qik ol ki i 1 a]g k
X \JoAuk TJoAw — 57X | =0 (2.20)
3 0z
Using the same properties as previously, it can be checked that for A}, defined by
) in 1 . Bxﬂ
— 0 k
Ak —-—ggifwmx$4-gxgazgx$ (2.21)

the factor between parentheses in (2.20) vanishes identically.
We have thus constructed a general solution of (2.10). Collecting (2.11), (2.17), and (2.21), we can
write D', in the form:

1 0j0" 1 1 . 9x"
- W sm 4= m., o 4+ = i “Ak
3azm M\ T K X )T g Xe
where k <> [ designates the symmetric term in kL

So far, we have only considered the Poisson matrix, and not the Hamiltonian. The change of variable

(2.9) needs to be inverted to compute the Hamiltonian F,. To the required order of accuracy, the
inversion is immediate, and gives

i
Dkl_

(O + %' xf) + (k < D, (2.22)

. . € .
Z'=n- 5 DY, 77"77’ + 0(€?). (2.23)

2.3. Lie-Poisson systems

Typically dynamical systems that describe matter have Poisson matrices with Lie-Poisson form,
which in finite dimensions is given by

i Ak
]J - Ckz ’
where the clf{ are the structure constants of some Lie algebra. In general, such Lie-Poisson systems

can be flattened by the procedure of Section 2.2.

In the case where the algebra with structure constants ci{; is semisimple [20,21], the flattening
transformation can be found more directly. For semisimple Lie algebras, the Cartan-Killing symmetric
tensor,

gl = —ckdl
has an ordinary inverse gj, i.e.

gkg¥ =4/
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The ‘metric’ tensor gl can then be used to put the structure constants in a fully antisymmetric form
c¥* that satisfies

ik = Vg, (2.24)
It can also be used to relate the covariant and contravariant vectors x;* and X; through an expression
of the form

X =fapgx’, (2.25)

for some symmetric tensor f,g. Exploiting this expansion, one can find a direct solution of (2.20) given
by

1 . axf
A = —glas 8" o (2.26)
Indeed, using (2.24)-(2.26), (2.19) and
aJ(l)m — im
az — 17
one can find
1 )
JlkA]ak +JO ak = 6( lk +C 'm)fals lei
1 1
= _gcukfaﬁ X = C'Jkglkxa
_ g 10
371707 39
so that (2.20) is satisfied. Therefore, the change of variable (2.9) is defined by
; 1. 1 . ox< Bxﬁ
Dy = —cMapn+ ~fup 8™ [ X225 — x* 25 ) + (k< D). (2.27)
3 6 ™ 9z} azy
Semisimple Lie-Poisson brackets possess a quadratic Casimir invariant given by
C =giz'7, (2.28)

which we record here for later use.

3. Applications

3.1. Three-dimensional semisimple Lie-Poisson brackets

It is well-known that there are nine real Lie algebras of dimension three [20]. In this subsection
we consider the Lie-Poisson brackets associated with two of these, s0(3) and so(2, 1), both of which
are semisimple. The bracket determined by so(3) describes, e.g., spin systems and Euler’s equations
for the free rigid body [22], while s0(2, 1) emerges naturally from quadratic moment projections of
Euler’s fluid equations and describes, e.g., Kida vortex dynamics [23,24].

The rotation algebra so(3) has structure constants c,'j = &jjk, with the & being the purely antisym-
metric Levi-Civita tensor, while the structure constants of so(2, 1) are the same except for a sign flip.
Both Poisson matrices are expressed by the following:

0 z -z
IF=1-z2 0o +Z],. (3.1)
22 F7 O
where the upper sign corresponds to so(3) and the lower to so(2, 1).
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For these semisimple algebras we can identify the algebras with there duals by their Cartan-Killing
forms, which we scale as g/ = 7262 to give the following metrics:

+1 0 0
5*:(0 1 o), (3.2)
0 0 1

where again the upper sign corresponds to so(3) and the lower to so(2, 1).
In terms of 8 the structure constants for both cases can be represented as

) = g5z,
Using (3.2) the quadratic Casimirs take the form
2013 = 8] zhzy =: (20.20)+

with the corresponding null eigenvector and its dual given by

5tz g
Xi = Y 0 and Xl = 0 . (3.3)
20|+ 20|+
Solving (2.14), one finds that the generalized inverses of the two matrices are given by
3 2
. 1 0 —zy z
wt=—sz 0 -z, (3.4)
2ols \ 2 1 o

which can easily be checked by substituting (3.4) into (2.14) and making use of (3.3). Observe a)ui =

—€iiz® /12013
The different terms of (2.27) can now be evaluated for s0(3) and so(2, 1) together,

. zr . 1 . ,
—cm — 0 81m58:t8 :7Z'5i—2r518i ,
3 | @Wkm 3|Zo|2i sl Cmkr 3|Zo|2i( 091 0% rl)
1. 3Xzf 3le 20 cim(ot ok +ot 1 i ot i ot
gfglm (X'ﬁaz(’) - Xza@ = 6|ZO|2i5in(5mr5kl — & 5km) = 5|Zo|zi (26514 - 2651251r)’

where fy = F1/2 follows from y' :figi‘)(k. Combining these results leads to

i 1 fok 20 (ai ok iot
Dy = 2l |:Z(IJSkI - 5(512% + 818 | »
i

and thus to the new variable

=7+ (201213 — 7'(z, 20)1). (3.5)

2|Zo|2i

Note that the change of variable is such that

Inli = IzI3 + 0(€?). (3.6)
With the variable 7, the weakly nonlinear dynamics of the disturbance is generated by the Poisson
matrix (3.1). The corresponding Casimir function is

€
(Zo, )+ = (20,2)+ + EIZIi - (20, 2)3. (37)

2|Zo|3t
The first two terms can be recognized as the exact Casimir € ~'(|zg + ez|2i - |Zo|2i)/2- The time

derivative of the third term is O(e?), so that it appears constant to the order of accuracy considered
here.
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3.2. Heavy-top bracket

Another simple bracket is that of the heavy top for which the dynamical variables consist of the
angular momentum p and the direction of the gravity field y: z = (u, y)". The Poisson matrix
defining this bracket can be written

Ji = (_8ijkM:: —Sijk)/k) )
—&ijkY 0

The heavy top bracket [22] has a Lie-Poisson structure based on a Lie algebra extension of so(3), but
the corresponding Lie algebra is not semisimple [25]; we will thus use (2.22) to find the variable
transformation (2.9). For simplicity, we restrict our attention to equilibrium solutions with u© =
(0,0, M3) and y = (0, 0, 1) which arise for the Lagrange top (top with a symmetry). The following
tensors are required for (2.22) and can be easily obtained:

ij —Msejiz  —egj di 0

y __ 3¢ij3 ij3 1 _ i3 2

0_(—81']3 0 )’ Xi—<0>’ Xi—(&g)’
1 0 Enk3

@k =3 (5nk3 —Msénis )

