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A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian
field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al.
[Ann. Phys. 169, 29 (1986)], which uses a noncanonical bracket to effect constrained variations of an action
functional. Various implications and extensions of this action principle are also discussed. Two significant
byproducts of this formalism are the introduction of a new divergence-free 4-vector variable for the
magnetic field, and a new Lie-dragged form for the theory.

DOI: 10.1103/PhysRevD.91.084050 PACS numbers: 04.20.Fy, 47.10.Df, 52.27.Ny, 95.30.Sf

I. INTRODUCTION

As a natural extension of early work on relativistic fluid
mechanics [1], Lichnerowicz and Anile developed a theory
of relativistic magnetohydrodynamics (MHD) [2–4] paral-
leling the well-studied nonrelativistic version. The primary
assumption of MHD, that the fluid in question is charged
but quasineutral, holds in relativistic contexts of interest,
although the definition of quasineutrality must be restated
in terms of a 4-current. As a result, relativistic MHD holds
an important position in the field of relativistic computa-
tional modeling, with a variety of algorithms both sug-
gested and implemented (e.g. Refs. [5–11]). The present
paper explores the theoretical side of the subject, which
recently has received less attention than the computational
side. In particular, our main contributions are (i) the intro-
duction of a new canonical 4-momentum, and a new
divergenceless 4-vector to represent the magnetic field;
(ii) using the new variables to cast relativistic MHD into
a covariant Poisson bracket formalism in terms of Eulerian
field variables; (iii) investigatingmany properties of our new
formalism, including several alternative brackets, a refor-
mulation in differential-geometric concepts, and the conse-
quences of a new gauge freedom.
Physicists know well the benefits of casting a theory into

a Hamiltonian or action principle mold, as our present work
accomplishes. In addition to being aesthetically appealing
in its own right, this form has several practical advantages:
(i) certain numerical algorithms are based on such a structure
(e.g. the recent works of Refs. [12–14]), while others can
use said structure as a consistency check; (ii) finding the
equations of motion in general coordinates, which Landau

and Lifschitz called “unsolved” for fluid mechanics,
becomes straightforward; (iii) the formulation assists both
the discovery and classification of constants ofmotion; (iv) a
Hamiltonian structure provides a handy framework for
equilibrium and stability analysis; (v) both Hamiltonian
and action principle pictures provide a way of quantizing
physical systems, tying into the field of “quantum plasmas”
currently receiving much attention. The present work also
necessitates a handful of new concepts (a modified enthalpy
density, a momentum differing significantly from the
standard kinetic momentum, and another “momentum”
conjugate to the magnetic field), which may provide new
insight into this physical system.
We would be remiss not to mention previous attempts

at providing an action principle for relativistic MHD.
Maugin [15] did provide a Lagrangian action principle,
but in terms of Clebsch potentials, rather than the physical
quantities themselves. Alternatively, Kawazura et al. [16]
have recently produced a useful Lagrangian variable action
principle. In future work we will show how these action
principles relate to our own. Meanwhile, the Poisson
bracket structure of Morrison and Greene [17] was shown
to be applicable to relativistic MHD in terms of 3-vectorial
quantities in a specific reference frame [18]. This bracket is
in effect a (3þ 1) split of the present theory, which uses
only tensorial quantities and does not require a choice of
reference frame. The chief advantage of the present work
over Maugin’s and Kawazura’s is that it takes place in
Eulerian variables, rather than Lagrangian ones: both the
aforementioned theories require a map to the physical
Eulerian variables after the variational principle has been
performed, adding an additional step that our formalism
does not require.
The paper is organized as follows. Section II provides a

review of MHD, starting with the nonrelativistic theory in
Sec. II A before describing the relativistic theory in Sec. II B,

*cavell@physics.utexas.edu
†morrison@physics.utexas.edu
‡pegoraro@df.unipi.it

PHYSICAL REVIEW D 91, 084050 (2015)

1550-7998=2015=91(8)=084050(16) 084050-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.91.084050
http://dx.doi.org/10.1103/PhysRevD.91.084050
http://dx.doi.org/10.1103/PhysRevD.91.084050
http://dx.doi.org/10.1103/PhysRevD.91.084050


where the new variable hμ that describes the magnetic field
is introduced. Section III then presents our new action
principle using the new variable. Here we first describe, in
Sec. III A, the functional that serves as our action and show
how conjugate variables arise from functional differentia-
tion; then, in Sec. III B, we describe the covariant Poisson
bracket formulation that provides our constrained variations.
Section IV is dedicated to alternative brackets: first, in
Sec. IVA we present a bracket with nontrivial Jacobi
identity; in Sec. IV B, a bracket using a tensorial magnetic
potential; in Sec. IV C, the differential-geometric form of
our main bracket, with several other quantities also pre-
sented in that form; finally, in Sec. IV D, we show how to
couple our relativistic MHD theory to a fixed gravitational
background. In Sec. V we discuss several features of our
theory, including the nature of the divergence-free constraint
and Casimirs. Finally, in Sec. VI we summarize our results.

II. MHD REVIEW

The equations of MHD, both nonrelativistic and rela-
tivistic, can be written in various ways in terms of different
variables. In this section we gather together formulas and
well-known identities needed for the remainder of the
paper. The main new contribution of this section is the
introduction of the variable hμ of (12).

A. Nonrelativistic MHD—two descriptions

First we give the equations of ideal nonrelativisitic ideal
MHD, with the force law and Faraday’s law expressed in
two alternative ways:

∂v
∂t þ ðv ·∇Þv ¼ −

∇p
ρ

þ 1

4πρ
½ð∇ × BÞ ×B� ð1Þ

¼ −
∇p
ρ

þ 1

4πρ
∇ · ðIB2=2 − B ⊗ BÞ; ð2Þ

∂B
∂t ¼ ∇ × ðv ×BÞ; ð3Þ

¼ −B∇ · v þ B · ∇v − v ·∇B ð4Þ

∂ρ
∂t þ∇ · ðρvÞ ¼ 0;

∂s
∂t þ v ·∇s ¼ 0:

Here ρ is the fluid density, p its pressure, s its specific
entropy, v the velocity field, and B the magnetic field.
In (2) the symbol I represents the identity tensor. The
current j and electric field E have been eliminated from
these equations, but they can be recovered from the ideal
conductor Ohm’s law, Eþ ðv=cÞ ×B ¼ 0, and Ampére’s
law, j ¼ ðc=4πÞ∇ ×B.

Observe the alternative versions of (1) and (3) given
in (2) and (4), respectively. These equations differ by
terms involving ∇ ·B, and both Eqs. (3) and (4) preserve
the initial condition ∇ · B ¼ 0, which can be seen by
rewriting (4):

∂B
∂t ¼ −B∇ · v þ B ·∇v − v · ∇B

¼ ∇ × ðv ×BÞ − v∇ · B: ð5Þ

Upon taking the divergence,

∂∇ ·B
∂t ¼ −∇ · ðv∇ · BÞ: ð6Þ

Consequently, if∇ ·B is initially identically zero it remains
so as well. Equation (5) shows that forms (3) and (4) are
equivalent when the magnetic field is divergenceless,
although the former reveals its Faraday law origin, while
the latter shows an advected magnetic flux. Geometrically
(4) is ∂B=∂tþ £vB ¼ 0, where £vB is the Lie derivative of
B, a vector density dual to a 2-form. Similarly, Eqs. (1) and
(2) differ by a ∇ ·B term, with the former revealing its
Lorentz force originvia a clearly identified current, while the
latter takes the form of a conservation law, which Godunov
[19] showed to be superior for numerical computation.
We have distinguished these two forms because they

possess different Hamiltonian structures. In Ref. [17] a
Poisson bracket was given for the form with (1) and (3), but
this structure required building in the initial condition
∇ ·B ¼ 0. However, an alternative and more natural form
was first given in Refs. [20,21], which is entirely free from
∇ ·B ¼ 0, it being only one possible choice for an initial
condition. Later in the paper we will demonstrate relativ-
istic equivalents of both structures, and the two will also
differ by the divergence of a 4-vectorial quantity; to be
equivalent, said divergence must vanish, which will moti-
vate our use of the new magnetic quantity hμ.
Should one wish to add displacement current back into

MHD, as is done in the most prevalent version of
relativistic MHD, the momentum equation would have
to be altered as follows:

∂v
∂t þ ðv ·∇Þv

¼ −
∇p
ρ

þ 1

4πρ

��
∇ ×Bþ ∂

∂t
�
v
c2

×B

��
×B

�
: ð7Þ

However, the new term, when compared to ∂v=∂t, scales as
B2

4πρc2
¼

�
vA
c

�
2

;

where vA is the Alfvén velocity. In the nonrelativistic limit,
waves involving disturbances of the matter must also travel
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much slower than the speed of light, allowing one to drop
the displacement current. This also means that relativistic
MHD is free to add said displacement current back in
(albeit constrained by Ohm’s law), while still reducing to
conventional MHD in the nonrelativistic limit: one simply
needs to keep in mind that said limit goes beyond just
setting v=c → 0.