Because the null eigenvectors are orthonormal, we have taken x; = x;*. A convenient way to denote

tensors such as D', is to make the separation (D,;, D',,) between the components i corresponding to
w (denoted by 1) and those corresponding to y (denoted by 1). With this convention, we can write
dJy'/0zg" as the two triplets of 6 x 6 matrices

a](f)n —&mm 0 a]z)n 0 —&nm -
= 9 = 9 9 = ‘l’ 2’ 37
826" 0 —&nm 326n 0 0 b

where n (m) is the row (column) index. Noting that the general expression for two orthonormal null
eigenvectors of |V is

1 1
0= g0 = w9 = @ Y,

where N2 := |u|> + |y |> — (u - ¥)?/]y %, one can calculate the two matrices

e _ 0 Bt — Sisdim3
326” 8km - 8k35m3 _M3 (8km - 6I<3(Sm3)

axe (0 0
3231 —\o Skm_8k38m3 )

With these results, and using the skew-symmetry of wy, one can compute (2.22) through simple
matrix multiplications and additions. After simplifications, one finds

1
: 0 Suibiz — 5(5714313 + 8ubk3)
Dy =

1 1
Suidiz — 5(5114313 + 8udks)  —Ms[Sudiz — 5(5714313 + 8k3) ]

) 0 0
D, = 1 .
K 0 Sudiz — 5(57k513 + 8ubk3)
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The new variables which can be used to derive the Hamiltonian equations for the weakly nonlinear
dynamics of the heavy top take thus the form

€
N =pl = (1Y 1y = May®y?)

€
w= 0+ ey ety =M [0 + )

e a=1,2.

ot =yl —y"y?

€
03:a3+5[(y ¥+ (y )]

3.3. Two-spin system

To illustrate the interest of the approach, we now consider the specific example of a system con-
stituted of two coupled spins in a magnetic field. This system is defined by the Hamiltonian
H=B- (1) +B- (2) + aw) - W),

where B is the external magnetic field, a a coupling coefficient, and w;) and o) the angular momen-
tum vectors of the two spins, and by the bracket

of og
k

E Eijk Wy

{f g} e )8 D) aa)](ot)

i.e. the sum of two rigid body brackets corresponding to each spin. The dynamical equations are

(3.8)

d)(a) =B x W(a) + AW(@+1) X W(@), O = 1, 2.

(The system is integrable, because w(y) - () is conserved in addition to the energy and two Casimirs.)
An obvious equilibrium solution of these equations is given by

W(1)g = W)y = MB. (3.9)
Noting that the bracket possesses two Casimir functions
C* = lowl*, a=1,2,
it is easily seen that this equilibrium is a critical point of
F=H+ AC' + 1,C?
with
14 am
-~ 2m

We can choose one coordinate axis aligned with the external magnetic field, so that B = (By, 0, 0) and
w1y, = W), = (MB1, 0, 0). We now study the weakly nonlinear evolution of a small disturbance to
this equilibrium. We therefore introduce the decomposition

W) = W()g +EZ(O[), a=1,2, withe <« 1.

In terms of the perturbation z), the free energy (2.3) is given by

F, = € 2 [F(@a)o + €2@) — F(@w),)] = aza) - 20) + 1 (120) > + 22 %) » (3.10)

which is exactly quadratic. The nonlinearity in the equation governing the evolution of z,, comes thus
entirely from the bracket. Note that the stability of the equilibrium can be tested using Dirichlet’s cri-
terion. The matrix

1 F (a2
2 32(1)82(2) a/z A
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has the eigenvalues —(1 + 2am)/2m and —1/2m and is thus sign-definite if 1 + 2am > 0. This con-
dition ensures the nonlinear stability of the equilibrium.

Since the nonlinear bracket is the combination of two rigid body brackets, we can apply the change
of variable (3.5) with zg = (mBl, 0, 0)T and define

Moy = 2 + 5= (@) + 2]

2mB,

2 _ .2 € 2
N = Z(a) - 2mB, Z(a)Z(a) a=1,2. (3.11)

3 3 € 1 .3
Ny = Z@) — 2mB, Z(@)%(@)
In accordance with (2.7), the dynamics of 1, including the O(¢) nonlinear terms is determined by
the constant bracket

g
{f, glo = mB, Z £l —— —— (3.12)
o= o 1 )a”l(a)

It is therefore immediately clear that

7'7(11) = r')(lz) =0, hence n(11) =y, 7732) =y, (3.13)

where ¢y, ¢, are fixed by the initial conditions. In fact, '721) and n(lz) are the Casimir functions of the
system.

The nonlinearity in the evolution equations for 7, appears as cubic terms in the Hamiltonian. To
compute those terms, we need to invert the transformation (3.11) according to

Zigy = Nigy — >mB. B [ + (16)°] + 0(€?)

Z(Za) = 7)?0,) + o m B U(a)rl(a) + 0(€?) a=1,2 (3.14)

3 _ .3
Zo) =Ny + 5~ 2mB; Moy Ny - O

Introducing this into the Hamiltonian (3.10) and using (3.6) yields

3
€a . . . .
Fy = anay - ey + 2 (Inwl” + Ine1?) + 2mB, >~ (1l = 1) (tynizy = nizynl)
i=2

+0(e). (3.15)

The weakly nonlinear equations for n == (1), 1, 1%)» 11(5))" can then be rendered canonical.

By construction, the necessary variable transformation uses the action-angle coordinates (J(4), 6(a))

which make the linearized equations for z canonical; these coordinates are derived in Appendix A.
Applied to n,, they are defined by

n?, = /ImBi| [—\/](T) sin(sby) + \/J(T)sin(se(z))]
&y = v/ImB1 [—\/J(T)cos(sem) + Mcos(se(z))]
’7(22) = \/W [\/J(T) sin(s6) + \/j(j)sin(se(z))] ,
N = V/ImBi| [\/J(T)COS(SG(U) + Mcos(se(z))]
where s := sign(mBy). In terms of (J(), 6()), the Hamiltonian (3.15) becomes

Fyw by = =5 Z O@J@ + acic

— €Sa _](]) [(Cl + Cz)\/_](T)—F (C] — Cz)\/_HCOS(G(]) — 9(2))] =+ 0(62), (316)
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where
o(1) ‘= B](l + 2am) and oQ) = B;. (3]7)

This completes the reformulation of the weakly nonlinear dynamics of the two-spin system as a
canonical system to which standard perturbation methods can be applied. As an immediate illustra-
tion, we can read off from (3.15) the frequencies (1) +€a(cq 4-¢) and o(y) and interpret the correction
€a(cy 4 ¢3) to o(yy as a nonlinear frequency shift. Further details on the perturbation theory are given
in Appendix A.

4. Infinite-dimensional systems

The extension of (1.2) to partial differential equations is

tile J S H
a8’
where ¢ is the vector of the dynamical variables, J is a skew-adjoint operator that we call the Poisson
operator, and the Hamiltonian # is a functional

(4.1)

ﬂ:/HWLLVLWNx

The Jacobi identity satisfied by J is best written in terms of the Poisson bracket

_ [%F 5§
(#.9) .—f SO dx

as
(7.9, #}} +1{g. {3, F}} +{HH. {F.4}} = 0.

Asin the finite-dimensional case, the operator J can be degenerate and there exists Casimir functionals
€ such that

(F.e} =0, V¥F.

Consider an equilibrium ¢y of (4.1). Usually only trivial equilibria are critical points of #, while
equilibria of interest are critical points of the combination

Flgl = #[{]+ClZ]

for a well-chosen Casimir functional, i.e.