B. Relativistic MHD

Turning now to the description of relativistic MHD, we
use signature and units such that 4-velocities have positive
unit norms uμuμ ¼ gμνuμuν ¼ 1, where the Minkowski
metric gμν is given by diað1;−1;−1;−1Þ. The 4-vector
field uμ will denote the plasma’s 4-velocity at each point
in spacetime; at each such point, this quantity will define
a reference frame with locally vanishing 3-velocity,
helpful for some purposes. The fluid density is now
ρ ¼ mnð1þ ϵÞ, where n is the baryon number density,
m is the fluid rest mass per baryon (including both proton
and electron, for the typical case), and ϵ is the internal
energy per baryon, normalized to m. The specific entropy s
is unchanged, though later on it will prove more convenient
to use the entropy density σ ¼ ns. We will suppose that the
energy can be written ϵðn; σÞ, hence ρðn; σÞ, in which case
the pressure is given by

p ¼ n
∂ρ
∂nþ σ

∂ρ
∂σ − ρ; ð8Þ

which is just the first law of thermodynamics, Tds ¼
dðρ=nÞ þ pdð1=nÞ, written in terms of n and σ.
In electromagnetism, having chosen a specific reference

frame, one extracts the electric field 3-vector from the field
tensor Fμν by Ei ¼ −Fi0, i ¼ 1, 2, 3, while the magnetic
field 3-vector Bi ¼ F i0, where F μν ¼ ϵμναβFαβ=2 is the
dual of Fμν. Given uμ, one can also define the two 4-vectors
Bμ ≡ F μνuν ¼ γðv ·B;B − v ×EÞ and Eμ ≡ Fμνuν ¼
γðv · E;Eþ v × BÞ. Note that Bi ¼ Bi and Ei ¼ Ei in
the reference frame defined by uμ. In terms of the 4-vectors
Bμ and Eμ the field tensor has the decomposition

Fμν ¼ ϵμνλσBλuσ þ ðuμEν − uνEμÞ; ð9Þ

a formvalid for any timelike 4-vectoruμ. One can also reverse
this process by takingBμ and Eμ to be fundamental, and then
defining the field tensor Fμν via (9). In this case, different
values of Bμ and Eμ can give the same field tensor, for
one can add any quantity proportional to uμ to either
4-vector while leaving the field tensor unchanged; however,
if the constraints Eλuλ ¼ Bλuλ ¼ 0 are imposed, then the
representation is unique. This multiplicity of representations
of the field tensor will prove important later.
In MHD one eliminates the electric field from the theory,

if necessary using Ohm’s law to express it in terms of the
fluid velocity and magnetic field. In a relativistic context,

this is done by setting Eμ ¼ Fμλuλ ¼ 0, which gives Eþ
v × B ¼ 0 (i.e. Ohm’s law) and, in a specific reference frame,

Bμ ¼ γ

�
v ·B;

B
γ2

þ vðv ·BÞ
�
: ð10Þ

For convenience bμ ≡ Bμ=
ffiffiffiffiffiffi
4π

p
will be used, in which case

the MHD field tensor and its dual have the forms

Fμν ¼
ffiffiffiffiffiffi
4π

p
ϵμνλσbλuσ and F μν ¼

ffiffiffiffiffiffi
4π

p
ðbμuν − uμbνÞ:

ð11Þ
Although (10) satisfies the restriction bλuλ ¼ 0, we noted

earlier that this condition is not needed for a representation
of the form of (9). One can, in fact, construct a family of
vectors

hμ ¼ bμ þ αuμ ð12Þ
where α is an arbitrary scalar field and now, in general,
hμuμ ¼ α ≠ 0. The field tensor Fμν and its dual F μν are
unchanged when written in terms of hμ, i.e.

Fμν=
ffiffiffiffiffiffi
4π

p
¼ ϵμνλσbλuσ ¼ ϵμνλσhλuσ;

F μν=
ffiffiffiffiffiffi
4π

p
¼ bμuν − uμbν ¼ hμuν − uμhν: ð13Þ

Because bμ only appears in the equations of relativistic
MHD via the form (11), one can just as easily use the
quantity hμ, choosing α in order to give it some useful
property. When constructing an Eulerian action principle
(with covariant Poisson bracket) for relativistic MHD it will
prove fruitful to do so. The quantity bμbμ, which appears in
the stress-energy tensor and will be seen in Sec. III to appear
in the action, evaluates to

bμbμ ¼
1

4π
ðE2 − B2Þ ¼ −

1

4π

�
B · B
γ2

þ ðv ·BÞ2
�

¼ −
1

4π
B2
rest;

where “rest” indicates a rest frame quantity. Thus the
4-vector bμ is spacelike. However, since hμhμ¼bμbμþα2,
the status of hμ will depend on α, remaining spacelike for
small α.
Each equation of relativistic MHD can be written as the

vanishing of a divergence:

∂μðnuμÞ ¼ 0; ð14Þ
∂μðσuμÞ ¼ 0; ð15Þ
∂μF μν ¼ 0; ð16Þ
∂μTμν ¼ 0: ð17Þ

Equations (14) and (15) express conservation of particles
and entropy, respectively. In addition, (16) provides the
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equivalent of the homogeneous Maxwell’s equations;
however, one cannot call them Maxwell’s equations with-
out qualification, as the constraint Fμνuν ¼ 0 is already
built in when one expresses Fμν in terms of bμ or hμ:

∂νðbμuν − uμbνÞ ¼ ∂νðhμuν − uμhνÞ ¼ 0:

This expression, of course, is the same whether bμ or hμ is
used, as the quantity α cancels out. Equation (17) gives
conservation of stress-energy, where the stress-energy ten-
sor Tμν is considerably more complex when written in terms
of hμ rather than bμ:

Tμν ¼ Tμν
fl þ Tμν

EM; ð18Þ
where the fluid and field parts are

Tμν
fl ¼ ðρþ pÞuμuν − pgμν;

Tμν
EM ¼ 1

4π

�
FμλFλ

ν þ 1

4
gμνFλσFλσ

�

¼ −bμbν − ðbλbλÞuμuν þ
1

2
gμνbλbλ ð19Þ

¼ −hμhν − ðhλhλÞuμuν þ ðhλuλÞðhμuν þ uμhνÞ

þ 1

2
gμνðhλhλ − ðhλuλÞ2Þ; ð20Þ

respectively. Equation (19) is obtained by substitution of the
first of Eqs. (11) and making use of the orthogonality
condition bλuλ ¼ 0, while (20) follows from (13) without
orthogonality.We emphasize that, despite appearances,Tμν

EM
does not depend on one’s choice of α. The field part Tμν

EM
depends onbμ orhμ only through the tensorF μν, inwhich, as
previously noted, α cancels out. Lastly, we note it can be
shown that this system preserves bμuμ ¼ 0 and uμuμ ¼ 1.
We next turn to the problem of devising an action principle
for this system.

III. COVARIANT ACTION PRINCIPLE FOR
RELATIVISTIC MHD

The covariant Poisson bracket formalism of Ref. [22]
requires two parts: (i) an action S that is a covariant
functional of the field variables and (ii) a covariant Poisson
bracket f; g defined on functionals of the fields. Instead of
the usual extremization δS ¼ 0, the theory arises from
setting fF; Sg ¼ 0 for all functionals F, which is in effect a
constrained extremization.
A general Poisson bracket for fields Ψ has the form

fF;Gg ¼
Z

dz
δF
δΨ

J
δG
δΨ

;

where δF=δΨ is the functional derivative, dz is an
appropriate spacetime measure, and J is a cosymplectic
operator that provides fF;Gg with the properties of
antisymmetry and the Jacobi identity. Thus

fF; Sg ¼ 0 ∀ F ⇒ J
δS
δΨ

¼ 0: ð21Þ

If J is nondegenerate, i.e., has no null space, then (21)
is equivalent to δS=δΨ ¼ 0 and the covariant Poisson
bracket formalism reproduces the conventional variational
principle. However, of interest here are matter models like
MHD, which when written in terms of Eulerian variables
possesses nonstandard or noncanonical Poisson brackets
(see e.g. Ref. [23]), for which J possesses degeneracy
that is reflected in the existence of so-called Casimirs
(see Sec. VA). For such systems the covariant Poisson
bracket naturally enforces constraints. In field theories that
describe matter, understanding the null space ofJ may be a
formidable exercise [24], and finding nondegenerate
coordinates, which are expected to exist because of the
Jacobi identity, may only serve to obscure the structure of
the theory.
A variation that preserves the constraints, referred to as a

dynamically accessible variation in Ref. [25] (see also
Ref. [23]), can be represented as

δΨDA ¼ fΨ; Gg; ð22Þ

for some functional G, whence

δS ¼
Z

dz
δS
δΨ

δΨDA ¼
Z

dz
δS
δΨ

fΨ; Gg ¼ fS;Gg ¼ 0;

which shows directly how the Poisson bracket affects the
constraints without them being explicitly known.

A. Action and functional derivatives

We construct our action S in a straightforward fashion:

S½n; σ; u; F� ¼
Z

d4x

�
1

2
ðpþ ρÞuλuλ þ

1

2
ðp − ρÞ

−
1

16π
FλσFλσ

�
; ð23Þ

S½n; σ; u; b� ¼ 1

2

Z
d4xððpþ ρ − bλbλÞuλuλ þ p − ρÞ;

ð24Þ

S½n; σ; u; h� ¼ 1

2

Z
d4xððpþ ρ − hσhσÞuλuλ þ ðhλuλÞ2

þ p − ρÞ: ð25Þ

Equation (23) is the sum of the fluid action of Ref. [22],
where thermodynamic variables p and ρ are considered to
be functions of n and σ, together with a standard expression
for the electromagnetic action.
In (24) the MHD expression of (11) has been substituted

into FλσFλσ and finally in (25) we obtain our desired form
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in terms of hμ. Observe that the integrand of (24) when
evaluated on the constraint uλuλ ¼ 1 is the total pressure,
fluid plus magnetic, pþ jbλbλj=2. This choice of action
will be seen to give the desired field equations when
inserted into the covariant Poisson bracket.
From the action of (25) one derives a momentum mμ by

functional differentiation,

mμ ¼
δS
δuμ

¼ ðpþ ρ − hσhσÞuμ þ ðhλuλÞhμ ≡ μuμ þ αhμ:

ð26Þ

The quantity

μ ¼ pþ ρ − hλhλ ð27Þ

is a modified enthalpy density. If αuμ is small compared to
bμ, hμ will be spacelike, leaving μ positive.
Since uμ and bμ are independent of α, expressions for

them solely in terms of mμ and hμ can be obtained. Using
α¼hλuλ, which follows from (12), and uμ¼ðmμ−αhμÞ=μ,
which follows from (26), we have

α ¼ hλuλ ¼
1

μ
ðhλmλ − αhλhλÞ:

Then, solving for α gives

α ¼ hλmλ

μþ hσhσ
: ð28Þ

Equation (28), incidentally, shows that α can be written
entirely in terms of the field variablesmμ and hμ. Thus, one
can also write the variables bμ and uμ entirely in terms of
the new ones:

uμ ¼ mμ

μ
−

hλmλ

μðμþ hσhσÞ
hμ;

bμ ¼ hμ
�
1þ ðhλmλÞ2

μðμþ hσhσÞ2
�
−

hλmλ

μðμþ hσhσÞ
mμ: ð29Þ

Equations (29) are not invertible. To see this consider a
local frame in which v ¼ 0, i.e., one where uμ ¼ ð1; 0Þ and
bμ ¼ ð0;BÞ= ffiffiffiffiffiffi

4π
p

. In this frame hμ ¼ ðα;B= ffiffiffiffiffiffi
4π

p Þ and
mμ ¼ ðpþ ρþ B2=4π; αB=

ffiffiffiffiffiffi
4π

p Þ. Given any value of α
these equations are compatible with (28), but produce the
same rest frame values of bμ and uμ. Thus, Eqs. (29) are not
one-one. We will explore this degeneracy, which provides a
kind of gauge condition, more fully in Sec. V.
Now we are in a position to obtain our action in terms

of the variables mμ and hμ, which, due to the form of the
upcoming bracket (38), are the appropriate variables for the
action principle:

S½n; σ; m; h� ¼ 1

2

Z
d4x

�
mλmλ

μ
−

ðhλmλÞ2
μðμþ hσhσÞ

þ p − ρ

�
:

ð30Þ

Upon introducing the “mass” matrix

M≡
�

μþ α2 α
α 1

�
; ð31Þ

(30) can be written compactly as

S ¼ 1

2

Z
d4xðΨλ ·M−1 ·Ψλ þ hλhλ − α2 þ p − ρÞ

¼ 1

2

Z
d4xðuλmλ þ bλhλ þ hλhλ − α2 þ p − ρÞ

¼ 1

2

Z
d4xðΦλ ·M · Φλ þ bλbλ þ p − ρÞ

¼ 1

2

Z
d4xðuλmλ þ bλhλ þ bλbλ þ p − ρÞ ð32Þ

where Ψλ ≡ ðmλ; hλÞ, Φλ ≡ ðuλ; bλÞ and · indicates sum-
mation over the 2 × 2 matrix M. However, because the
mass matrix (31) depends on the field variables via μ and α,
as given by (27) and (28), the expression (30) is superior for
calculations; in addition, the mass matrix is inconsistent in
units, so it would have to be normalized before, say,
eigenvalue and eigenvector calculations could be done.
One possible normalization is given in (57) below.
After taking variations of the action, one may impose the

constraint uλuλ ¼ 1. In terms of the momentum mμ, this
constraint becomes

1¼ uλuλ ¼
1

μ2

�
mλmλ − 2

ðhλmλÞ2
μþhσhσ

þ ðhλmλÞ2
ðμþhσhσÞ2

ðhτhτÞ
�
:

ð33Þ

Thanks to the relations (29) and (33), all functional
derivatives of the action of (30) can be reduced to simple
expressions, provided (33) is applied only after functional
differentiation. To start with,

δS
δn

¼
�
−
mλmλ

2μ2
þ ðhλmλÞ2
2μ2ðμþ hσhσÞ

þ ðhλmλÞ2
2μðμþ hσhσÞ2

� ∂μ
∂n

þ 1

2

∂p
∂n −

1

2

∂ρ
∂n

¼ −
∂ρ
∂n : ð34Þ

Similarly,

δS
δσ

¼ −
∂ρ
∂σ : ð35Þ
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The remaining functional derivatives are

δS
δmν ¼

mν

μ
−

ðhλmλÞ
μðμþ hτhτÞ

hν ¼ uν; ð36Þ

δS
δhν

¼ mλmλ

μ2
hν −

ðhλmλÞ2
μ2ðμþ hσhσÞ

hν −
ðhλmλÞ

μðμþ hσhσÞ
mν

¼
�
1þ 2

ðhλmλÞ2
μ2ðμþ hσhσÞ

−
ðhλmλÞ2

μ2ðμþ hσhσÞ2
ðhτhτÞ

�
hν

−
ðhλmλÞ2

μ2ðμþ hσhσÞ
hν −

ðhλmλÞ
μðμþ hσhσÞ

mν

¼
�
1þ ðhλmλÞ2

μðμþ hσhσÞ2
�
hν −

ðhλmλÞ
μðμþ hσhσÞ

mν

¼ bν: ð37Þ

The compact result δS=δhν ¼ bν gives a meaning to hν: it is
a conjugate to bν, just as mν is to uν.

B. Covariant Poisson bracket and field equations

The covariant Poisson bracket for relativistic MHD is
obtained by extending the nonrelativistic bracket of
Refs. [20,21] to spacetime. This is done bymerely summing
over the four spacetime indices instead of the three spatial
ones and altering a few signs. However, a difficulty arises in
choosing an appropriate equivalent of the nonrelativistic
momentum and field, because the 4-vectorial equivalents of
M ¼ ρv andBwill no longer produce the correct equations.
Instead, the 4-vectors mν and hν provide the appropriate
replacements, giving the relativistic MHD bracket

fF;Gg ¼
Z

d4x

�
n

�
δF
δmμ

∂μ
δG
δn

−
δG
δmμ

∂μ
δF
δn

�

þ σ

�
δF
δmμ

∂μ
δG
δσ

−
δG
δmμ

∂μ
δF
δσ

�

þmν

�
δF
δmμ

∂μ
δG
δmν

−
δG
δmμ

∂μ
δF
δmν

�

þ hν
�
δF
δmμ

∂μ
δG
δhν

−
δG
δmμ

∂μ
δF
δhν

�

þ hμ
��

∂μ
δF
δmν

�
δG
δhν

−
�
∂μ

δG
δmν

�
δF
δhν

��
: ð38Þ

The bracket is complicated, but one can derive the equations
of motion fairly quickly, thanks to the simple functional
derivatives, as obtained in Eqs. (34), (35), (36), and (37), for
the action of (30):

δS
δn

¼−
∂ρ
∂n ;

δS
δσ

¼−
∂ρ
∂σ ;

δS
δmν

¼ uν;
δS
δhν

¼ bν;

where uμ and bμ here are shorthand for their expressions in
terms of the fields mμ and hμ as given by (29).
Using F ¼ R

d4xnðxÞδ4ðx − x0Þ in fF; Sg ¼ 0 gives,
after an integration by parts,

∂μðnuμÞ ¼ 0;

which is the continuity equation (14), evaluated implicitly
at x0; however, since that point is arbitrary, the result holds
for the entire spacetime. Going forward such niceties
involving delta functions will be skimmed over. In the
same manner one also finds the adiabaticity equation (15)
from a σ variation.
The hμ variation gives

∂νðhμuνÞ − hν∂νuμ ¼ 0: ð39Þ
The above equations are not Maxwell’s equations, although
they are analogous to the nonrelativistic equation (4), since
they correspond to £uhμ ¼ 0, the Lie-dragging of the four-
dimensional vector density hμ by uμ. The theory obtained
from the variational principle can be viewed as a family of
theories, only some of which correspond to physical
systems. However, if ∂μhμ ¼ 0, then one obtains the usual
form of relativistic MHD. The situation is exactly analo-
gous to that in nonrelativistic Hamiltonian MHD, which
can describe systems with ∇ ·B ≠ 0: in both cases, the
physical systems are a subset of the full class of systems
described by the formalism. In the nonrelativistic case the
condition ∇ ·B ¼ 0 is maintained by the dynamics and
the similar situation that arises for hμ will be shown in
Sec. V B. There also exists an alternative bracket that builds
in ∂μhμ ¼ 0, given later in Sec. IVA, where the constraint
is enforced by the bracket’s Jacobi identity. In any event,
with hμ thus specified, we can subtract a term uμ∂νhν from
(39), giving the usual equivalent of Maxwell’s equations

0 ¼ ∂μðhμuν − uμhνÞ:
Finally, the mλ variation gives, after some work,

0 ¼ −n∂μ

�
−
∂p
∂n

�
− σ∂μ

�
−
∂p
∂σ

�
þmν∂μðuνÞ þ ∂νðmμuνÞ

þ hν∂μðbνÞ − ∂νðhνbμÞ
¼ −∂μpþ ðμuν þ ðhλuλÞhνÞ∂μuν

þ ∂νðμuμuν þ ðhλuλÞhμuνÞ
þ hν∂μðhν − ðhλuλÞuνÞ − ∂νðhνhμ − ðhλuλÞhνuμÞ

¼ ∂ν

�
ðρþ p − ðhλhλÞÞuμuν

þ gμν
�
−pþ 1

2
ðhλhλ − ðhλuλÞ2Þ

�

− hμhν þ ðhλuλÞðhμuν þ uμhνÞ
�
;
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which is the momentum equation (17). Having been
derived, it can be replaced with the much simpler, equiv-
alent version involving bμ.
Now we have shown that the covariant Poisson bracket

formalism produces the field equations of relativistic
MHD. In Secs. V B and V C we will probe more deeply
the correspondence between the variables ðmμ; hμÞ and
ðuμ; bμÞ, exploring in particular how one might use the field
equations in practice. First, however, we will demonstrate
several ways in which the bracket formalism can be
modified.