3Fo 3F (o]
Jo— = =0. 42
0 % (%o) 5% (4.2)

To study the evolution of a small disturbance to ¢, we introduce the decomposition

¢ =¢tet (4.3)
and omit the prime. The disturbance obeys the equation

¢ _ %

ac e
where

Je=J(Go+€0) and F; =€ [F(¢o +€g) — F(Zo)l- (4.4)
Because of (4.2), the linearized equation given by

) 82 ¥

i — J ¢ {

—J0
ot 8¢ =0
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is Hamiltonian. An equation describing the weakly nonlinear evolution of the disturbance can be
obtained by truncating (4.4) to O(¢). Generally, it will not be Hamiltonian, because of the truncation
of J;. To find a truncation which is Hamiltonian, we follow the same idea as for finite-dimensional
systems: we seek a near-identity transformation from ¢ to n such that

Jy = Jo + 0(e?), (4.5)

where J,, is the Poisson operator for 7. The weakly nonlinear evolution can therefore be determined
from the Hamiltonian equation

an 3F, 2

— =Jo— + 0(¢9),

ot L (€)
where ¥, := F;[¢ ()] can be truncated to O(e). We emphasize that this procedure does not modify
the independent variables used; this is important for practical use of the weakly nonlinear equations
(cf. Lagrangian vs. Eulerian description).

The required change of variable has the general form

n=1¢+€0(;0), (4.6)
where O is a symmetric bilinear operator to be determined. From this, the operator J,,, defined by
8F & §F 6
(7,9} =/—Jn—g dx=/—J;—gdx, (4.7)
én " én 8¢ "ot

can be obtained, and an equation for O can be found from condition (4.5). Although this procedure is
general, it is clear in light of the finite-dimensional case that the algebra involved can be quite complex.
Therefore, we shall consider particular examples to show how the change of variable can be found and
exploited. Our examples concern two different brackets and (at least) four different physical systems:
(a) Euler bracket [4,26,27], which appears for the two-dimensional scalar vortex dynamics (including
quasi-geostrophy) and for the one-dimensional Vlasov-Poisson equation [28], (b) the bracket which
appears for two-dimensional stratified fluid and for two-dimensional MHD [29,30]. In all cases, we
will consider simple equilibria, depending on one coordinate only.

5. Euler bracket, vortex dynamics and Vlasov-Poisson equations

The Euler bracket in two dimensions (x, y) can be written

_ 8F 8§
{f:g}—//c[sg_,&} dxdy, (5.1)
where
_0fog 9f og
r.81:= ax dy  dy ox’

and corresponds to the Poisson operator

J(@&) =—-I[¢, ]

The equilibrium solution is assumed to be a function of y only, ¢y = ¢o(y), and therefore,
a
with ¢; := dgo/dy. We consider a simple form of the change of variable (4.6) given by

n=t+ 20;2, (5.3)
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where the linear operator D = D(¢p) can be expected to involve 9, and not d,. The functional deriva-
tives with respect to ¢ and » are related by

SF

8F
- — Ty 2
: (1+eg|:>)(S :

where T denotes the adjoint. From (4.7) it is then found that

Cle

SF 0F 8%
P I P T P
//&J,,&dd //{ JO +e;(;oo (3;)5’*(5;)
8F\ i (99 SF 86 X
- G ( c)D (a:)*[a;’ac])}d’“‘”"“ ;

arly, condition (4.5) is satisfied if

oo 1 a1

S Le. D=———.
Lo 9y ay &

Hence, the change of variable sought is

a [ ¢?
n=¢—-€— (*/) G4
dy \ 2¢,
For now, let us assume that ¢; # 0. The inverse transformation is given by
C=n+te 3(”2>+<> (5.5)
=7 € .
2¢
Note that the use of n requires not only ¢ < 1, but also
9 /
€c— 5.6
3y <& (5.6)

(and similar conditions for higher-order derivatives).

1.

We make a few remarks to relate the transformation (5.4)-(5.5) to previous results.
It is clear from the bracket (5.2) for n that

on
— =0 5.7
ar = 0, (5.7)
where ~ denotes the average in the x direction; therefore,
_ a 4-2 0 272 )
;= + C(y) + 0(e? )_e— + C(y) + 0(¢9), (5.8)
pred 2¢,

where Z‘ := ¢ —¢ isthe wavy part of the disturbance, and C(y) is fixed by the initial conditions. That
the mean value of ¢ can be evaluated to leading order knowing the wavy part of the disturbance
only is a standard result of wave-mean flow interaction theory for Euler or quasi-geostrophic
equations (e.g. [31]). It is often formulated using the velocity in the x direction defined by

u—fzdy

wm_

2
R +0(e?),

and the quantity ¢ /2;6 is often referred to as the pseudomomentum (up to sign) [32], and can be
traced back to the physical momentum of the fluid [33]. Here, we relate this result to the Poisson
bracket, independently of the Hamiltonian.
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2. The approximate constancy of 77, which results from the imposed Poisson bracket, suggests that
1 must be given by the old variable minus their x-average (compare (5.4) and (5.8)). This yields a
procedure for constructing the change of variable if we can compute a priori this average, i.e. the
right-hand side of (5.8). This is possible using the concept of dynamical accessibility [34]. This
expresses the fact the perturbed vorticity ¢g+€¢ lies on the same symplectic leaf as the equilibrium
vorticity ¢p, that is, the values of the Casimir functionals for the perturbed flows are the same as the
equilibrium values. This can generally be arranged by an appropriate definition of the equilibrium
flow. The dynamical accessibility of ¢y + ¢ can be written explicitly in the form

1
et = (exp{—§.} — 1) {o = (expleg, -1 — 1) Lo = €&y + Eez[g,gxgél +-o (5.9)

where g is an arbitrary function and

g = e//g;“ dxdy.

Applying ~ and noting that g, = ¢ /¢; -+ O(e€), one finds (5.8) and hence an indication of the change
of variable (5.4). Note that the presence/absence of ~ is not really relevant, as one can add a term
in 9, to (5.4) without changing the bracket to the order of accuracy considered.

3. The dynamical accessibility condition (5.9) also makes clear that the variable transformation (5.4)
is in fact well defined even when ¢; = 0 at some y.

4, The transformation (5.4) is the related Zakharov-Piterbarg variable transformation [35] for the

quasi-geostrophic system. Considering the particular case {; = gy, they found that the new
variable implicitly defined by

N, y) = ¢ [x,y — B nm(x, )] (5.10)
is such that the Poisson operator is given by

J , 0 ad

zp goax _'Bax

to all orders in €. Expanding (5.10) in € and comparing with (5.4) it is clear that our transformation
is the first-order approximation to that of Zakharov and Piterbarg. In fact, their transformation
can be extended to more general forms of ¢. Suppose that ¢y(y) is monotonic and admits the
inverse y¢(¢), and consider the transformation of both dependent and independent variables
*,y,¢) — (x, z, nc) defined by

z=Yyoloo® +esx, )] and nc=nc[x,y.¢]l=€" 37;:2 (z—y. (5.11)
z

Assuming that this transformation is one to one (level sets of ¢y + € remain graphs over x), it can
be shown that the Poisson operator for 7 is exactly given by (5.2). This is detailed in Appendix B,
where we also show that 7c reduce to nzp for ¢, = By and that n defined by (5.4) is simply the
O(e) approximation to 7. It is interesting to note the “Lagrangian character” of the transformed
variables: z is in fact a vorticity (transformed in a space coordinate through the function y;,), hence
a label, and 7 is related to a displacement.