IV. ALTERNATIVE BRACKETS

In this section we present additional Poisson brackets.
The first (Sec. IVA) adds an extra constraint to (38), the
second (Sec. IV B) rewrites the magnetic parts in terms of a
tensor potential, the third (Sec. IV C) recasts these terms in
differential-geometric language, and the last (Sec. IV D)
incorporates an arbitrary background gravitational field.

A. Constrained bracket

Consider the magnetic field part of the bracket of (38),

fF;Ggh∶ ¼
Z

d4x

�
hν
�
δF
δmμ

∂μ
δG
δhν

−
δG
δmμ

∂μ
δF
δhν

�

þ hμ
��

∂μ
δF
δmν

�
δG
δhν

−
�
∂μ

δG
δmν

�
δF
δhν

��
:

ð40Þ
Just as the nonrelativistic bracket of Refs. [20,21] has a
counterpart in Ref. [17], the terms (40) have an analogous
relativistic counterpart that requires divergence-free mag-
netic fields, i.e. an hμ such that ∂μhμ ¼ 0. This relativistic
counterpart is simply given by an integration by parts of
(40) and making use of ∂μhμ ¼ 0, i.e.,

fF;Gg∂h¼0∶ ¼
Z

d4x

�
hν
�
δF
δmμ

∂μ
δG
δhν

−
δG
δmμ

∂μ
δF
δhν

�

þ hμ
��

∂μ
δF
δhν

�
δG
δmν

−
�
∂μ

δG
δhν

�
δF
δmν

��
:

ð41Þ
The bracket is identical to (38), but for the swapped
functional derivatives in the final line. The action (25) is
unchanged, as are the n equation (14) and the σ equa-
tion (15). The hμ gains an extra term, and may be written
directly as the Maxwell-like equation

∂νðhμuν − uμhνÞ ¼ ∂νF μν ¼ 0

without yet imposing a condition on hμ. Finally, the
equation for mμ ends up with a couple fewer terms than
before, yielding

∂νTμν þ ðhμ − ðhσuσÞuμÞ∂νhν ¼ 0; ð42Þ

where Tμν is the (unchanged) stress-energy tensor (18).
However, unlike the prior bracket (38), the bracket (41)

fails to satisfy the Jacobi identity unless the condition
∂νhν ¼ 0 holds, as is shown in the Appendix. On the plus
side, the momentum equation (42) is now reduced to its
desired conservation form; on the minus side, the bracket is
defined on a smaller class of functionals than our original
bracket (38). The original bracket always yields a momen-
tum equation that is not only in conservation form, but also
independent of α; however, it will yield differing magnetic
equations depending on α, and only those corresponding to
∂νhν ¼ 0 produce a Maxwell-like equation.
We regard the first bracket (38) to be superior, for then

relativistic magnetohydrodynamics may be regarded as a
specific example of a broader class of (mostly nonphysical)
dynamical systems, some of which may be of theoretical
interest. For instance, in the nonrelativistic case the
broader class have been argued to be superior for computa-
tional algorithms (see, e.g., Ref. [19]), and although
similar numerical techniques have been used for numerical
relativity (e.g., Ref. [5]), our formulation provides a fully
covariant form analogous to nonrelativistic MHD that
may provide advantages. Moreover, they may correspond
to exotic theories, such as those including magnetic
monopoles.

B. Bivector potential

The divergence-free condition can be made manifest by
introducing an antisymmetric bivector potential Aνμ such
that

hμ ¼ ∂νAνμ: ð43Þ

Such a representation gives rise to a gauge condition
Aμν → Aμν þ ϵμναβ∂αψβ, for chosen ψβ; such gauging
could be useful, but we will not explore this further here.
Assuming F½h� ¼ F̄½A�, i.e. functionals of the bivector

potential obtain their dependence through h, we obtain

δF ¼
Z

d4x
δF
δhμ

δhμ ¼
Z

d4x
δF̄
δAνμ δA

νμ ¼ δF̄: ð44Þ

Relate δhμ to δAνμ via (43) and insert δhμ ¼ ∂νδAνμ into the
second equation of (44). Even assuming δAνμ is arbitrary,
it only picks out the antisymmetric part of what it is
contracted with, so we obtain the functional chain rule
relation

δF̄
δAμν ¼

1

2

�
∂ν

δF
δhμ

− ∂μ
δF
δhν

�
: ð45Þ

Inserting (45) into (41) gives the compact expression
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fF;GgA∶ ¼ 2

Z
d4xð∂αAανÞ

�
δF
δmμ

δG
δAνμ −

δG
δmμ

δF
δAνμ

�
:

ð46Þ
We will use this form in Sec. VA, where we discuss
Casimir invariants.

C. 3-form bracket

For nonrelativistic MHD we observed in Sec. II A that
the magnetic equation may be written ∂B=∂tþ £vB ¼ 0,
where £vB is the Lie derivative of the vector density B
dual to a 2-form. Thus one can write Bi ¼ ϵijkωjk and
ωjk ¼ Biϵijk=2, where i; j; k ¼ 1; 2; 3. In terms of the
2-form the equation becomes ∂ω=∂tþ £vω ¼ 0, with £v
now being the appropriate expression for the Lie derivative
of a 2-form in three dimensions (e.g., Ref. [26]). In n
dimensions, an (n − 1)-form has n independent compo-
nents. This suggests we can introduce the dual 3-form for
relativistic MHD as follows:

ωαβγ ¼ ϵαβγδhδ and hδ ¼ 1

6
ϵαβγδωαβγ;

which shows that hμ is a vector density because it is the
contraction of the tensorial three-form with ϵαβγδ a relative
tensor of unit weight. From the above it follows that the
3-form equation of motion is given by ∂ω=∂tþ £uω ¼ 0.
If we denote by Fμ

m the 4-vector given by δF=δmμ, then
the magnetic portion of the Poisson bracket in terms of the
3-form can be compactly written as follows:

fF;Ggω ¼
Z

d4x

�
δF

δωαβγ
ð£Gm

ωÞαβγ −
δG

δωαβγ
ð£Fm

ωÞαβγ
�
:

ð47Þ
Although similar expressions in terms of Lie derivatives
exist for all terms of all brackets, we are concentrating on
the magnetic terms, which written out are

ð£Gm
ωÞαβγ ¼ Gμ

m∂μωαβγ þ ωμβγ∂αG
μ
m þ ωαμγ∂βG

μ
m

þ ωαβμ∂γG
μ
m:

The transformation from the bracket fF;Ggh of (40) to that
of (47) follows from a chain rule calculation similar to that
described in Sec. IV B. Thus, it satisfies the Jacobi identity
because fF;Ggh does, as shown directly in the Appendix.
Relativistic MHD has a natural 3-form dual to bμ, viz.

Fλσuν þ Fσνuλ þ Fνλuσ , which follows from the definition
bμ ¼ ffiffiffiffiffiffi

4π
p

ϵμνλσFλσuν=2 with uμbμ ¼ 0 and Fμνuν ¼ 0.
The 3-form dual to hμ can similarly be represented
as ωλσν¼

ffiffiffiffiffiffi
4π

p ðFλσwνþFσνwλþFνλwσÞ=6, where wμ ≡
ðh2uμ − αhμÞ=ðbλbλÞ is designed so that hμwμ ¼ 0 and
wμuμ ¼ 1 and evidently ωλσνhμ ¼ 0. Observe wμ can be

written in various ways using (29), (28), and other
expressions.
The Jacobi identity for the bracket with (47) does not

require closure of the 3-form. However, if the 3-form ω
is exact then it can be written as the exterior derivative of a
2-form Aμν as follows:

ωαβγ ¼ ∂αAβγ þ ∂βAγα þ ∂γAαβ

and one can rewrite the bracket in terms of Aμν. Instead
of writing this out, we observe the bivector potential is
given by

Aνμ ≡ 1

2
ϵνμστAστ

and so the closed 3-form bracket is essentially given
by (46).
When the 3-formωαβγ is exact we have, for any 3-surface

Ω in our four-dimensional Minkowski spacetime, Stokes’s
theorem

Z
Ω
ω ¼

Z
Ω
dA ¼

Z
∂Ω

A;

where
R
Ω ω contains the notion of “flux” in this setting. IfΩ

contains a timelike direction, we can write this as a
conservation law, but such 3þ 1 splittings will not be
considered here; instead, we refer to Ref. [22].

D. Background gravity

Now we generalize the full formalism to curved space-
times. In this context, the equations (14)–(17) are now
written

ðnuμÞ;μ ¼ 0; ð48Þ

ðσuμÞ;μ ¼ 0; ð49Þ

F μν
;ν ¼ 0; ð50Þ

Tμν
;ν ¼ 0; ð51Þ

where the “;” denotes covariant derivative.
Three modifications to the previous action principle are

required: (1) because all integrations have tensorial inte-
grands, the integrations must take place over a proper
volume

ffiffiffiffiffiffi−gp
d4x; (2) hμ should be treated as a contravariant

vector, and mμ as a covariant one, befitting their definitions
(note that treating them any other way would introduce
extra factors of gμν into the bracket); (3) functional deriv-
atives should be defined in a way that makes them tensorial.
Specifically, for a field variable v, one implicitly defines the
functional derivative via
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d
dϵ

����
ϵ¼0

Fðvþ ϵδvÞ ¼
Z

d4x
δF
δv

δv
ffiffiffiffiffiffi
−g

p
:

The action is now

S ¼ 1

2

Z
d4x

�
gλσmλmσ

μ
−

ðhλmλÞ2
μðμþ gλσhλhσÞ

þ p − ρ

� ffiffiffiffiffiffi
−g

p

and its functional derivatives are

δS
δn

¼−
∂ρ
∂n ;

δS
δσ

¼−
∂ρ
∂σ ;

δS
δmμ

¼ uμ;
δS
δhμ

¼ gμνbν:

Finally, the bracket becomes

fF;Gg ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
n

�
δF
δmμ

∂μ
δG
δn

−
δG
δmμ

∂μ
δF
δn

�

þ σ

�
δF
δmμ

∂μ
δG
δσ

−
δG
δmμ

∂μ
δF
δσ

�

þmν

�
δF
δmμ

∂μ
δG
δmν

−
δG
δmμ

∂μ
δF
δmν

�

þ hν
�
δF
δmμ

∂μ
δG
δhν

−
δG
δmμ

∂μ
δF
δhν

�

þ hμ
��

∂μ
δF
δmν

�
δG
δhν

−
�
∂μ

δG
δmν

�
δF
δhν

��
: ð52Þ

The ∂μ operators inside the bracket are still just partial
derivatives, but the presence of the metric will tend to
convert them into covariant derivatives (see e.g. Ref. [27,
Ch. 21]). After an integration by parts, the variation
fF; Sg ¼ 0 of the test function F¼R

d4xnðxÞδ4ðx−
x0Þ ffiffiffiffiffiffi−gp

gives

∂μðnuμ
ffiffiffiffiffiffi
−g

p Þ ¼ ffiffiffiffiffiffi
−g

p ð∂μðnuμÞ þ nuνΓμ
νμÞ

¼ ffiffiffiffiffiffi
−g

p ðnuμÞ;μ ¼ 0;

with a similar result obtaining for the σ variation. The hμ

variation once again requires special attention, as it gives

∂νðhμuν
ffiffiffiffiffiffi
−g

p Þ − hνð∂νuμÞ
ffiffiffiffiffiffi
−g

p

¼ ffiffiffiffiffiffi
−g

p ðhμuνν þ hμνuν − hνuμν þ hμuλΓν
λνÞ ¼ 0:

This time we choose α so that hμ;μ ¼ ∂μhμ þ
hνΓμ

νμ ¼ 0. Similar considerations apply to this choice
as in the special relativistic case. Subtracting this expres-
sion and combining like terms then gives, with
F μν ¼ hμuν − hνuμ,

∂νF μν þ F μλΓν
λν þ F νλΓμ

νλ ¼ F μν
;ν ¼ 0:

Note that the third term is zero by the antisymmetry of F μν

and the symmetry of the covariant indices of Γμ
νλ.

Finally, one obtains the momentum equation (51) by
varying the test function F ¼ R

d4xgμνmνδ
4ðx − x0Þ ffiffiffiffiffiffi−gp

.
This derivation is lengthy, and will only be summarized
here: (1) the partial derivative terms appear, and combine,
exactly as in the special-relativistic case; (2) the
TμλΓν

λν terms come from taking the partial derivatives offfiffiffiffiffiffi−gp
; (3) the TνλΓμ

νλ terms come from derivatives of extra
factors of the metric gμν, some of which come from its
inclusion in the test function, others of which come
from δS=δhμ ¼ gμνbν.
We conclude with an important note. While we con-

structed the above formalism to handle curved spacetimes,
it also applies to flat spacetimes with arbitrary coordinate
systems, such as cylindrical, spherical, or toroidal coor-
dinates. The nonrelativistic version may be generalized the
same way (altering volumes d3x to proper volumesffiffiffi
g

p
d3x), thus solving the problem of MHD coordinate

changes in a pleasantly general way.

V. DEGENERACY AND SETTING THE GAUGE

Now we consider various issues pertaining to degen-
eracy. In Sec. VA we obtain Casimir invariants, showing
that the action S is not unique. Then in Sec. V B we further
explore the noninvertiblily of the transformations from
ðuμ; bμÞ to ðmμ; hμÞ. Finally, in Sec. V C we discuss how
the divergence-free condition on hμ can be constructed for
any problem.

A. Casimirs and degeneracy

As noted in Sec. III the covariant Poisson bracket
possesses degeneracy and associated Casimirs. A func-
tional C is a Casimir if it satisfies

fF;Cg ¼ 0 ∀ F: ð53Þ

Equation (53) should not be confused with the variational
principle of (21), fF; Sg ¼ 0 for all functionals F, for the
former is an aspect of the bracket alone, and provides
no equations of motion. Because of the definition of C,
the action S is not unique and can be replaced by Sþ λC
for any Casimir C and any dimensionally appropriate
number λ.
Turning to the task of finding Casimirs, we use (53) to

provide functional equations for the Casimirs. Although
difficult to solve in general, some explicit solutions can be
found, facilitated by our knowledge of Casimirs for non-
relativistic MHD [21,28]. First, it is easy to obtain a family
of what we call the entropy Casimirs,

Cs ¼
Z

d4xnfðσ=nÞ; ð54Þ
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where f is an arbitrary function. In the nonrelativistic case
this is a generalization of the total entropy, for if f ¼ σ=n
and σ is the entropy per unit volume then

R
d3xnfðσ=nÞ ¼R

d3xσ is the total integrated entropy.
Next we seek a Casimir that is a relativistic version of the

cross helicity
R
d3xv ·B. Because nonrelativistic MHD

invariance of cross helicity requires a barotropic equation
of state and ∇ ·B ¼ 0, we make analogous assumptions
here. We assume ρ has no dependence on σ, and we
implement the analogue of ∇ · B ¼ 0 by using the anti-
symmetric bivector potential of Sec. IV B, hμ ¼ ∂γAγμ,
ensuring that ∂μhμ ¼ 0. Using the bracket of (46) it is easy
to show that the following generalization of the cross helicity
is a Casimir:

Cch ¼
Z

d4x
mμ

n
∂γAγμ ¼

Z
d4x

mμhμ

n
: ð55Þ

This quantity ceases to be a Casimir when the divergence
hμ is nonzero. Observe that on the constraint uλuλ ¼ 1,
the integrand of (55) can be written as mμ∂γAγμ=n ¼
mμhμ=n ¼ αðpþ ρÞ=n, which follows from (28). Since α
does not exist in the original ðuμ; bμÞ theory, this Casimir is a
quantity tied to the covariant bracket theory in terms
of ðmμ; hμÞ.
One also expects the existence of a magnetic helicity

Casimir, but the nature of linking in four dimensions makes
the situation complicated. Relativistic generalizations of
magnetic helicity have been found in Refs. [16,29], but we
have yet to demonstrate that a quantity like either of these is
in fact a Casimir. We also anticipate the existence of
additional Casimirs that are generalizations of the non-
relativistic ones found in Refs. [30,31], but a full discussion
of Casimirs will await a future publication. In any event,
because of the form ΨDA as given by (22), we can be
assured that the extremization of our covariant bracket
variation preserves any Casimirs that exist.