Below, we consider the vortex dynamics equation and the one-dimensional Vlasov-Poisson
equation and use the inverse transformation (5.5) to compute the Hamiltonian and derive transformed
evolution equations.

5.1. Vortex dynamics equation

The two-dimensional vorticity equation for incompressible or quasi-geostrophic flows is obtained
using the bracket (5.1) with the Hamiltonian [32,36]

= %/f (IVY > + Ry ?) dxdy.
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Here, ¢ is the streamfunction, related to the vorticity ¢ through
¢ =V —R?y,

where the second term takes into account the effect of a free surface in the quasi-geostrophic
approximation, R being the Rossby radius of deformation. The evolution equation reads

+ [y, ¢l =0.

A basic equilibrium consists of a parallel shear flow U(y) superposed to the basic planetary
rotation:

Lo=fo+By—U.
Introducing the decomposition (4.3), one finds the equation for the disturbance
¢+ UG+ G+ €lyr, £1 = 0. (5.12)

Let us compute the free energy (pseudoenergy) (4.4) using the Casimirs functionals which have
the form

C= // C(%o + €&) dxdy,

for any function C(-). It is well known that the proper choice of C(-) is

O
CH) = Yo(u) du, (5.13)
%o

where ¥, denotes the functional relationship between the streamfunction and the vorticity which
necessarily exists for equilibrium solutions. The free energy is thus given by

//{[ IV + R w}ﬂ /[wo<co+em o(zo)] du} dxdy.

As only the terms up to O(¢) are required for our purpose, we write

d (U
VY2 +R — 3}dd + 0(e?). 5.14
/f[' vr V- Co 3Cody <§6>{ e ) 5:19)

We now introduce (5.5) into (5.14). Because the relationship between yr and 7 is nonlinear, we define
the two fields ¢ and ¥ by

) 5 19 (n?
V29 —R2p=n and V*9 —R 29 = 1, (5.15)
28y 28,

so that y = ¢ + €9 and thus
IV |2+ R2Y? = |Vp|? + R 2% + 2V - VIO + 2eR 200 + 0(€2).

The two other terms in (5.14) require a little more calculation (with some integrations by parts).
Truncating to O(e¢), it is finally found that

U/
// <|V<p| +R? ,77 +2eVe - VI + 2eR 20 —i—eﬁn ) dxdy. (5.16)
%
Taking into account (5.15), it is easy to calculate the functional derivative of %, :

4

U
—— =—¢— —n—€d+e¢ ,</JT)+ 77
sn §6 o Y 2{62
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The evolution equation for 5 is then found using the Poisson operator (5.2); it reads

U/
ne =—Uny — é-(;(/)x +€ <_§679x + Oyl + @yx + ?ﬂﬂx) . (5.17)
0

That this equation is a truncated version of (5.12) can be verified by taking the time derivative of (5.4),
using (5.12) and (5.5), and neglecting terms of order higher than €. Note that (5.17) is relatively simple
because it involves terms of order 1 and € only: no O(e?) are required to preserve the Hamiltonian
structure. Of course, if the equation were to be rewritten in terms of ¢, using (5.5) as an exact
transformation, then the corresponding bracket and Hamiltonian would include extra O(e?) terms. An
advantage of a near-identity transformation results from the fact that (5.12) and (5.17) have the same
linear part; therefore the sum of results that have been derived for the linearized vorticity equations
can be exploited directly in terms of 7.

5.2. Vlasov-Poisson equation

The one-dimensional Vlasov-Poisson equation is also generated by the bracket (5.1). In standard
notation, y = v is the particle velocity in the x direction, and { = f(x, v) is the distribution function.
For clarity, we will use the standard notation, and we rewrite

{F,8} = //f oF 59, dxd (5.18)
9 Sf of v, .
with
_ of g of dg
I.el= <8x3v P ax)'
The Hamiltonian is given by
1 2 1 2
H == mv“f dxdv + — | E-dx, (5.19)
2 8w

where the electric field E (x) is related to the distribution function through the Poisson equation

J0E
a——ﬁ_élﬂe fdv—

@ being the potential, N a fixed background density, and m and e the particle mass and charge,
respectively.
From (5.18)-(5.19), one can derive the Vlasov equation
e
fe +vfx + —Ef, =0.
m

Considering the decomposition (4.3) in a basic distribution fy(v) and an O(¢) disturbance, we write
the disturbance evolution equation

fr +ufe + foE +e— Efv =0. (5.20)

The free energy can be constructed similarly to that for the vorticity equation, with ¥(-) in (5.13)
replaced by %mv2 + e®, which is functionally dependent on fy. It is then found that

L 2, € 92 (mv?\ , ,
7= | P //[23f0< )f 63fo< )f}dxdwo(e)
1 ufy’
= o /EZ dx—m // |:2f0 o ( i >f3:| dxdv + 0(€?). (5.21)
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We now introduce the transformation (5.4)-(5.5) which can be rewritten as

3 [ f? o [ n? 2
=f-e— = and f = e—\|—= O(e”). 5.22
=1 av<2f6> f=n+ 8U<2f0, +oe) (522)
It is such that the dynamics of 7 is generated up to O(¢) by the Poisson operator
!’

ad

Jo = &—. (5.23)
m ox

Introducing (5.22)in (5.21), we can compute the Hamiltonian for n. Compared to the vortex dynamics
case, a simplification occurs because the Poisson equation is unchanged by the transformation:

dE 3o
a:—W:Mce fdv ) =4me ndv |,

so that the first term in the right-hand side of (5.21) does not lead to a O(¢) contribution. The other two
terms are readily simplified using integration by parts, and finally yield the truncated Hamiltonian

1 m v €
=— | E2dx— — —n? — 3) dxdv. 5.24
= [roc 2 [ (2 ) o 520

The evolution equation for 7 is then readily obtained from (5.23) and (5.24). It is given by

A

e, ¢
Nt = —vnxy — —foE + . (5.25)
m 0

Of course, this equation can also be found from (5.20) and (5.22).
6. Stratified fluid and two-dimensional MHD

The bracket for stratified fluid and two-dimensional MHD [29,37], defined by

_ 8F 8§ 8F 8§ 8F 8§
{T’g}_//<§[8{’8{}+p[8p’8§]+p|:8§’8,0]) dxdy, (6.1)

corresponds to the Poisson operator

S (-Te 1 —lp. ]
—[p, 1] 0 ’
where (¢, p) are the dynamical variables. As for the Euler bracket, we consider a basic solution that
depends only ony, &, (y) and pg(y), and we introduce a decomposition of the form (4.3). From now on

(¢, p) thus designates the O(¢) disturbance to the basic solution. The leading-order Poisson operator
which generates the linear evolution for (¢, p) is given by

AN

Jo = —. 6.2
0 (,0(/) 0/ ox (6:2)
We are seeking new variables (7, o) such that condition (4.5) is satisfied. Rather than using a general
near-identity transformation, we can exploit the close analogy between the bracket (6.1) and the Euler
bracket, and use the procedure based on dynamical accessibility. From (6.2), it is clear that the new
variables will have a constant average in the x direction and we can expect the new variables to be

given by the old ones minus their average part (up to a dy term which can be shown to be irrelevant),
as observed in Section 5. To obtain this average, we consider the dynamical accessibility condition

¢ (i) (exp{—., -} — Id) <§°>

Lo
2 / ! !
— e (gxé-(; —|—/hxp6> + i ([gs gxgo] + [h, gxp(a] + [ 3 thO]) + 0(63), (63)
200 2 (2. go0]
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where g and h are arbitrary functions and

g = // (& + hp) dxdy.

Taking the x-average of (6.3), one finds with some effort
iy 9 3 /e
<£> =2 (Cogx ¥ 20k hx) +0(e?).
0 2 dy P82
Eq. (6.3) also yields the relationship between (g, h) and (¢, p), namely

8x\ _ l P
(hx) T 0 (( - Zép/pé) 0.

so that the average fields can be written

[ ]<2p§—{épz/p6)] )
(5) =< Loy (7 5 o

This suggests the transformation from (¢, p) to the new variables (1, o) defined by

(n) _ <C> AT (204“ - Cépz/p(’,) (6.4)
o o dy 1204 P’ ' '

It can be verified that the bracket for those variables is given by Jo + 0(€?), with Jg defined by (6.2),
as required. The inverse transformation is readily obtained as

¢\ _ (n 0T 1 on—1t50*/p, 2
(- i ) o

With these results, we can derive the Hamiltonian equations describing the weakly nonlinear
evolution of a disturbance in a stratified fluid and in two-dimensional MHD.

6.1. Stratified fluid

The equations for an incompressible stratified fluid are derived from the bracket (6.1) and the
Hamiltonian [36,37]

1
J = // <5p|V1ﬁ|2 +pgy> dxdy. (6.6)

The dynamical variables ¢ and p represent the (mass-weighted) vorticity and density, and the
coordinate y is vertical. The streamfunction v is related to the vorticity through

{=V-(pVY).
The evolution equations take the form
G+, ¢1+ 1o, 8y — IVYI?/21 = 0 (6.7)

pe+ ¥, pl = 0. (6.8)

We now consider a basic solution consisting of the parallel flow U(y) and stratification pg(y), so that
the basic vorticity is given by

%o = —(pol)".
To O(e), a disturbance to this basic solution obeys the evolution equations
Ge + Ul + Lo+ (8 — UU) o — poUtny + € ([, £1+ pg VY - Vi + [p, Uy 1) = 0
o+ Upx + po¥x + €[¥, p] = 0, (6.9)
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with the streamfunction/vorticity relation given by

§=V-(poVYy) — (Up)y +€V - (pVY). (6.10)

The free energy can now be computed using the Casimir functionals. Computations detailed in
Appendix C give

1 LU
Fono //{ polVol* — nG+ /< 0 g>02
2pq Po

!/

2
no
2,062 6p, /3

1
+e |:20|V90|2 + poVe - VI + [2¢0U" — po(UU) ] & “ dxdy. (6.11)

Here, ¢ and ¢ are defined by the decomposition ¢ = ¢ + €¥ of the streamfunction. From (6.10) and
(6.4), we find these to be given in terms of the new dependent variables (5, o) by

9
V- (0oVe) =n+ a—(UU)
y

a 7.2 3 a 2
Ve (ooV) = — (1007 ) L Oyl ()| Z v (ove). (6.12)
Wy \py 2p ay L 3y \2p

The equations of motion in terms of (, o) are derived by applying the Poisson operator Jy given
by (6.2) to the functional derivatives of %, ), computed in Appendix C. The final result reads

ne = —Unx — Soox — (8 — UU Yoy + pUgyy

6{_§6ﬁx - P()Uﬁxy - P(I)VQD - Vo + (oyn)x

/

U 1
— [Wey)yo], + = o) — —5 [¢U + po(UU'Y] aax} (6.13)
Po Po

U/
oy = —Uoyx — p(/)%c + € |:_p(/)ﬂx + (¢y0)x + ,O/UO'{| .
0

It can be checked that these equations are also found directly by manipulating (6.4), (6.5) and (6.9).

6.2. Two-dimensional MHD

The equations for two-dimensional MHD with the magnetic field in the plane are Hamiltonian with
the bracket (6.1), where ¢ is to be interpreted as the vorticity and p as the magnetic potential (often
denoted by A). The corresponding Hamiltonian [29,30] is

=1 / (VY + 1VpP?) dxdy. (6.14)

where ¢ is the streamfunction which, according to our previous sign convention, is defined by
V24 = ¢. The evolution equations are then of the form

G+, 141, Vil =0
pe+ ¥, pl = 0.

The basic solution we consider is again a parallel flow U(y), with the magnetic potential po(y),
corresponding to a magnetic field parallel to the streamlines. The evolution of a small disturbance
to this basic solution is governed by

G4+ Ul 4 Co¥x — 00" px + 0o Vi ox + € ([, 1+ [VPp. pl} =0
pe +Upx + pgix + €[, p] = 0, (6.15)
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Table 1
Equation numbers for the Hamiltonian structures and evolution equations in terms of the transformed variables.
Vortex dynamics Vlasov-Poisson Stratified fluid 2-D MHD
Bracket (5.2) (5.23) (6.2) (6.2)
Free energy (5.16) (5.24) (6.11) (6.16)
Equations (5.17) (5.25) (6.13) (6.17)

where each prime denotes a derivative with respect to y.
The derivation of the free energy for this system closely follows that for the stratified fluid:
decomposing ¥ = ¢ + €, with

V2¢:n, VZﬁ:a(no'_ 60’2>’

o 2,0()2

computations detailed in Appendix D lead to

1 U 1 /¢u
Fino) = —(Iv 2 VUZ — —no 0 " 02
wn = [[{3 0908 + 1907 oo+ 2 (S

U, 1 1 / / i
+ €|V VO + —n0® + -—0°V?0, — —5 (20U" + pgpo””) o | ¢ dxdy.  (6.16)
2p0 2,00 6,00

Applying the Poisson operator (6.2), one can finally find the evolution equations

s

ne = —Unyx — ;é(/)x - p(,)Vsz + Py Ox
!

! Z 1 Iy rom
+e€ _goﬂx + (‘pyn)x + p/ (7]0')X - — (§0U + 00Po )ggx
0 )00

82 2
+ (0V20,), — pyV? g (6.17)
axdy \ 2p,

U/
or = —Uox — pyex + € [—p()ﬁx + (pyo)x + p/UO'x:| .
0

Again, these equations can be verified by using directly (6.4), (6.5) and (6.15).

7. Discussion

We have described beatification, a general method for obtaining weakly nonlinear Hamiltonian
dynamical systems from a variety of finite and infinite-dimensional noncanonical Hamiltonian
systems. We have seen that unlike canonical systems, for which the Poisson matrix is constant,
perturbation theory for noncanonical systems possesses the additional necessity of simultaneously
expanding the Poisson bracket and the Hamiltonian. This could have been done for any known orbit or
point in phase space, but here we expanded about a given equilibrium solution and obtained weakly
nonlinear systems for our examples. Table 1 gives the locations of the results for the four infinite-
dimensional systems we considered.