B. Gauge degeneracy

In Sec. III A we noted that Eqs. (29) are not invertible.
This lack of invertibility, which arises from the gauge
freedom associated with α, can be understood in greater
generality.
Because the degeneracy is not associated with the

thermodynamic variables ρ and p, we move them out by
introducing the following scaled variables:

h ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
pþ ρ

p Þh̄; m ¼ ðpþ ρÞm̄;

b ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
pþ ρ

p Þb̄; u ¼ ū; α ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffi
pþ ρ

p Þᾱ:

In terms of these variables (29) becomes

Φ̄ ¼ M̄−1 · Ψ̄; ð56Þ
with

M̄−1 ¼ 1

μ̄

�
1 −ᾱ
−ᾱ μ̄þ ᾱ2

�
; M̄ ¼

�
μ̄þ ᾱ2 ᾱ

ᾱ 1

�
;

ð57Þ

and Φ̄ ¼ ðū; b̄Þ, Ψ̄ ¼ ðm̄; h̄Þ. The quantity μ̄≡ 1 − h̄2 is a
normalized μ, and the quantity ᾱ satisfies ᾱ ¼ m̄νh̄ν ¼
ūνh̄ν. Varying (56) gives

δΦ̄ ¼ M̄−1 · δΨ̄þ ∂M̄−1

∂ᾱ · Ψ̄δᾱþ ∂M̄−1

∂μ̄ · Ψ̄δμ̄:

Degeneracy follows if we can find a nonzero δΨ̄ giving
δΦ̄ ¼ 0. Such would be given by

δΨ̄ ¼ −M̄ ·
∂M̄−1

∂ᾱ · Ψ̄δᾱ − M̄ ·
∂M̄−1

∂μ̄ · Ψ̄δμ̄

¼ −M̄ ·
∂M̄−1

∂ᾱ ·M · Φ̄δᾱ − M̄ ·
∂M̄−1

∂μ̄ · M̄ · Φ̄δμ̄

¼ ∂M̄
∂ᾱ · Φ̄δᾱþ ∂M̄

∂μ̄ · Φ̄δμ̄

¼ δᾱ

�
2ᾱ 1

1 0

�
· Φ̄þ δμ̄

�
1 0

0 0

�
· Φ̄: ð58Þ

Thus from (58), δm̄ν¼ð2ᾱūνþb̄νÞδᾱþūνδμ̄ and δh̄ν¼
ūνδᾱ. Using δμ̄ ¼ −2h̄νδh̄ν ¼ −2h̄νūνδᾱ ¼ −2ᾱδᾱ, the
two conditions imposed by (58) are

δh̄ν ¼ ūνδᾱ and δm̄ν ¼ b̄νδᾱ; ð59Þ
reiterating our earlier point that α can vary while leaving uμ

and bμ unchanged.
In terms of the scaled variables the action becomes

S½n;σ;m̄;h̄�¼1

2

Z
d4x

�
pþρ

μ̄
ðm̄λm̄λ−ðh̄λm̄λÞ2Þþp−ρ

�
:

ð60Þ
Now if we consider variation of the integrand of (60) with
variations given by (59), and restrict to the constraint
uμuμ ¼ 1 as given by the scaled version of (33), then the
action is easily seen to be invariant. Using the scaled action
in the form of (32), the integrand becomes upon variation
ðpþ ρÞðūλδm̄λ þ b̄λδh̄λÞ þ h̄λδh̄λ − ᾱδᾱ, which vanishes
upon insertion of (59), with the first two terms vanishing
individually because ūλb̄λ ¼ 0. Thus, degeneracy appears
as one transitions from (24) to (25). We add that in scaled
variables F ∼ ūμb̄ν − b̄μūν ∼ ūμh̄ν − h̄μūν; thus, at fixed
ūμ, δF ∼ ūμδh̄ν − δh̄μūν ¼ 0.
However, we also require that the equations of motion

in terms of ðuμ; bμÞ stay unaffected by the degeneracy in
ðmμ; hμÞ. This requires ∂μhμ ¼ 0, as we earlier discussed in
the context of the magnetic equation (39). Written in full,
this condition becomes
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∂μðαuμÞ ¼ −∂μbμ: ð61Þ

As usual in the case of extra degeneracy, the system now
possesses an additional symmetry, for one can add to α any
solution Δα of the continuity equation ðΔαuμÞ;μ ¼ 0 while
leaving the dynamics unchanged. This is not as powerful as
choosing α freely, as (59) seemed to imply, but we will
show in Sec. V C that it is nearly as powerful. We hope to
further explore the consequences of this new symmetry in
future work.
Our system’s degeneracy is related to the adaptation of

Goldstone’s theorem [32–35] described in Ref. [36], where
it was proven in the context of degenerate Poisson brackets
with Casimir invariants that nonrelativistic Alfvèn waves
associated with degeneracy can be thought of as an analog
of Goldstone modes. A similar interpretation arises here in
this covariant relativistic MHD setting, but discussion is
beyond the scope of the present work.

C. Setting the gauge

Given a relativistic MHD problem posed in terms of
ðuμ; bμÞ, we must determine the associated problem in
terms of ðmμ; hμÞ, and this requires the determination of α,
which amounts to setting the gauge so that ∂μhμ ¼ 0.
Doing so may seem difficult on first sight, but in fact turns
out to be simple. Since this idea sits at the crux of our
formalism, we will explain it is some detail.
Posing a relativistic MHD problem requires one specify

ðuμ; bμÞ as well as n and σ on a spacelike 3-volume,Ω ⊂ D,
where D is our four-dimensional space-time. In addition, a
physical problem will have initial conditions that satisfy
uλuλ ¼ 1 and uλbλ ¼ 0. Using uα∂α ¼ ∂=∂τ where τ is the
proper time measured by an observer comoving with a flow
line, one can choose τ ¼ 0 to correspond to the state specified
on Ω and then propagate values off of Ω by using the
equations of motion to determine ∂bμ=∂τ, ∂uμ=∂τ, ∂n=∂τ,
and ∂σ=∂τ at τ ¼ 0. This is the standard scenario for a
Cauchy problem, and many references for both MHD and
relativistic fluids (e.g., Refs. [2,4]) describe this in detail.One
can imagine an exotic flow in which there exist spacetime
points not connected to Ω by any flow lines; however, a
modest boundedness condition excludes such cases.
The present situation is complicated by the fact that

given bμ onΩ at τ ¼ 0 we must also have that ∂μhμ ¼ 0 for
all time, in order for our ðmμ; hμÞ dynamics to coincide with
the physical ðuμ; bμÞ dynamics. Fortunately, ∂μhμ ¼ 0 is
maintained in time if it is initially true on Ω. To see this we
act on (39) with ∂μ and obtain ∂νðuν∂μhμÞ ¼ uν∂νð∂μhμÞ þ
ð∂νuνÞð∂μhμÞ ¼ 0 or

∂ð∂μhμÞ
∂τ þ ð∂νuνÞð∂μhμÞ ¼ 0; ð62Þ

an equation analogous to (6) for nonrelativistic MHD.
From (62), one concludes that if ∂μhμ ¼ 0 on Ω at τ ¼ 0,

then ∂μhμ remains zero for all time. Thus, one can solve
the ðmμ; hμÞ equations and uniquely obtain the ðuμ; bμÞ via
(29)—provided one can “set the gauge,” i.e., find an α
such that ∂μhμ ¼ 0 on Ω at τ ¼ 0 consistent with the
ðuμ; bμ; n; σÞ of our posed problem.
We will first consider a special example of setting the

gauge, corresponding to the case described in Sec. III A.
We are given the MHD problem with initial conditions
vð0;xÞ≡0, i.e., uμð0;xÞ¼ð1;0Þ and bμð0;xÞ¼ð0;Bð0;xÞÞ=ffiffiffiffiffiffi
4π

p
on the spacelike 3-volume Ω with coordinates x,

and we wish to obtain an hμð0;xÞ ¼ ðα;B= ffiffiffiffiffiffi
4π

p Þ and
mμð0;xÞ¼ðpþρþB2=4π;αB=

ffiffiffiffiffiffi
4π

p Þ such that ∂μhμð0;xÞ¼
0. Denoting ∂0α ¼ αt, etc., gives the condition

0 ¼ ∂μhμð0;xÞ

¼ 1ffiffiffiffiffiffi
4π

p ðγtv · Bþ γvt ·Bþ γv ·Bt þ αt
ffiffiffiffiffiffi
4π

p
Þ þ∇ · h;

ð63Þ

where h is the spatial part of hμ. Evaluating (63) on the
initial condition gives

0 ¼ vt ·Bð0;xÞ þ αtð0;xÞ
ffiffiffiffiffiffi
4π

p
þ∇ ·Bð0;xÞ;

whence, with ∇ ·Bð0;xÞ ¼ 0, we conclude that

0 ¼ vt ·Bð0;xÞ þ αtð0;xÞ
ffiffiffiffiffiffi
4π

p

¼ −
1

ρ
∇p ·Bð0;xÞ þ αtð0;xÞ

ffiffiffiffiffiffi
4π

p
;

using the MHD momentum equation in the last step. Thus
αtð0;xÞ¼ð ffiffiffiffiffiffi

4π
p

ρÞ−1∇p·Bð0;xÞ on Ω will assure ∂μhμ ¼ 0

for all time. Observe, αð0;xÞ has not been specified—we
are free to choose it as we please. In doing so we will obtain
different initial conditions mμð0;xÞ and hμð0;xÞ and these
can be chosen for convenience. Finally, if we solve our
equations for mμ and hμ and obtain their values at any later
time, insert them into (29), then values of uμ and bμ thus
obtained are solutions of the relativistic MHD equations.
Now let us consider the general case, beginning with the

expression

∂μhμ ¼ ∂μbμ þ ∂μðαuμÞ ¼ ∂μbμ þ ∂μðαnuμ=nÞ

¼ ∂μbμ þ n
∂
∂τ

�
α

n

�
; ð64Þ

where the last equality follows from (14). Upon contracting
∂νðbμuν − uμbνÞ ¼ 0 with uμ we obtain

∂νbν ¼ uν
∂bν
∂τ ¼ −bν

∂uν
∂τ : ð65Þ

Consequently, (64) and (65) imply
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∂
∂τ

�
α

n

�
¼ bν

n
∂uν
∂τ ;