Beatification can also be applied to the large class of Hamiltonian plasma reduced fluid models that
have Poisson bracket (Jacobian) nonlinearities. Such models have additional scalar fields that describe
two-fluid or extended MHD effects, the effects of gyroviscosity, which gives rise to nondissipative
momentum transport in magnetized plasma [38-46], and electromagnetic effects [47,48]. All these
models fit within the theory of Ref. [25], and the general beatification transformation can be worked
out for all of them. Although these models are two-dimensional, they can be extended by geometric
aspect ratio expansion to what are referred to as weakly three-dimensional models [49], where the
third dimension enters the equations of motion linearly.
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More general Hamiltonian field theories have more complicated Poisson brackets than those of
Table 1 considered here. For example, the bracket for three-dimensional MHD [3] has Lie-Poisson
form, but in full generality it has in addition to the velocity and magnetic fields the density and
entropy, giving a total of eight variables. Although this complicates significantly the beatification
transformation, calculations like those presented in the present work can be done for this system. In
fact, even the rather complicated magnetofluid model of full extended MHD, which includes Hall drift
as well as electron inertia effects, is amenable, since we now have the noncanonical Poisson bracket,
one that is not of Lie-Poisson form, for this full system [50,51]. This full system includes Hall MHD [52]
and inertial MHD as Hamiltonian subsystems and, because of the transformations given in [51],
we see that beatification of only the Hall bracket is sufficient for beatification of inertial MHD and,
indeed, the entire extended MHD. Similarly, the complicated bracket for the Vlasov-Maxwell system
[28,4,53,54] can be beatified.

Another application of the beatification procedure is to Hamiltonian systems governed by
brackets that emerge from Dirac’s constraint theory. Such systems have Poisson brackets called Dirac
brackets, an example being the Poisson brackets for the incompressible fluid [55-57], incompressible
MHD [56,57], and the modified Hasegawa-Mima equation [58]. Brackets, even more general than the
conventional Dirac bracket [59] can be beatified.

The beatification procedure proposed in this paper lays the groundwork for the canonization of
weakly nonlinear Hamiltonian systems. Because the brackets J, in the new coordinates are exactly
those governing the linearized dynamics, the further coordinate transformations required to canonize
weakly nonlinear systems are exactly those that canonize linear systems. We demonstrate this by
explicitly carrying out the full canonization of the Vlasov-Poisson system considered in Section 5.2
in terms of action-angle variables, setting the stage for the perturbation theory proposed in [60].
This is detailed in Appendix E. Details of this are contained in [61], where equations for interacting
continuous spectra analogous to the three-wave problem in finite dimensions were obtained. Similar
calculations can be performed for fluid shear flow dynamics that have similar continuous spectra
[33,62,63], and the relationship of this approach to previous echo calculations [64] and recent rigorous
results [65] would be of interest to pursue.

The degree to which the weakly nonlinear systems obtained here accurately track the full dynamics
will depend on a case-by-case basis on the system under consideration, but some generic comments
can be made. Clearly one would expect a better approximation the closer one chooses an initial
condition to the equilibrium state and the smaller the numerical coefficients of the nonlinear terms in
the Hamiltonian. For stable equilibria with Hamiltonians that have a convex linear part, our systems
should give accurate frequency shifts due to nonlinearity for near equilibrium dynamics. However,
to capture the extent of a basin of stability, if finite amplitude instability exists, would require
extending the beatification transformation to higher order. For expansion about stable equilibria
with Hamiltonians that have a nonconvex linear part, i.e., systems with negative energy modes, the
situation is more delicate, even for the case of finite dimensions [66,12] where explosive growth
can occur. Progress has been made in understanding the structural stability of infinite-dimensional
systems [67], but nonlinear behavior with negative energy modes complicates matters. For unstable
equilibria, accurate slowing of the growth rate may be possible, but to understand the extent to which
a mode can grow would also require a higher order expansion.

The beatification transformations considered in this paper flattened the Poisson bracket to first
order. In recent work this has been generalized by flattening to second order [68], which is necessary
to obtain consistent dynamics if one expands about a state that is not an equilibrium state. Also, this
higher order beatification can be used to address the accuracy problems mentioned above. Moreover,
it has been shown [69] how to construct a beatification transformation in terms of an operator series
that flattens the Poisson bracket to all orders. This and other examples will be recorded and explored
in future work.
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Appendix A. Two-spin system

In this Appendix, we provide some details of the treatment of the two-spin system considered in
Section 3.3.

A.1. Canonical variables for the linearized system

Consider the linearized equations for z(,). They are generated by the Hamiltonian (3.10) with the
bracket
g
{f, g}o = mB Zsm (A1)
Zéa)
obtained by llnearlzmg (3.8). One finds explicitly
-1 _
24y =0
22 3 3
2, = mBy (Az}, +az},,y) a=1,2.
-3 2 2
Zy = —mB1 (A2 + a2, 1))
The invariance of z(] ) follows from the invariance of the Casimir functions in the original system. We
now seek action-angle variables for this system. Using z := (22 2(1)’ 2(22), 2(32>)T, we can rewrite the
dynamics as

(1

z=Az,
where
0 A 0 a
i - 0 —a O
A=mBil g 4 o
—a 0 —A O

The vector z can then be expanded in terms of the eigenvectors of A:
zZ= A(])X(]) + A(Z)X(z) + c.c,
where
X = (=i, —1,i, DT/2 and xq =, 1,i,1)7/2
correspond to the eigenvalues io() := iB1(1 4+ 2am) and io(y) := iBy, respectively. In terms of the
variables A (), the Poisson bracket (A.1) is

2
. of og of og
s = —imB .
V.8l 1; <8A(a) 9AT 9T 0Aw

(@) (@)
Action and angle variables (J4), 6(«)) are then defined by

Ay = /ImB1lJ() eXp(—ista)), (A2)

where s := sign(mBy), so that the bracket becomes canonical:

= of g af dg )
o - ' (A3
gl ; (3%) ey i 00w )

Correspondingly, the (quadratic) Hamiltonian (3.8) reduces to

2
1 1
F=_—s Z Ol + 02420

a=1

The last term is of course irrelevant, as the variables z(ll) and 2(12) do not appear in the bracket.
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A.2. Canonical perturbation theory for the weakly nonlinear system

Using the mixed generating function S(6(a), I()), we transform (J), f«)) into the new variables
(I(a) s (ﬁ(a)), with

aS
00

such that the new Hamiltonian is independent of ¢,). It is easy to check that this is achieved with

as
=](a) and — = ¢(O{)! (A4)
8I(u)

2

€ .

S= E Q(a)l(a) — 2mB; (C1 — Cz)\/l(nl(z) Sll‘l(@(]) — 9(2)). (AS)
a=1

The new Hamiltonian is obtained by averaging; it is given by

2
F(I(a)) = —SZO’(Q)I(‘]) +acic; — GSG(Cl + C2)I(1).

a=1

The frequencies of the nonlinear system are thus given by o1y + €a(c; + ¢;) and o). The exact
relationship between (I(y), ¢()) and (Ji), O(a)) can be found from (A.4) to (A.5).

It is interesting to note that, due to the extreme simplicity of the system, one can integrate
the weakly nonlinear equations without resorting to the canonical perturbation techniques. From
(3.15), it is clear that the nonlinear coupling vanishes to the order of accuracy considered here if
an = O(e) initially. Actually, this can be obtained for any initial condition by suitably redefining
the decomposition between equilibrium solution and the disturbance. This decomposition is indeed
partly arbitrary, and one can write the initial condition as

() (0) = mBy + €z}, (0) = m{, By,

with m/(a) =1+ ezsa) (0)/(mBy). With the second decomposition the disturbance has initially van-

ishing components in the direction of the external magnetic field, and rfa) = O(e) for all time. The
cubic terms in the Hamiltonian vanish, so that there is no weakly nonlinear effect at the order con-
sidered. Studying the linear system as above but with m;U # My, one finds the two frequencies
o) + €a(cy + ¢;) and o) as obtained by the perturbation theory.

Appendix B. Extension of the Zakharov-Piterbarg transformation

The variables x, y, ¢ (x, y) are transformed into x, z, nc(x, z) defined by

d
2l €l = yolo®) + €yl eyl =€ 2 @y, (B.1)
0lz
These relations can be inverted according to
dYO -1
Yz.nel=z—€ | ncx.2).  Llxz.cd=e [$0(2) — o] (B.2)
Solg@)

Roughly speaking, one can say that the transformation exchanges the roles of the independent and
dependent variables: z is essentially defined in terms of the vorticity, while 7. is defined in terms of
parcel displacement—the expressions are somewhat complicated by the fact that the transformation
is near-identity so that z is a distance and 7c a disturbance vorticity. Noting that

3 (d
dy=|1—e> (2 ) |de, (B.3)
9z \ ddo |y
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we find a condition analogous to (5.6) for the well-definiteness of the transformation. We now
compute the bracket (5.1) in terms of x, z, nc. From (B.1)-(B.2), one can see that ¢ (x, y) and nc(x, z)
are functionally related through

dyo
7(x,y) 2671/ [Co(z) =& |:z—edy§0

Taking the variation of this equality leads to

Ne(x, Z)} } 3(z = yolSo) + € (x, »)]) dz.
%0(@)

dgo | dyo
8 (x,y) = ol . dn(x,2) 8(z — yolto(y) +€C(x,y)]) dz
Yo ly ddo |zy(z)
a9 d d
+ o {;0@ ys [z—edy” m(xz)“ > 5¢(x,9),
;O o (2) z=yo[Lo V) +€L (x,y)] {0 o) +ed(x,y)

which can be rewritten as

B] d a (d
aio dio [1 —eo <dy° ne(x, z)):| 8¢ (%, )
Yo ly Ao |eyg)+ezxy) z Solso@) z=yolto W) +et (x.y)]
d dy
_ / Yol Yol 5 x,2) 8z — yolto®) + € (x,y)]) dz.
dyo Iy d¢o [¢yz)

and finally as

3 dyo
scouy) = [ |1—e
£(x.) /[ (a;o

Consider now the variation of an arbitrary functional ¥, namely

8}’—//6i8§(x ) dxd —//L(S (x, z) dxdz (B.5)
)] sy YT snet ) 01 ' '

Introducing (B.4), the first equality becomes

-1
dyo
o= Jf] |- (G2 een)

x 8n(x,2) 8(z — yolSo(¥) + €5 (x, ]

-1
ne(x, Z))} dn(x,z) 8(z — yoléo(y) + € (x,y)]) dz. (B.4)
s

8F
dxdydz.
8¢ (x,y)
From (B.3), it can be seen that the integration in y can be carried out: defining z’ by z’ = yo[¢o(¥) +
€Z(x,y)], one finds

SF
/ 8z —yolso) + €t X, )) ———dy

8¢(x,y)
/3 (2
07/ dé'()

x,2) ] |8z —2) oF dz’
co(z’)nc’ Sy

Substituting this result in the previous equation leads to

SF
- / / 5 Gx,y) 1D D

where y is now related to z, nc(x, z) through (B.2). Comparing with the second equality of (B.5) gives
the result

5F  oF
SC(x,y)  dnc(x,z)’
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analogous to that of Zakharov and Piterbarg. The bracket (5.1) can now be expressed in terms of the

new Varlables.
// ” |§O(y) eg(@ )? S
S .y d‘(d)

_//L}v (6@, 3E) '3(x,y)

dne 9(x,y) I(x, 2)

:/f@ 813(879) dxdz.
dyo |, 8nc 0x \ dnc

Correspondingly, the Poisson operator is given in terms of the variables x, z, 1c by Jo = ;9.
It is easy to see that the transformation (B.1)-(B.2) is equivalent to the Zakharov-Piterbarg
transformation when &, (y9) = BYo; indeed, one finds,

z=y+eft(xy), ncx2) =&Y,

which is equivalent to (5.10) and to their equation (6) (noting the correspondence (¢, nc) — (£2,¢)
between our notation and theirs). That our transformation (5.4) is the leading order approximation to
(B.1)-(B.2) can be verified by expanding the expression for z in (B.1) to obtain

{F.9}

dxdz

62 dzyo
L+ 5 5| CEy+0E).
) %0 o
Using the O(¢) approximation to eliminate the implicit y-dependence in terms of order O(¢), one can
invert this relation according to

dyo
z= € —
v déo

2
d € d? e [d 3
y=z—¢ 2t + S0 2un+ S (2 e 21+ 0(€Y).
%o [gy(2) 2 Ay 1y 2 \ dbo e/ 92

Introducing this result into the definition (B.1) for n¢ yields

20z | d¢o

which is equivalent to (5.4), z replacing y.

nex,z2) = ¢(x,2) — €9 [dyo £2(x, Z):| +0(€?),
%0 (2)

Appendix C. Free energy for the stratified fluid

The free energy for stratified fluids is obtained by combining (6.6) with the Casimir functionals for
the bracket (6.1) which have the form

e, =// Ci(po +e€p)dxdy, @, =//(§o+ec)Cz(po+ep) dxdy, (C1)

for arbitrary functions C;(-) and C,(-). The proper choice can be found to be

©)
G() = —/ h(wydp, GG = o(), (C2)
P

0

where Yo (-) and h := &odvg /dpo + gy — U?/2 are defined by their functional dependence on py.
This dependence follows from the steady state condition for the basic solution. Adding these Casimir
functionals to the Hamiltonian leads to the free energy in the form

- 1 2, 9o a7
Fiep = E(PO‘FéP)WW +d7p0§,0—€ A [h(po + €p) — h(po)] du

d
+ €L +€0) [Wo(po +ep) — Yolpo) — edfz,o]} dxdy,
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which can be expanded in €. Keeping only the O(1) and O(¢) terms, we find

dvro 1/ d*, dh
Fep) = f/{f IV P+ 2 PRI (cdf d—pﬂ)pz

dzwo 1 &y d?h\ "
+ 6[ pIVY +f 6 do? ¢p? (Co ap? dpg)p “ dxdy + 0(e*).  (C.3)

The next step is to introduce the variable transformation (6.4) into this free energy. We decompose
the streamfunction according to v = ¢ + €% and find ¢ and ¥ given by (6.12). The terms in | V|2
in (C.3) are then readily expressed as functions of ¢ and ©. Substitution of (6.4) into (C.3) yields terms
in no, o2, no? and o3. Lengthy calculations, using extensively the relation

dirg 0 U?

and its successive derivatives are necessary to put them in a simple form. This leads to the free energy
(6.11).