αðτfÞ ¼ nðτfÞ
Z

τf

0

bν

n
∂uν
∂τ dτ þ αð0Þ; ð66Þ

where the above requires one integration per flow line.
Thus the freedom in α reduces to a choice of α on the

initial surface Ω, its value at any later time being found by
solving the Cauchy problem. Furthermore, even this initial
step may be rendered trivial. While discussing the con-
dition (61), we pointed out that one can add to α any
quantity Δα obeying ∂μðΔαuμÞ ¼ 0. Reiterating the argu-
ment that led to (66), we find this becomes

∂
∂τ

�
Δα
n

�
¼ 0;

which says that we may choose Δα freely on Ω, and
the ratio of it over the number density will remain
constant along flow lines. Given this freedom, why not
simply pick Δα ¼ −α on the initial surface? So the new
α is zero on Ω, the initial conditions are simply
ðmμ; hμÞ ¼ ððρþ pþ jb2jÞuμ; bμÞ, and α develops along
flow lines according to (66). Said integral never actually
has to be evaluated, for if one solves the Cauchy problem for
mμ and hμ (whose equations of motion incorporate the
condition ∂μhμ ¼ 0), one can then calculate α via (28).
Nonetheless, (66) may be useful as a consistency check
on calculations or simulations. Similarly, the two constraints
uμbμ ¼ 0 and uμuμ ¼ 1 propagate along the flow lines
and do not need to be enforced explicitly provided they are
true on Ω initially, though they too remain useful as
consistency checks.
We close this discussion by considering a point that may

cause confusion. Given ðmμ; hμÞ on Ω we can certainly
calculate ∇ · h, and ∂h0=∂τ will be determined by the
equations of motion for ðmμ; hμÞ. Thus, one may wonder
how we are free to choose α and ∂α=∂τ to make ∂μhμ ¼ 0.
The answer lies in the fact that the ðmμ; hμÞ system has a
solution space that includes solutions that are not relativ-
istic MHD solutions, and our procedure for picking the
quantity selects out those that do indeed correspond—for
these the two ways of determining ∂μhμ are equivalent.

VI. SUMMARY

We have successfully cast relativistic MHD into a
covariant action formalism using a noncanonical bracket.
Along the way, we had to develop a few new ideas with
possible consequences beyond our current domain: a modi-
fied enthalpy density containing a magnetic “pressure,” a
canonical momentum differing from the kinetic momentum
by a magnetic term, and a divergenceless magnetic 4-vector
possessing a new degeneracy and symmetry. We presented
several closely related additional brackets, and carefully

investigated the noninvertibility of the transformations
between our original Eulerian quantities and their conjugate
momenta. Many consequences of our formalism were
investigated, but many more remain to be covered: for
instance, 3þ 1 reductions, additional Casimirs, the relation
to Lagrangian action principles, brackets in systems pos-
sessing extra symmetry (e.g. spherical or toroidal), appli-
cations to the Godunov numerical scheme in relativity,
and conserved quantities related to theα symmetry. Itmay be
objected that we have, as yet, produced no practical
application for our formalism, though it certainly does
possess a certain beauty of its own. However, while
practicality usually precedes beauty in physics, the opposite
is sometimes the case, reason enough not to disregard that
beauty.
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APPENDIX: DIRECT PROOF OF THE
JACOBI IDENTITY

The brackets of (38) and (41) are direct generalizations
of the Lie-Poisson form given in Refs. [17,20,21] for
nonrelativistic MHD, so the Jacobi identity follows from
general Lie algebraic and functional derivative properties
(see e.g., Refs. [21,23,37,38]). However, since these will
not be known to most readers we include a direct proof in
this appendix.
The Jacobi identity is

ffF;Gg; Hg þ ffG;Hg; Fg þ ffH;Fg; Gg ¼ 0 ðA1Þ

for the two brackets (38) and (41).
When expanding the expression (A1), many terms will

contain second functional derivatives, for instance

nhλ
δG
δmν

�
∂ν

δ2F
δhλδmμ

�
∂μ

δH
δn

:

Thankfully, by a theorem in Ref. [21], all such terms cancel
for any antisymmetric bracket. Thus we only have to worry
about those terms containing only first functional deriva-
tives. Starting with the bracket (38), the needed terms are
thus
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δfF;Gg
δn

¼ δF
δmμ

∂μ
δG
δn

−
δG
δmμ

∂μ
δF
δn

þ…

δfF;Gg
δσ

¼ δF
δmμ

∂μ
δG
δσ

−
δG
δmμ

∂μ
δF
δσ

þ…

δfF;Gg
δmμ

¼ δF
δmν

∂ν
δG
δmμ

−
δG
δmν

∂ν
δF
δmμ

þ…

δfF;Gg
δhμ

¼ δF
δmν

∂ν
δG
δhμ

−
δG
δmν

∂ν
δF
δhμ

þ ∂μ
δF
δmν

δG
δhν

− ∂μ
δG
δmν

δF
δhν

þ… ðA2Þ

with similar expressions for the other two permutations of
F, G, and H. Beginning with this expression, it is to be
understood that, in the absence of parentheses, the gradient
operators act only on the term immediately to their right;
when they are followed by an expression in parentheses,
they act as normal. This convention will remove many
superfluous symbols. The ellipses at the end of each line
indicate the terms that may be disregarded thanks to the
aforementioned theorem. Upon inserting the expressions
(A2) into the Jacobi identity (A1), all pertinent terms will
be linear in the field variables. Each of these four sets of
terms (one for each field variable) must vanish separately.

The terms linear in n are

Z
d4xn

��
δF
δmν

∂ν
δG
δmμ

−
δG
δmν

∂ν
δF
δmμ

�
∂μ

δH
δn

−
δH
δmμ

∂μ

�
δF
δmν

∂ν
δG
δn

−
δG
δmν

∂ν
δF
δn

�
þ ↻

F;G;H

�
ðA3Þ

where the circle symbol indicates permutation in F, G, and H. Inside the square braces, the collected second derivative
terms are

−
δH
δmμ

δF
δmν

∂2
μν
δG
δn

þ δH
δmμ

δG
δmν

∂2
μν
δF
δn

−
δF
δmμ

δG
δmν

∂2
μν
δH
δn

þ δF
δmμ

δH
δmν

∂2
μν
δG
δn

−
δG
δmμ

δH
δmν

∂2
μν
δF
δn

þ δG
δmμ

δF
δmν

∂2
μν
δH
δn

which vanish due to the fact that second (partial) derivatives commute. The remaining terms linear in n, keeping the same
order they have in the Jacobi identity, follow:

δF
δmν

∂ν
δG
δmμ

∂μ
δH
δn

②

−
δG
δmν

∂ν
δF
δmμ

∂μ
δH
δn

⑥

−
δH
δmμ

∂μ
δF
δmν

∂ν
δG
δn

③ þ δH
δmμ

∂μ
δG
δmν

∂ν
δF
δn

① þ δG
δmν

∂ν
δH
δmμ

∂μ
δF
δn

⑤

−
δH
δmν

∂ν
δG
δmμ

∂μ
δF
δn

①

−
δF
δmμ

∂μ
δG
δmν

∂ν
δH
δn

② þ δF
δmμ

∂μ
δH
δmν

∂ν
δG
δn

④ þ δH
δmν

∂ν
δF
δmμ

∂μ
δG
δn

③

−
δF
δmν

∂ν
δH
δmμ

∂μ
δG
δn

④

−
δG
δmμ

∂μ
δH
δmν

∂ν
δF
δn

⑤ þ δG
δmμ

∂μ
δF
δmν

∂ν
δH
δn

⑥

They vanish in pairs, as labeled by the circled numbers.
So all the terms linear in n have vanished from the Jacobi identity. However, the terms linear in σ are identical, but with

functional derivatives δ=δn replaced by δ=δσ. So the σ terms vanish by an identical calculation. Moreover, the mλ terms do
as well: the δ=δn are replaced with δ=δmλ, contracted with the remaining mλ term outside the square brackets of its version
of (A3), and the calculation proceeds as before.
The only terms remaining to be checked are those linear in hλ; unfortunately, there are quite a few:

Z
d4xhλ

��
δF
δmμ

∂μ
δG
δmν

−
δG
δmμ

∂μ
δF
δmν

�
∂ν
δH
δhλ

①

−
δH
δmν

∂ν

�
δF
δmμ

∂μ
δG
δhλ

−
δG
δmμ

∂μ
∂F
∂hλ

�
①

−
δH
δmν

∂ν

�
∂λ

δF
δmμ

δG
δhμ

− ∂λ
δG
δmμ

δF
δhμ

�
þ ∂λ

�
δF
δmμ

∂μ
δG
δmν

−
δG
δmμ

∂μ
δF
δmν

�
δH
δhν

− ∂λ
δH
δmν

�
δF
δmμ

∂μ
δG
δhν

−
δG
δmμ

∂μ
δF
δhν

þ∂ν
δF
δmμ

δG
δhμ

− ∂ν
δG
δmμ

δF
δhμ

�
þ ↻

F;G;H

�
:

The terms labeled by a circled “one” produce a calculation identical to that already performed, and thus cancel. From the
remaining terms, we first gather all the second derivative ones inside the square braces:
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−
δH
δmν