The functional derivatives of ¥ need to be calculated to derive the equations of motion. Using
(6.12), one can find

SF u’ u’
.0 _(p_/a+6(¢’yf7+ 02_19>

an Po P 2p)
M:'(n,a)

U (U
—*/7]+U(py+*, uu +—F—-8])0
o Po Po Po

%
02 Pyo — o (Uﬁoy)ya
Do

4

Mk LT
el — o — = |Vol* -
ey 2 ;

4 Uy 4 U/ 1 2 /U/ / UU// 2
y T —3N0 — /3[ GoU" + py( )]G .
Lo 2p

Appendix D. Free energy for two-dimensional MHD

We derive the free energy for two-dimensional MHD by adding to the Hamiltonian (6.14) a suitable
Casimir functionals whose general form is again (C.1). The choice leading to a quadratic free energy is
formally given by (C.2), with h = o dvg/dpo — V2 po. The general form of the free energy is found to
be

Fip = f[{ (IVY* +1Vpl?) ‘1/ [h(po + €u) — h(pp)] di

€ (o + €0) [1//0(,00 +€p) — Yolpo) — edllf)fop] + %4,0} dxdy,

and after expanding in €

1/ d dh
Fep = f/{ (IVY I +|Vol?) + 1//4“ + - (; dl/’f d—pg)pZ

1d%y, 1 Yo d*h\ 4 )
+ € [2 o 2 cp? ({o dpo cl,q%) P :“ dxdy + O(e). (D.1)

Introducing the variable change (6.5), with 1 = ¢ + €, finally leads to the free energy in the form
(6.16).
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The variational derivatives of this free energy with respect to  and o can then be evaluated; they
are given by

‘S?(n o) u 1 v 2
7’:—(;7—*/0'%—6 —l9+*/(/)yo—+ 26
on Lo Po 2 6

SF U 1
200 — V2% — =4 — (U + php®) o
do Po 0o
Mk & b0 1 U
€l o — —5P0 + —no
A

1 3 o? 1 4
+ =V, -V (2{'U'+,0/,0( )) o?|.
Py dy2p0p 2p,> \° oro

Appendix E. Canonization for continuous spectra

Once the weakly nonlinear equations are beatified, formulated as a Hamiltonian system with a
constant Poisson operator Jo, it is natural to seek the next step of canonization, i.e., transforming
into a canonical form. Standard (canonical) perturbation methods, starting with the diagonalization
of the leading-order Hamiltonian, can then be applied to study (and possibly integrate) the weakly
nonlinear dynamics. Because the bracket Jo found for the weakly nonlinear system is also that of the
linearized system, both the canonization and the diagonalization of the leading-order Hamiltonian
are achieved if one uses the action-angle variables of the linearized system. For finite-dimensional
systems, those variables are easier to find (see Appendix A for an example). For infinite-dimensional
systems, however, this can be a non-trivial task unless the equilibrium solution is simple. Indeed, the
spectrum of the linear evolution operator generally contains a continuous part which needs to be
treated carefully. Nevertheless, existing results provide action-angle variables corresponding to the
continuous spectrum for the linearized vorticity and Vlasov-Poisson equations [70,60,33,62,63] that
we have considered in Section 5. Here, we show how these results can be exploited to cast the weakly
nonlinear equations in a very simple form, well-suited to start further investigations. We focus on the
Vlasov-Poisson equation, as it is somewhat simpler than the vorticity equations. The latter could be
treated equivalently with minor modifications.

The transformations rendering the linear Vlasov-Poisson equations into canonical form was first
described in [70] and are intimately related to the Van Kampen generalized eigenmodes of the
linearized system. We apply these transformations to the variable n. Schematically, the following
successive changes of variables are made:

nx, v, t) = (v, t) = E(u, t) — Ji(u, t), Oc(u, t).

Here, 7y is the Fourier transform of 7 in x, E; are coordinates in which the linearized system is
diagonalized, and (Ji, 6;) are the action-angle variables. The transformation from 7 to Ej can be seen
as an integral transform defined by

ik ik o
Mk(v, t) = —G[E(u, )] :== 7/ G (u, v)Ex(u, t) du, (E.1)
4me 4me J_o

with the kernel

Gr(u, v) =gk, v)P + er(k, v)6(u — v),

u—v
where ¢; and &z are the imaginary and real parts of the plasma dielectric function. The inverse
transform can be shown to be

4me - 4e [ -
Ex(u, t) = —Gln(v, )] :== —— Gi(u, v)ni(v, t) dv,
ik ik J_o
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with the kernel
~ 1 1
Ge(u,v) = ——= | ek, ) P —— + er(k, W)d(u —v) | .
le(k, u)|? u—v
The action/angle variables are then defined by

16|8[|
kIV]el?

Ek(u7 t) = .]k(u5 t) e€xp [_iskgk(u’ t)] )

where s; := sign k. In terms of these variables, the Poisson bracket (5.23) becomes canonical, i.e.

_N [T (2 87 5
e = ;/m <5ek LI 59k) "

and the quadratic part of the Hamiltonian is simply

o [ee}
FO=3" / oW, ) du,
k=14~

with the frequencies wy (1) := ku sign g;(k, u).

To derive a canonical form of the Hamiltonian equations (5.25) describing the weakly nonlinear
evolution of a disturbance [61], we only need to express the O(¢) (cubic) part of the Hamiltonian
(5.24) in terms of the action-angle variables. Substituting (E.1) and integrating in x, one finds

3 i [ee]
m n 1m kakpk. f
- —dxdv = —— E d Gy, (Ug, V)Er (ug, t) du
3 //f(;z v 3(4me)3 ; ko / 0’2 v oo ko (tas V)Eg (Ua, ) ditg

X [ Gkb (up, U)Ekb (up, t) dub/ ch (ue, U)EkE (uc, t) duc> s (E.2)

e} —0o0

with k, 4+ k, + k. = 0. This expression can be written in the standard form

$(3) = Z Z /// I(ka, kb, kCa Ug, Up, uc)Eka (ua, t)Ekb (ub7 t)Ekg (uc; t) dua dub duc,

ka kp

where I(---) is an interaction coefficient. To derive the expression for this coefficient from (E.2),
one needs to permute the integrations with respect to v and ug, up, u.. Because of the presence of
the Cauchy principal value in G (u, v), the Poincaré-Bertrand equality must be used. After a lengthy
calculation, the details of which can be found in [61], one finds

imkokpke [ .

= J(ug, up, uc, v) dv,
3(4me)® J_o

with

1
j= Fcka (g, V)G, (Up, V)G, (Uc, V)
0

1
+F [£1(ka, v)&1 (kp, V)8V — Ua)8(v — up) Gy (e, V) + cyc. |,
0

where cyc designates the sum of the three cyclic permutations of (a, b, c).
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