δG
δhμ

∂2
λν

δF
δmμ

⑤ þ δH
δmν

δF
δhμ

∂2
λν

δG
δmμ

② þ δF
δmμ

δH
δhν

∂2
λμ

δG
δmν

①

−
δG
δmμ

δH
δhν

∂2
λμ

δF
δmν

④

−
δF
δmν

δH
δhμ

∂2
λν

δG
δmμ

① þ δF
δmν

δG
δhμ

∂2
λν

δH
δmμ

⑥

þ δG
δmμ

δF
δhν

∂2
λμ

δH
δmν

③

−
δH
δmμ

δF
δhν

∂2
λμ

δG
δmν

②

−
δG
δmν

δF
δhμ

∂2
λν

δH
δmμ

③ þ δG
δmν

δH
δhμ

∂2
λν

δF
δmμ

④ þ δH
δmμ

δG
δhν

∂2
λμ

δF
δmν

⑤

−
δF
δmμ

δG
δhν

∂2
λμ

δH
δmν

⑥

They cancel in pairs. Finally, the remaining terms, in the same order and bearing the same indices as in the Jacobi
identity, are

−
δH
δmν

∂λ
δF
δmμ

∂ν
δG
δhμ

③ þ δH
δmν

∂λ
δG
δmμ

∂ν
δF
δhμ

⑨ þ δH
δhν

∂λ
δF
δmμ

∂μ
δG
δmν

④

−
δH
δhν

∂λ
δG
δmμ

∂μ
δF
δmν

⃝12

−
δF
δmμ

∂λ
δH
δmν

∂μ
δG
δhν

① þ δG
δmμ

∂λ
δH
δmν

∂μ
δF
δhν

⑤

−
δG
δhμ

∂λ
δH
δmν

∂ν
δF
δmμ

⑦ þ δF
δhμ

∂λ
δH
δmν

∂ν
δG
δmμ

②

−
δF
δmν

∂λ
δG
δmμ

∂ν
δH
δhμ

⃝10

þ δF
δmν

∂λ
δH
δmμ

∂ν
δG
δhμ

① þ δF
δhν

∂λ
δG
δmμ

∂μ
δH
δmν

⃝11

−
δF
δhν

∂λ
δH
δmμ

∂μ
δG
δmν

②

−
δG
δmμ

∂λ
δF
δmν

∂μ
δH
δhν

⑥ þ δH
δmμ

∂λ
δF
δmν

∂μ
δG
δhν

③

−
δH
δhμ

∂λ
δF
δmν

∂ν
δG
δmμ

④ þ δG
δhμ

∂λ
δF
δmν

∂ν
δH
δmμ

⑧

−
δG
δmν

∂λ
δH
δmμ

∂ν
δF
δhμ

⑤ þ δG
δmν

∂λ
δF
δmμ

∂ν
δH
δhμ

⑥ þ δG
δhν

∂λ
δH
δmμ

∂μ
δF
δmν

⑦

−
δG
δhν

∂λ
δF
δmμ

∂μ
δH
δmν

⑧

−
δH
δmμ

∂λ
δG
δmν

∂μ
δF
δhν

⑨ þ δF
δmμ

∂λ
δG
δmν

∂μ
δH
δhν

⃝10

−
δF
δhμ

∂λ
δG
δmν

∂ν
δH
δmμ

⃝11

þ δH
δhμ

∂λ
δG
δmν

∂ν
δF
δmμ

⃝12

They also cancel in pairs, establishing the Jacobi identity. This derivation is also valid in curved spacetimes, for the
functional derivative cancels out a factor of

ffiffiffiffiffiffi−gp
, and there is no integration by parts to catch another such factor.

Next we will perform a similar calculation for the alternative bracket (41). While the same kinds of terms appear as
above, there is no longer a complete cancellation. Most of the functional derivatives (A2) are unchanged, the only differing
one being

δfF;Gg
δhμ

¼ δF
δmν

∂ν
∂G
∂hμ −

δG
δmν

∂ν
∂F
∂hμ þ ∂μ

δF
δhν

δG
δmν

− ∂μ
δG
δhν

δF
δmν

þ…

with the ellipsis again indicating terms with second functional derivatives, all of which can be disregarded.
The terms of the Jacobi identity once more appear in four sets, each linear in one of the field variables. The n, σ, and mλ

terms involve no derivatives with respect to hλ, and are thus unchanged: they cancel as before. Only the hλ terms differ.
They read

Z
d4xhλ

��
δF
δmν

∂ν
δG
δmμ

−
δG
δmν

∂ν
δF
δmμ

�
∂μ

δH
δhλ

①

−
δH
δmν

∂ν

�
δF
δmμ

∂μ
δG
δhλ

−
δG
δmμ

∂μ
δF
δhλ

�
①

−
δH
δmν

∂ν

�
∂λ

δF
δhμ

δG
δmμ

−∂λ
δG
δhμ

δF
δmμ

�

þ∂λ

�
δF
δmμ

∂μ
δG
δhν

−
δG
δmμ

∂μ
δF
δhν

þ∂ν
δF
δhμ

δG
δmμ

−∂ν
δG
δhμ

δF
δmμ

�
δH
δmν

−∂λ
δH
δhν

�
δF
δmμ

∂μ
δG
δmν

−
δG
δmμ

∂μ
δF
δmν

�
þ ↻

F;G;H

�

The terms labeled with a circled “one” cancel as in the previous bracket. The collected second derivative terms are

−
δH
δmν

δG
δmμ

∂2
νλ

δF
δhμ

② þ δH
δmν

δF
δmμ

∂2
νλ

δG
δhμ

① þ δF
δmμ

δH
δmν

∂2
λμ

δG
δhν

−
δG
δmμ

δH
δmν

∂2
λμ

δF
δhν

þ δH
δmν

δG
δmμ

∂2
λν

δF
δhμ

②

−
δH
δmν

δF
δmμ

∂2
λν

δG
δhμ

① þ ↻
F;G;H

¼ δF
δmμ

δH
δmν

∂2
λμ

δG
δhν

−
δG
δmμ

δH
δmν

∂2
λμ

δF
δhν

þ δG
δmμ

δF
δmν

∂2
λμ

δH
δhν

−
δH
δmμ

δF
δmν

∂2
λμ

δG
δhν

þ δH
δmμ

δG
δmν

∂2
λμ

δF
δhν

−
δF
δmμ

δG
δmν

∂2
λμ

δH
δhν
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Six terms do not cancel. The other terms (i.e. those that are not second derivatives) are

−
δH
δmν

∂λ
δF
δhμ

∂ν
δG
δmμ

② þ δH
δmν

∂λ
δG
δhμ

∂ν
δF
δmμ

⑤ þ δH
δmν

∂λ
δF
δmμ

∂μ
δG
δhν

−
δH
δmν

∂λ
δG
δmμ

∂μ
δF
δhν

þ δH
δmν

∂λ
δG
δmμ

∂ν
δF
δhμ

−
δH
δmν

∂λ
δF
δmμ

∂ν
δG
δhμ

−
δF
δmμ

∂λ
δH
δhν

∂μ
δG
δmν

① þ δG
δmμ

∂λ
δH
δhν

∂μ
δF
δmν

③

−
δF
δmν

∂λ
δG
δhμ

∂ν
δH
δmμ

⑥ þ δF
δmν

∂λ
δH
δhμ

∂ν
δG
δmμ

① þ δF
δmν

∂λ
δG
δmμ

∂μ
δH
δhν

−
δF
δmν

∂λ
δH
δmμ

∂μ
δG
δhν

þ δF
δmν

∂λ
δH
δmμ

∂ν
δG
δhμ

−
δF
δmν

∂λ
δG
δmμ

∂ν
δH
δhμ

−
δG
δmμ

∂λ
δF
δhν

∂μ
δH
δmν

④ þ δH
δmμ

∂λ
δF
δhν

∂μ
δG
δmν

②

−
δG
δmν

∂λ
δH
δhμ

∂ν
δF
δmμ

③ þ δG
δmν

∂λ
δF
δhμ

∂ν
δH
δmμ

④ þ δG
δmν

∂λ
δH
δmμ

∂μ
δF
δhν

−
δG
δmν

∂λ
δF
δmμ

∂μ
δH
δhν

þ δG
δmν

∂λ
δF
δmμ

∂ν
δH
δhμ

−
δG
δmν

∂λ
δH
δmμ

∂ν
δF
δhμ

−
δH
δmμ

∂λ
δG
δhν

∂μ
δF
δmν

⑤ þ δF
δmμ

∂λ
δG
δhν

∂μ
δH
δmν

⑥

This time twelve terms do not cancel. All told, eighteen terms remain, which collect in groups of three. Each group reduces
to a gradient with a ∂λ pulled outside the expression. The whole Jacobi identity simplifies to

ffF;Gg; Hg þ ffG;Hg; Fg þ ffH;Fg; Gg ¼
Z

d4xhλ∂λ

�
δF
δmν

δG
δmμ

∂μ
δH
δhν

−
δG
δmν

δF
δmμ

∂μ
δH
δhν

þ δG
δmν

δH
δmμ

∂μ
δF
δhν

−
δH
δmν

δG
δmμ

∂μ
δF
δhν

þ δH
δmν

δF
δmμ

∂μ
δG
δhν

−
δF
δmν

δH
δmμ

∂μ
δG
δhν

�
:

An integration by parts shows that the Jacobi identity is satisfied if hν;ν ¼ 0. In a curved spacetime, the above expression
is the same, except that d4x becomes

ffiffiffiffiffiffi−gp
d4x. The integration by parts catches this extra factor, yielding ðhν ffiffiffiffiffiffi−gp Þ;ν ¼

hν;ν ¼ 0 as a requirement for the Jacobi identity.
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